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ABSTRACT
We show that the Lyapunov exponents of a periodic orbit can be easily obtained from
the eigenvalues of the monodromy matrix. It turns out that the Lyapunov exponents
of simply stable periodic orbits are all zero, simply unstable periodic orbits have only
one positive Lyapunov exponent, doubly unstable periodic orbits have two different
positive Lyapunov exponents and the two positive Lyapunov exponents of complex
unstable periodic orbits are equal. We present a numerical example for periodic or-
bits in a realistic galactic potential. Moreover, the center manifold theorem allowed
us to show that stable, simply unstable and doubly unstable periodic orbits are the
mothers of families of, respectively, regular, partially and fully chaotic orbits in their
neighbourhood.

Key words: chaos – instabilities – galaxies: kinematics and dynamics

1 INTRODUCTION

In several previous articles (Muzzio, Carpintero & Wachlin
2005; Muzzio 2006; Muzzio, Navone & Zorzi 2009; Zorzi &
Muzzio 2012; Carpintero, Muzzio & Navone 2014; Carpin-
tero & Muzzio 2016) we have investigated the role that chaos
plays in the dynamics of stellar systems. Since these systems
can be described by autonomous Hamiltonians, their orbits
have always two Lyapunov exponents equal to zero, and the
remaining four are always two pairs of opposite real num-
bers (e.g., Benettin et al. 1976). This means that there may
be zero, one or two positive Lyapunov exponents. No pos-
itive Lyapunov exponents means that there is no direction
in phase space along which two initially infinitesimally sepa-
rated orbits diverge exponentially, that is, the original orbit
is regular. Otherwise, the orbit is chaotic. But chaotic or-
bits are evidently not all the same: there are those with only
one positive Lyapunov exponent, called partially chaotic or-
bits, and those with two positive Lyapunov exponents, called
fully chaotic orbits. One of the main results from our above-
mentioned works was that fully chaotic orbits are a disjoint
family from the partially chaotic orbits, even in their spatial
distribution inside the system.

Contopoulos, Galgani & Giorgilli (1978) and Pettini &
Vulpiani (1984) had also reported the finding of partially
chaotic orbits in other autonomous Hamiltonian systems,
but their existence was denied by Froeschlé (1970, 1971)
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and by Lichtenberg & Lieberman (1992). Nevertheless, more
recently, Muzzio (2017, 2018) proved their existence over, at
least, time intervals of 50 million Hubble times.

On the other hand, studies of the stability of periodic
orbits in the three-body problem (Hadjidemetriou 1975) and
in triaxial potentials (Magnenat 1982; Contopoulos & Mag-
nenat 1985; Contopoulos 2002) have yielded a wealth of
phenomena of interest. The different classes of instability of
these orbits are determined according to the eigenvalues of
the monodromy matrix of the periodic orbit. In particular,
Contopoulos & Magnenat (1985) have classified the orbits
into four categories: stable, unstable, doubly unstable and
complex unstable. The question naturally arises of whether
these orbits are somehow related to the regular, partially
and fully chaotic orbits. Therefore, we decided to investigate
the relationship between the eigenvalues of the monodromy
matrix of periodic orbits and the Lyapunov exponents of
those orbits and we found that, in fact, the latter can be
computed from the former. Besides, the stability of the pe-
riodic orbits, influences decisively the phase space in their
neighbourhood and it turns out that, just as stable periodic
orbits are surrounded by regular orbits, simply unstable pe-
riodic orbits are surrounded by partially chaotic orbits and
doubly and complex unstable periodic orbits are surrounded
by fully chaotic orbits. The present paper presents our re-
sults. Section 2 gives our analytical proof, section 3 presents
a numerical example and our conclusions are described in
Section 4.

c© 2015 The Authors
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2 LYAPUNOV EXPONENTS AND PERIODIC
MOTION

2.1 Lyapunov exponents as eigenvalues of the
main fundamental matrix

In a 3D potential, a regular orbit is defined as an orbit which
obeys al least three isolating integrals of motion (e.g., Binney
& Tremaine 2008); otherwise, it is irregular. On the other
hand, a chaotic orbit is defined as an orbit which has sen-
sitivity to the initial conditions, that is, if its initial phase
space position w0 ≡ (x 0, v0) is infinitesimally perturbed,
then the new orbit (hereafter called perturbed orbit) di-
verges exponentially from the original one. Though there
is no proof that every irregular orbit is chaotic, we will stick
to the widespread custom of considering both sets as the
same.

The standard gauge to measure the rate of divergence
between an orbit and its perturbed sister is the set of Lya-
punov exponents, sometimes called Lyapunov characteristic
numbers or Lyapunov characteristic exponents. If we choose
six independent directions of the phase space ei, i = 1, . . . , 6,
and perturb the initial conditions in the direction j by the
amount δwj(0), then the Lyapunov exponents are defined
by (e.g., Lichtenberg & Lieberman 1992)

λi = lim
t→∞

1

t
ln
|δwi(t)|
|δwi(0)| , i = 1, . . . , 6, (1)

where δwi(t) is the component of the deviation at time t
of the initial ith component of the deviation δwi(0), and
the norm | · | is any norm of the phase space, normally the
Euclidean one.

Numerically, the deviation δw(t) can be computed
starting from the equations of motion

ẇ = F (w), (2)

where w(t) is the phase point of the orbit, ẇ(t) its velocity,
and F are the functions that define the dynamical system.
Developing Eqs. (2) in a Taylor series around the unper-
turbed orbit and retaining only the first order, we obtain
the so called variational equations:

d

dt
(δw) =

∂F

∂w

∣∣∣∣
w

· δw . (3)

The set of variational equations (3) for the six com-
ponents of the deviation is, then, a system of linear, ho-
mogeneous, ordinary differential equations. For this kind of
systems, a fundamental matrix S(t) is defined as a matrix
whose columns are linearly independent solutions of the sys-
tem (e.g., Roxin & Spinadel 1976). In our case,

S(t) = (δw1, . . . , δw6), (4)

where each δw i is an independent solution of Eq. (3) and
represents a column, is the fundamental matrix of the vari-
ational equations. It is then clear that

Ṡ(t) =
∂F

∂w

∣∣∣∣
w

· S(t). (5)

Since the δw i are linearly independent solutions, then

S · ST = diag(|δw1|2, . . . , |δw6|2) = S2, (6)

where (·)T indicates transposition. If we choose S(t) such
that S(0) = 1, i.e., the identity matrix (in which case S(t) is

called main fundamental matrix), Eq. (1) shows that the set
of Lyapunov exponents can be expressed as the eigenvalues
of a (diagonal) matrix L where

L = lim
t→∞

1

2t
ln(S2) = lim

t→∞

1

t
ln |S|, (7)

where |S| = diag(|δw1|, . . . , |δw6|) (e.g., Benettin et al.
1980).

Now, let

w(t) = G(t,w0) (8)

be the solution of Eq. (2) with initial condition w(0) = w0,
and let the matrix M be defined by

M(t) =
∂G(t,w0)

∂w0
=
∂w(t)

∂w0
, (9)

i.e. M(t) is the matrix that evolves the initial perturbation
until time t:

δw(t) = M(t) · δw0. (10)

Now, by applying the chain rule, we have

Ṁ =
∂ẇ

∂w0
=
∂ẇ

∂w
· ∂w
∂w0

=
∂F

∂w
·M, (11)

i.e., M turns out to be the fundamental matrix S of the
variational equations (cf. Eq. (5)).

2.2 Lyapunov exponents of a periodic motion

We now specialise in periodic motion. Let the solution of
Eq. (2) represent a periodic orbit of period T . The stability
of such an orbit can be established studying the behavior of
a second orbit obtained by perturbing the initial conditions,
i.e. by integrating the variational equations. Let M be the
fundamental matrix of this system; it satisfies (cf. Eq. (11))

Ṁ(t) =
∂ẇ

∂w

∣∣∣∣
w

·M(t). (12)

According to the Floquet theorem (Floquet 1883), the
fundamental matrix M(t) in this case is also periodic with
period T . This property, along with Eq. (10) and the as-
sumption that M(0) = 1 allow us to write

δw(T ) = M(T ) · δw(0). (13)

The main fundamental matrix evaluated at t = T , M(T ),
is called the monodromy matrix of the periodic orbit (e.g.
Contopoulos 2002).

Since the motion is periodic with period T , then

δw(2T ) = M(2T ) · δw(0)

= M(T ) · [M(T ) · δw(0)]

= [M(T )]2 · δw(0),

(14)

so we have, for n ∈ N,

M(nT ) = [M(T )]n . (15)

Then, the Lyapunov exponents can be easily computed as
the natural logarithms of the eigenvalues of the monodromy
matrix divided by T (cf. Eq.(7)):

L = lim
t→∞

1

t
ln |M(t)|

= lim
n→∞

1

nT
ln |M(nT )|

=
1

T
ln |M(T )| ,

(16)
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Lyapunov exponents of periodic orbits 3

where in the last line we have used Eq. (15). If we let `i,
i = 1, . . . , 6 be the six eigenvalues of M(T ), then we have

λi =
1

T
ln |`i|. (17)

As usual, the `i’s are obtained as the six roots of the
characteristic polynomial of M(T ),

a6`
6 + a5`

5 + a4`
4 + a3`

3 + a2`
2 + a1`+ a0 = 0, (18)

where the ai are real numbers. The two null Lyapunov ex-
ponents imply that two of the eigenvalues are always unity.
After dividing by (`−1)2, the remaining polynomial we write
as

c4`
4 + c3`

3 + c2`
2 + c1`+ c0 = 0. (19)

We also know that the four remaining Lyapunov exponents
come in pairs of opposite numbers, so the corresponding
eigenvalues are pairs of reciprocal numbers. Let {`1, `2 =
`−1
1 , `3, `4 = `−1

3 } be those eigenvalues. Then, the polynomial
(19) can be written

`4 + α`3 + β`2 + α`+ 1 = 0, (20)

where

α = −(`1 + `2 + `3 + `4),

β = `1`3 + `1`4 + `2`3 + `2`4 + 2.
(21)

Following the standard notation initiated by Hadjidemetriou
(1975), we let

b1 = −(`1 + `2),

b2 = −(`3 + `4),
(22)

with which

α = b1 + b2,

β = b1b2 + 2,
(23)

and, therefore,

b1 =
1

2

(
α+
√

∆
)
,

b2 =
1

2

(
α−
√

∆
)
,

(24)

where

∆ = α2 − 4(β − 2). (25)

With this notation, the four roots (eigenvalues) can be writ-
ten as

`1,2 =
1

2

(
−b1 ±

√
b21 − 4

)
,

`3,4 =
1

2

(
−b2 ±

√
b22 − 4

)
.

(26)

2.3 Stability of a periodic motion

Although the Lyapunov exponents of a periodic motion can
be effortlessly computed from the eigenvalues of the mon-
odromy matrix, the stability of its orbits is usually studied
by considering ∆, b1 and b2 (e.g. Hadjidemetriou 1975; Mag-
nenat 1982; Contopoulos & Magnenat 1985; Patsis & Zachi-
las 1990, 1994; Contopoulos 2002), which are combinations
of those eigenvalues:

∆ = (−`1 − `2 + `3 + `4)2 (27)

and b1, b2 given by Eq. (22). Using this three indicators, a
periodic orbit is found to be (e.g., Contopoulos 2002):

(i) Stable, if ∆ > 0, |b1| < 2, and |b2| < 2. In this case,
all the eigenvalues are complex numbers lying on the unit
circle, and, besides their reciprocal property `1`2 = `3`4 = 1,
the pairs also obey `1 = `∗2 and `3 = `∗4, where the asterisk
means complex conjugation.

(ii) Unstable, if ∆ > 0, |b1| < 2, and |b2| > 2 or ∆ > 0,
|b1| > 2, and |b2| < 2. In this case, a pair of reciprocal roots
are complex conjugate lying on the unit circle, and the other
two roots are real.

(iii) Doubly Unstable, if ∆ > 0, |b1| > 2, and |b2| > 2. All
four roots are real.

(iv) Complex Unstable, if ∆ < 0. In this case, besides
`1`2 = `3`4 = 1, we have `1 = `∗3 and `2 = `∗4, that is, the
reciprocal and conjugate pairs are different.

Now, we want to write these four types of stability in
terms of the Lyapunov exponents. According to Eq. (17),
any pair of reciprocal eigenvalues `i = `−1

j will yield

λi =
1

T
ln |`i| =

1

T
ln |`−1

j | = −
1

T
ln |`j | = −λj , (28)

and any pair of conjugate eigenvalues `i = `∗j will yield

λi =
1

T
ln |`i| =

1

T
ln |`∗j | =

1

T
ln |`j | = λj . (29)

The different stability cases then yield:

(i) Stable orbits. Both pairs of roots are simultaneously
reciprocal and conjugate. For the first pair {`1, `2} we have
λ1 = −λ2 and λ1 = λ2, and the same for {`3, `4}. Therefore,

λ1 = λ2 = λ3 = λ4 = 0, (30)

that is, stable periodic orbits have all their Lyapunov expo-
nents equal to zero.

(ii) Unstable orbits. Two of the roots are reciprocal and
conjugate, so the previous analysis apply. The other two are
only reciprocal. Therefore, we have

λ1 = λ2 = 0,

λ3 = −λ4

(31)

if |b1| < 2, or with the pairs interchanged if |b2| < 2. Thus,
unstable periodic orbits have only two non-zero and opposite
Lyapunov exponents.

(iii) Doubly Unstable orbits. Now both pairs are only re-
ciprocal, so we have

λ1 = −λ2,

λ3 = −λ4.
(32)

Therefore, there are four non-zero Lyapunov exponents that
are opposite in pairs for doubly unstable orbits.

(iv) Complex Unstable orbits. In this case we have λ1 =
−λ2, λ3 = −λ4, λ1 = λ3, λ2 = λ4, and therefore

λ1 = −λ2 = λ3 = −λ4, (33)

that is, a complex unstable orbit has two equal pairs of op-
posite non-zero Lyapunov exponents.

2.4 The neigbourhood of periodic orbits.

Thus far, we have only dealt with the periodic orbits them-
selves, but the theorem of existence of center manifolds (e.g.
Guckenheimer & Holmes 2013; Berglund 2001) allows us to
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4 D. D. Carpintero and J. C. Muzzio

extend our results to the neighbourhood of those orbits, and
will lead us to an important conclusion. Let us consider the
4D Poincaré map around the fixed point of a simply unsta-
ble periodic orbit which has one positive, one negative and
two zero eigenvalues. Thus, according to the theorem, there
exist in the neighbourhood of the fixed point a 1D unstable
local invariant manifold, a 1D stable local invariant man-
ifold and a 2D centre invariant manifold1. Therefore, the
Lyapunov exponents of the orbits in that neighbourhood
will be one negative, one positive and four zero (two due to
the centre invariant manifold and two due to the conserva-
tion of energy), i.e., they are partially chaotic orbits. The
same reasoning can be applied to the stable and to the dou-
bly unstable orbits. In brief, stable and simply and unstable
periodic orbits are the mothers of families of, respectively,
regular and partially chaotic orbits, while both doubly and
complex unstable periodic orbits are the mothers of families
of fully chaotic orbits.

3 NUMERICAL EXAMPLE

Patsis & Zachilas (1990) investigated the stability of the pe-
riodic orbits along the axis of rotation of a model galaxy
using the monodromy matrix. They modeled the potential
with a disc of the Miyamoto & Nagai (1975) type and a
triaxial logarithmic halo. We used their potential together
with the Liamag routine, kindly provided by D. Pfenniger
(see Udry & Pfenniger 1988) to obtain the Lyapunov expo-
nents. We selected initial conditions for orbits along the axis
of rotation with different energies and values of the angular
velocity; the integration time was 106 time units. Two pos-
itive Lyapunov exponents were considered equal when they
differed by less than 1.25× 10−4.

Fig. 1 presents our results and it can be compared with
Figure 2 of Patsis & Zachilas (1990). The stable and simply
unstable regions of their diagram agree very well with the
regions of our Fig. 1 that correspond, respectively, to our re-
gions with all null and with just one positive Lyapunov expo-
nents. The comparison of the doubly unstable and complex
unstable regions of Patsis and Zachilas with our regions oc-
cupied by orbits with two positive Lyapunov exponents and,
respectively, λ1 6= λ2 and λ1 = λ2 shows, however, some
small disagreements. For a rotationless galaxy our results
give orbits with λ1 = λ2 > 0 for energies between −0.245
and −0.220 as well as for energies larger than −0.070, al-
though the results of Patsis and Zachilas give doubly unsta-
ble orbits for all energies. Besides, the two lanes of orbits
with two positive Lyapunov exponents and λ1 6= λ2 in the
upper right region of our figure do not extend to energies
larger than −0.120, while the corresponding lanes of doubly
unstable orbits of Patsis and Zachilas continue up to the top
of their figure. The problem is that the differences between
λ1 and λ2 are very small in those regions and close to the
precision of our computations. The differences between the
two positive Lyapunov exponents of the orbits in the upper-
most right lane, for example, are about 1.50×10−4, i.e. very
near our limiting value of 1.25 × 10−4. The method of the

1 Figures 1.1.5 and 1.1.6 of Wiggins (1990) provide nice 3D ex-
amples of orbits for the case of stable and unstable manifolds.

Figure 1. Types of orbits in the angular velocity vs. energy di-
agram. Orbits with null Lyapunov exponents are shown as dots

(black in the electronic version) and orbits with only one positive

Lyapunov exponent as filled squares (red in the electronic ver-
sion). The blank space corresponds to orbits with two equal non-

zero Lyapunov exponents and plus signs (green in the electronic

version) represent orbits with two non-zero Lyapunov exponents
that are not equal.

monodromy matrix seems, therefore, to be better than Lya-
punov exponents to distinguish doubly unstable from com-
plex unstable periodic orbits, but that is not a problem for
us because we did not intend to replace the method of the
monodromy matrix by the use of Lyapunov exponents.

4 CONCLUSIONS

We have proven that stable periodic orbits have null Lya-
punov exponents, simply unstable periodic orbits have only
one positive Lyapunov exponent, doubly unstable peri-
odic orbits have two different positive Lyapunov exponents
and complex unstable periodic orbits have two equal posi-
tive Lyapunov exponents. A corollary of our result is that
complex instability does not exist in systems with two-
dimensional (2D) configuration spaces, an assertion that
Contopoulos (2002, p. 287) gives without proof, because
complex instability demands an exponential expansion in
two dimensions but only one is available in 2D autonomous
systems (the other one has a zero Lyapunov exponent).

The most important result of our study is that the sta-
bility of the periodic orbits (revealed by their Lyapunov ex-
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Lyapunov exponents of periodic orbits 5

ponents) drastically affects the phase space in their neigh-
borhood and, as a result, stable, simply unstable and both
doubly and complex unstable periodic orbits should be sur-
rounded by families of, respectively, regular, partially and
fully chaotic orbits. Thus, our result gives further support
to the existence of partially chaotic orbits.

We have investigated the presence of chaos in many
galactic models in the past and our experience is that λ1 is
usually much larger than λ2 when both are not zero. Thus,
it was surprising to find that almost 98 per cent of the or-
bits with two non-zero Lyapunov exponents in Figure 1 have
λ1 = λ2. The most likely explanation for this oddity is that
all the orbits in that sample are periodic, while in our mod-
els it would have been almost impossible to find a periodic
orbit by chance.
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