
Comparison of HPC Architectures for
Computing All-Pairs Shortest Paths.

Intel Xeon Phi KNL vs NVIDIA Pascal

Manuel Costanzo1 , Enzo Rucci1 ?, Ulises Costi2, Franco Chichizola1 , and
Marcelo Naiouf1

1 III-LIDI, Facultad de Informática, UNLP – CIC.
La Plata (1900), Bs As, Argentina

{mcostanzo,erucci,francoch,mnaiouf}@lidi.info.unlp.edu.ar
2 Facultad de Informática, UNLP.
La Plata (1900), Bs As, Argentina

ulises 92 lp@hotmail.com

Abstract. Today, one of the main challenges for high-performance com-
puting systems is to improve their performance by keeping energy con-
sumption at acceptable levels. In this context, a consolidated strategy
consists of using accelerators such as GPUs or many-core Intel Xeon Phi
processors. In this work, devices of the NVIDIA Pascal and Intel Xeon
Phi Knights Landing architectures are described and compared. Select-
ing the Floyd-Warshall algorithm as a representative case of graph and
memory-bound applications, optimized implementations were developed
to analyze and compare performance and energy efficiency on both de-
vices. As it was expected, Xeon Phi showed superior when considering
double-precision data. However, contrary to what was considered in our
preliminary analysis, it was found that the performance and energy effi-
ciency of both devices were comparable using single-precision datatype.

Keywords: Shortest paths · Floyd-Warshall · Xeon Phi · Knights Land-
ing · NVIDIA Pascal · Titan X

The final authenticated version is available online at https://doi.

org/10.1007/978-3-030-75836-3_3

? Corresponding author.

ar
X

iv
:2

10
5.

07
29

8v
1

 [c
s.D

C
]

15
 M

ay
 2

02
1

https://orcid.org/0000-0002-6937-3943
https://orcid.org/0000-0001-6736-7358
https://orcid.org/0000-0001-8857-6343
https://orcid.org/0000-0001-9127-3212
https://doi.org/10.1007/978-3-030-75836-3_3
https://doi.org/10.1007/978-3-030-75836-3_3

1 Introduction

In the last decade, the quest to improve the energy efficiency of high-performance
computing (HPC) systems has fueled the trend toward heterogeneous computing
and massively parallel architectures [7]. Heterogeneous systems combine CPUs
with accelerators (such as NVIDIA and AMD GPUs or Intel’s Xeon Phi many-
core co-processors), delegating code sections with high computational demand to
them. According to the Green500 3 ranking, the November 2010 edition featured
17 systems that integrated accelerators. However, 10 years later, this number has
increased to 145, evidencing the great popularity of this strategy.

Today, GPUs can be considered the dominant accelerator class due to their
high computing power and energy efficiency, in addition to their low cost. In the
opposite sense, one of their weaknesses is the need to learn a specific language
in order to make the most of them, such as CUDA and OpenCL. Among the
manufacturing companies, NVIDIA stands out as the largest provider for the
high-performance segment.

On the other hand, Intel introduced the second generation of its Xeon Phi
processors in 2016, codenamed Knights Landing (KNL). Unlike its predecessor,
Knights Corner (KNC), KNL can operate as a standalone processor. Among
its main features, the large number of cores with hyper-threading support, the
incorporation of AVX-512’s 512-bit vector instructions, and the integration of a
high-bandwidth memory (HBM), among others [14], can be mentioned. Gener-
ations aside, the outstanding feature in this family is that it offers support for
x86 architectures, which allows programmers to use traditional models in HPC,
such as OpenMP and MPI.

Because each accelerator has its advantages and disadvantages for certain
classes of problems [22,3,17], selecting the best option for a given application is
key when searching for maximum performance. To provide some guidelines for
such selection, this article presents a comparative analysis between two different
HPC architectures (Intel Xeon Phi KNL vs. NVIDIA Pascal). As a case study,
the Floyd-Warshall (FW) algorithm was selected for computing the all-pairs
shortest paths in a graph, as a representative case of graph applications that
are memory-bound [16]. We hope that development teams will find this analysis
useful when choosing the most suitable architecture for their applications.

The remaining sections of this article are organized as follows: in Section 2,
the general background and other works that are related to this research are
presented. Next, in Section 3, the implementations used are described, and in
Section 4, the experimental work carried out is detailed and the results obtained
are analyzed. Finally, in Section 5, our conclusions and possible lines of future
work are presented.

3 https://www.top500.org/green500/

https://www.top500.org/green500/

2 Background and Related Works

First, the Intel Xeon Phi KNL and NVIDIA Pascal architectures are briefly
described and compared. Then, the FW algorithm for all-pair shortest paths
computation in a graph is described. Finally, some works related to this article
are detailed.

2.1 Intel Xeon Phi KNL vs NVIDIA Pascal

Intel Xeon Phi KNL. Unlike a GPU or a co-processor such as KNC, KNL
is a standalone processor, capable of booting operating systems and directly
accessing DDR memory. The scalable unit of replication of the KNL architec-
ture is the tile. Each tile houses 2 cores, a L2 cache shared between both cores,
and a portion of the distributed directory. The cores of a tile implement simul-
taneous multi-threading (4 hw threads per core) and out-of-order execution in
its pipeline, in addition to having 2 vector units that support AVX-512’s new
512-bit instructions [14].

A KNL chip has between 32 and 36 active tiles (between 64 and 72 cores),
depending on each specific model. The tiles are interconnected by a 2D mesh,
with cache coherence based on distributed directory and MESIF protocol. This
mesh can be configured in five different execution modes (cluster modes). Based
on the execution mode selected, the distributed directory will be split among
the tiles in the chip, which will have an impact on latency and bandwidth in
memory access.

KNL comes with a 16GB HBM called MCDRAM, which is built into the same
processor package. This memory can be configured in three different modes. In
flat mode, the address space is mapped between the two memories (MCDRAM
and DDR), so it is the programmer who has the responsibility of defining how
to use them. On the other hand, cache mode leaves the system in charge of
managing the MCDRAM as a DDR cache. Finally, the hybrid mode assigns part
of the MCDRAM as flat, and part as cache [1].

NVIDIA Pascal. Pascal is the penultimate micro-architecture introduced by
NVIDIA for the high-performance segment, successor to Maxwell. In this seg-
ment, a GPU of this family can have up to 3840 CUDA cores distributed among
(at most) 60 Streaming Multiprocessors (SM). Compared to its predecessor, Pas-
cal doubles the number of registers per core and increases the available size of
shared memory.

This micro-architecture features several significant improvements over Maxwell.
Among them, we can highlight the inclusion of an HBM of up to 16GiB in some
of its chips, which allows them to reach a bandwidth of up to 720 GB/s. It
also replaces the traditional PCIe bus used for CPU-GPU communication by
a high-speed bus (NVLink), which significantly improves communication speed.
Finally, the provision of a unified memory, consisting of a virtual address space
between the CPU and GPU memories, aimed at simplifying programming [13].

Table 1. Intel Xeon Phi KNL 7230 vs NVIDIA Titan X

Device Intel Xeon Phi KNL NVIDIA Titan X

Chip 7230 GP102
Clock Frequency 1.3-1.5 GHz 1.42-1.53 GHz
Cores 64 (256 hw threads) 28 SMs (3584 CUDA cores)
Cache 1 MB L2 3 MB L2
SIMD 512-bit -
HBM 16GB MCDRAM (450 GB/s) -
RAM Memory 192GB DDR4 (115.2 GB/s) 12GB GDDR5X (480.4 GB/s)
Bus - PCI-Express 3.0 x16
Peak Theoretical per-
formance SP (DP)

6 (3) TFLOPS 10.97 (0.342) TFLOPS

TDP 215W 250W
TFLOPS/W (SP/DP) 0.028 / 0.014 0.051 / 0.001
Launch Date June 2016 August 2016

As regards peak performance, some Pascal chips can achieve double-precision
(DP) throughput rates that are half of the single-precision (SP) ones. On the
other hand, they can double SP performance if they apply half-precision com-
puting [5].

Brief comparison. Table 1 presents a comparison of these architectures and, in
particular, considers the models used in the experimental work. From the point
of view of the theoretical peak performance in SP, the Titan X is far superior
to the KNL 7230 (10.97 TFLOPS vs. 6 TFLOPS). However, due to the weak
support of the former for DP, it is the KNL in this case that has a remarkable
superiority (3 TFLOPS vs. 0.342 TFLOPS).

As regards main memory, the KNL has an HBM that puts it almost on par
with Titan X in terms of bandwidth, since KNL has DDR4 technology while
Titan X has GDDR5X. However, since it is a co-processor, the Titan X has a
much smaller memory size than the KNL, which is a host unto itself.

Finally, when considering the (theoretical) energy efficiency, even though the
Titan X has a higher thermal design power (TDP), its TFLOPS/W ratio in SP
almost doubles that of KNL due to its higher theoretical performance peak. On
the contrary, the poor performance of the Titan X for DP results in KNL being
vastly superior in this case. Despite the fact that some years have passed since
their launch, both architectures remain relevant, as shown by the latest edition
of the Top500 4 ranking, where 17 systems are equipped with Xeon Phi KNL
and an additional, 30 with GPUs from the Pascal family.

2.2 All-Pair Shortest Paths Computation in a Graph

FW Algorithm. The pseudocode of FW is shown in Algorithm 2.2. Given
a graph G of N vertexes, FW receives as input a dense N×N matrix D that

4 Top500 www.top500.org

www.top500.org

Algorithm 1 Pseudocode of the FW algorithm

for k ← 0 to N − 1 do
for i← 0 to N − 1 do

for j ← 0 to N − 1 do
if Di,j ≥ Di,k + Dk,j then

Di,j ← Di,k + Dk,j

Pi,j ← k
end if

end for
end for

end for

contains the distances between all pairs of vertexes from G, where Di,j represents
the distance from node i to node j 5. FW computes N iterations, evaluating in
the k -th iteration all possible paths between vertexes i and j that have k as the
intermediate vertex. As a result, it produces an updated matrix D, where Di,j

now contains the shortest distance between nodes i and j up to that step. Also,
FW builds an additional matrix P that records the paths associated with the
shortest distances.

Blocked FW Algorithm. At first glance, the nested triple loop structure of
this algorithm is similar to that of dense matrix multiplication (MM). However,
since read and write operations are performed on the same matrix, the three
loops cannot be freely exchanged, as is the case with MM. Despite this, the FW
algorithm can be computed by blocks under certain conditions [21].

The blocked FW algorithm (BFW) divides matrix D into blocks of size TB×
TB, totaling (N/TB)2 blocks. Computation is organized in R = N/TB rounds,
where each round consists of 4 phases ordered according to the data dependencies
between the blocks:

1. Phase 1: Update the Dk,k block because it only depends on itself.
2. Phase 2: Update the blocks in row k of blocks (Dk,∗) because each of these

depends on itself and on Dk,k.
3. Phase 3: Update the blocks in column k of blocks (D∗,k) because each of

these depends on itself and on Dk,k.
4. Phase 4: Update the remaining Di,j blocks of the matrix because each of

these depends on blocks Di,k and Dk,j on its row and column of blocks,
respectively.

Figure 1 shows each of the computation phases and the dependencies be-
tween blocks. The yellow squares represent blocks that are being computed,
gray squares are those that have already been processed, and green squares are
the ones that have not been computed yet. Last, arrows show the dependencies
between blocks for each phase.

5 If there is no path between nodes i and j, their distance is considered to be infinite
(usually represented as the largest positive value)

2.3 Related Works

The comparison of HPC architectures is a topic widely studied by the scientific
community. In particular, there are several articles involving comparative studies
between Xeon Phi KNL and NVIDIA Pascal in the field of large-scale economic
modeling [19] linear algebra [4], computational fluid dynamics [15], and auto-
matic deep learning [6], among others. However, as far as we know, this is the
first to consider graph algorithms, in particular the FW algorithm for all-pair
shortest paths.

The contributions of this work can be seen as an extension of a previous work
of the authors [2], where the comparison of HPC architectures just considered
performance and theoretical energy efficiency. By incorporating actual power
consumption and programming cost to the comparison, this work is able to offer
a more comprehensive analysis of the pro and cons of each architecture for graph
applications.

3 FW Optimization

This section describes the Xeon Phi implementation followed by the GPU one.

3.1 Implementation on Xeon Phi KNL 7230

The implementation used considers the following optimizations:

– Data locality. By computing with BFW, it is not only possible to exploit
data locality, but it is also possible to increase the parallelism available in
the application.

– Parallelism at thread level. Using OpenMP, a multi-threaded version is ob-
tained. Both Phase 2 and Phase 3 blocks are distributed among the different
threads by means of the for directive with dynamic scheduling. In the case
of Phase 1, since it consists of a single block, the iterations within it are
distributed among the threads.

Fig. 1. BFW computation phases and block dependencies

– Parallelism at data level. Using the OpenMP simd directive, the operations of
the innermost loop are vectorized when computing each block, which allows
taking advantage of the AVX-512 instructions.

– Loop unrolling. By fully unrolling the innermost loop and loop i only once.
– Branch prediction. By including the built-in builtin expect compiler

macro, if statement branchs can be better predicted.
– MCDRAM. Since this is a bandwidth-limited application, using this spe-

cial memory is greatly beneficial. Executions are done using the numactl

command.

It should be noted that this implementation can be considered as an opti-
mized version of [16], since it also includes intra-block parallelization for Phase
1 and the improvement in branch predictions.

3.2 Implementation on NVIDIA Titan X

The implementation used considers the optimizations known for GPU-based FW
solutions at the moment [10,11]. Among those, the following can be mentioned:

– Concurrency. Three kernels have been developed that are invoked once for
each BFW computation round. On round k, the first kernel computes block
Dk,k (Phase 1) and is instantiated with a single grid made up of a single
block. Next, the second kernel is invoked, which computes both Phase 2
and Phase 3 blocks (Dk,∗, D∗,k), and is instantiated with a single grid of
2× (R− 1) blocks. Finally, the third kernel, which computes the remaining
blocks corresponding to Phase 4 (Di,j), is invoked. This kernel is instantiated
with a single grid of (R − 1)2 blocks. In all cases, blocks are made up of
TB × TB threads.

– Exploitation of memory hierarchy. For BFW computation, the use of shared
memory is not only convenient but also necessary, especially in Phases 1-3
since the threads read and write to the same blocks of the matrix due to
their dependencies. In the case of Phase 4, it is possible to take advantage of
the private memory for the write block (Di,j), which improves access times
even more. Finally, the main memory accesses were organized so that they
are coalescent.

– Resource occupation. In order to optimize this aspect, different thread block
sizes were tried (using TB = {8, 16, 32}) to find the one that leads to the
maximum possible number of active warps.

– Loop unrolling. By fully unrolling the loop that computes each thread.

4 Experimental Results

In this section, the experimental setup and methodology are described. Next, the
results found are presented and analyzed. Last, the limitations of this research
are mentioned.

4.1 Experimental Setup and Methodology

The tests were carried out on two different platforms 6. On the one hand, an
Intel Xeon Phi KNL 7230 server configured in all-to-all cluster mode and with
flat memory (ICC v19.0.0.117). On the other, an Intel Core i7-7700 3.6 GHz and
16GB RAM, which integrates an NVIDIA Titan X GPU (CUDA v9.0).

For both platforms, the variation in the size of the distances matrix (N =
{4096, 8192, 16384, 32768, 65536}) and data type (float, double) were considered.
In the case of KNL, different values for both the number of OpenMP threads
T = {64, 128, 192, 256} and TB = {16, 32, 64, 128} were tried to identify the
optimal values of Tfloat = 128, Tdouble = 64 and TB = 64. As regards the GPU,
the best performances were obtained when using TBfloat = 32 and TBdouble =
16. Finally, to minimize variability, each specific test was repeated 15 times and
the average values were calculated.

Since this paper considers power consumption as well as performance, the
measurement environment used on each platform is described as follows:

– Intel Xeon Phi KNL. Intel has developed the Intel PCM 7 (Performance
Counter Monitor) to take power measurements on both Intel Xeon and Xeon
Phi processors. With Intel PCM interface, any programmer can perform an
analysis of CPU resource consumption by means of hardware counters.

– NVIDIA Titan X. In modern NVIDIA GPUs, the NVIDIA System Manage-
ment Interface utility (nvidia-smi 8) can be used to query power consumption
at runtime. This tool is based on the NVIDIA Management Library (NVML)
and is intended to help in the management and monitorization of NVIDIA
GPU devices.

4.2 Performance Results

The GFLOPS metric is used for performance evaluation:

GFLOPS =
2×N3

t× 109
(1)

where N is the size of the distances matrix, t is execution time (in seconds),
and factor 2 represents the number of floating-point operations required by each
iteration of the innermost loop.

Figure 2 shows the performance obtained by each implementation with dif-
ferent values for both matrix and data type used. In SP (float), it can be seen
that the GPU achieves a better performance with smaller matrix sizes, being
approximately 19% higher when N = 4096. In these cases, GPU is better suited
than KNL, which requires higher workloads to reach its maximum use. This is
reflected in the graph, since, as the size of the distances matrix increases, KNL

6 The characteristics of each platform were described at the end of Section 2.1
7 Intel Performance Counter Monitor: http://www.intel.com/software/pcm
8 NVIDIA System Management Interface: https://developer.nvidia.com/

nvidia-system-management-interface

http://www.intel.com/software/pcm
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface

Fig. 2. Performance obtained with different data types and distances matrix sizes with
Intel Xeon Phi KNL 7230 and NVIDIA Titan X

achieves the best performance, reaching an additional 7% difference. It should
be noted that with N = 65536, KNL experiences a performance loss of ap-
proximately 30%, due to the fact that, with this value, the available size of the
MCDRAM is exceeded and partial use of DDR4 is required, which has a much
lower bandwidth. Even so, it is more convenient than using GPU, which cannot
compute cases with N > 32768 because the available main memory space is
exceeded 9.

As regards DP (double), the results obtained are as expected due to the
weak support of Titan X for this class of operations. While GPU obtains an
almost constant performance of ∼90 GFLOPS, KNL improves its performance
as N increases and eventually surpasses the size of the MCDRAM. In particular,
KNL gets about half the FLOPS of SP but improves to 4.3× those of Titan X.
Lastly, the memory limit issue in GPU is also worse due to the fact that the
double type requires more space (cases with N > 16384 could not be processed).

4.3 Power and Energy Efficiency Results

As mentioned in Section 1, application performance is not the only point of
interest to be considered, energy efficiency also matters. Table 2 lists energy
efficiency ratios taking into account the GFLOPS peaks reached and the TDP

9 Naturally, it is also possible to develop an implementation that processes the matrix
in parts and does not have this memory limitation. However, the need to run I/O
operations for each round would significantly degrade performance.

Table 2. Theoretical comparison of performance and power efficiency by platform

Precision Platform GFLOPS (peak) TDP (Watt) GFLOPS/Watt

SP
Xeon Phi KNL 7230 1037 215 4.82
NVIDIA Titan X 972 250 3.89

DP
Xeon Phi KNL 7230 501 215 2.33
NVIDIA Titan X 90 250 0.36

Table 3. Comparison of performance and power efficiency by platform

Precision Platform GFLOPS (peak) Power (Watt) GFLOPS/Watt

SP
Xeon Phi KNL 7230 1037 229.7 4.51
NVIDIA Titan X 972 209.5 4.64

DP
Xeon Phi KNL 7230 501 261 1.92
NVIDIA Titan X 90 144.8 0.62

of the platforms used. As it can be seen, KNL is superior in both cases. In
particular, KNL gets a GFLOPS/Watt ratio that is 1.2× better than that of
Titan X in SP. However, this factor increases up to 5.5× in DP, due to the
weak support of this GPU for these operations. It should be noted that for this
analysis, host consumption by GPU was not taken into account, so the differences
could be even greater.

TDP can be useful for qualitative comparison purposes and sometimes is
the only valid metric when power measuring is not possible. However, actual
power readings can differ from TDP due to a variety of reasons (power saving
techniques available in modern processors/accelerators, specific workload in the
target application, among others) [9]. For this reason, this work also includes an
empirical power-performance analysis between platforms.

Table 3 shows a summary of the best performance and the corresponding
average power consumption on the different architectures under study.

These power measurements reinforce the idea that actual power readings can
differ from the TDP of each platform. In the KNL architecture, a higher power
consumption is observed in both SP and DP scenarios; however, the difference
is larger in the DP case. Hence, DP not only affects execution time but also in-
creases power consumption, as it was also observed in other recent studies [8,18].

In opposite sense to the KNL case, average power consumption is lower than
the corresponding TDP in Titan X. Considering this issue, Titan X becomes
slightly better than KNL when SP is used. Nevertheless, it must be remarked
that host power consumption in not included in the GPU estimation; so, KNL
still remains as probably the best option from this perspective. Despite the fact
that energy efficiency gets almost doubled in DP, this improvement is virtually
useless due to the poor performance of the Titan X.

4.4 Programming Cost

As well as general-purpose architectures, KNL supports widely extended parallel
programming models in HPC (such as OpenMP or MPI). On the other hand,
CUDA is the de facto standard for GPU programming nowadays. This fact puts
KNL in a favourable position with respect to GPUs, since code development and
portability get simplified.

Beyond specific language learning, GPUs may require additional program-
ming efforts. Even though it experienced a significant performance loss when
matrix size exceeded that of the MCDRAM, KNL was able to process all graphs.
On the other hand, Titan X was not able to process those that exceeded the size
of its RAM memory. While it is possible to develop an implementation that does,
it would also have an associated performance loss and would require additional
programming effort (not required in the case of KNL).

4.5 Limitations

Two possible limitations of this research can be mentioned:

– In 2019, Intel cancelled the KNL line [20]. Even though, several features of
there processors (like AVX-512 floating point unit, the mesh interconnect
on the die, and the integration of high bandwidth stacked memory into the
processor) have gone mainstream in the current Xeons [12]. Thus, part of
the results found in this research can be extrapolated to Xeon processors.

– This analysis focuses on two specific architecture models and that, as such,
some of the results found could change if different models were used. For
example, the NVIDIA GP100 (Pascal) GPU has a slightly lower peak SP
performance than the Titan X (10.1 TFLOPS). However, its support for DP
is vastly higher, being half SP (5 TFLOPS). In this sense, it is considered
that the comparison is equally valuable to show trends and the distinctive
characteristics of each architecture, even when there are different models
that may present variations in their specifications.

5 Conclusions and Future Work

This work focuses on the comparison of Intel Xeon Phi KNL and NVIDIA Pascal
architectures. Taking the FW algorithm for computing all-pairs shortest paths
in a graph as a case study, optimized implementations were used to compare
the achievable performance on each platform and thus be able to extract some
general guidelines. Among those, the following can be mentioned:

– Despite the fact that the preliminary analysis indicated that Titan X was far
superior to KNL, the performances (SP) obtained for FW were comparable.
While the GPU performed better for small graphs, as the size of the distances
matrix increased, it was the KNL that performed better. This fact leads to
KNL’s need for large workloads in order to make the most of it.

– As regards energy efficiency, contrary to what was found in the preliminary
analysis, no significant difference was observed in SP. This result contributes
to the fact that device sustainable performance and energy efficiency vary
depending on each particular problem and its corresponding software imple-
mentation.

– Beyond specific language learning, GPUs may require additional program-
ming efforts due to their co-processor nature (they are not hosts per se) and
limited memory sizes.

Future works include:

– Extending the GPU implementation to support graphs larger than the main
memory size.

– Including other models of the studied architectures (especially Pascal GPUs).

The development of these activities would give greater robustness and rep-
resentativeness to the study carried out.

Acknowledgments. The authors are grateful for the support of NVIDIA through
the donation of the Titan X GPU used in this research.

References

1. Codreanu, V., Rodŕıguez, J., Saastad, O.W.: Best Practice Guide - Knights Land-
ing (2017), https://bit.ly/2CEolbR

2. Costanzo, M., Rucci, E., Costi, U., Chichizola, F., Naiouf, M.: Comparación de
Arquitecturas HPC para Computar Caminos Mı́nimos en Grafos. Intel Xeon Phi
KNL vs NVIDIA Pascal. In: Actas del XXVI Congreso Argentino de Ciencias de
la Computación (CACIC 2020). pp. 82–92 (2020)

3. Deng, L., Bai, H., Zhao, D., Wang, F.: Kepler gpu vs. xeon phi: Performance case
study with a high-order cfd application. In: 2015 IEEE International Conference
on Computer and Communications (ICCC). pp. 87–94 (2015)

4. Deveci, M., Trott, C., Rajamanickam, S.: Multithreaded sparse matrix-matrix
multiplication for many-core and gpu architectures. Parallel Computing 78, 33
– 46 (2018). https://doi.org/https://doi.org/10.1016/j.parco.2018.06.009, http:

//www.sciencedirect.com/science/article/pii/S0167819118301923

5. Foley, D., Danskin, J.: Ultra-performance pascal gpu and nvlink interconnect.
IEEE Micro 37(2), 7–17 (2017)

6. Gawande, N.A., Daily, J.A., Siegel, C., Tallent, N.R., Vishnu, A.: Scaling deep
learning workloads: Nvidia dgx-1/pascal and intel knights landing. Future Gener-
ation Computer Systems 108, 1162 – 1172 (2020)

7. Giefers, H., Staar, P., Bekas, C., Hagleitner, C.: Analyzing the energy-efficiency
of sparse matrix multiplication on heterogeneous systems: A comparative study of
gpu, xeon phi and fpga. In: 2016 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). pp. 46–56 (2016)

8. Hashemi, S., Anthony, N., Tann, H., Bahar, R.I., Reda, S.: Understanding the
impact of precision quantization on the accuracy and energy of neural networks.
In: Design, Automation Test in Europe Conference Exhibition (DATE), 2017. pp.
1474–1479 (2017). https://doi.org/10.23919/DATE.2017.7927224

https://bit.ly/2CEolbR
https://doi.org/https://doi.org/10.1016/j.parco.2018.06.009
http://www.sciencedirect.com/science/article/pii/S0167819118301923
http://www.sciencedirect.com/science/article/pii/S0167819118301923
https://doi.org/10.23919/DATE.2017.7927224

9. Igual, F.D., Garćıa, C., Botella, G., Piñuel, L., Prieto-Mat́ıas, M.,
Tirado, F.: Non-negative matrix factorization on low-power architec-
tures and accelerators. Comput. Electr. Eng. 46(C), 139–156 (Aug 2015).
https://doi.org/10.1016/j.compeleceng.2015.03.035, https://doi.org/10.1016/

j.compeleceng.2015.03.035

10. Katz, G.J., Kider, Jr, J.T.: All-pairs shortest-paths for large graphs on the gpu.
In: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS Symposium on
Graphics Hardware. pp. 47–55. GH ’08, Eurographics Association, Aire-la-Ville,
Switzerland, Switzerland (2008)

11. Lund, B.D., Smith, J.W.: A multi-stage CUDA kernel for floyd-warshall. CoRR
abs/1001.4108 (2010), http://arxiv.org/abs/1001.4108

12. Morgan, T.P.: The end of Xeon Phi - It’s Xeon and Maybe GPUs from here (2018),
https://www.green500.org/

13. NVIDIA: NVIDIA Tesla P100., https://bit.ly/2Ozrrk1
14. Reinders, J., Jeffers, J., Sodani, A.: Intel Xeon Phi Processor High Perfor-

mance Programming Knights Landing Edition. Morgan Kaufmann Publishers Inc.,
Boston, MA, USA (2016)

15. Robertsén, F., Mattila, K., Westerholm, J.: High-performance SIMD im-
plementation of the lattice-Boltzmann method on the Xeon Phi processor.
Concurrency and Computation: Practice and Experience 31(13) (7 2019).
https://doi.org/10.1002/cpe.5072

16. Rucci, E., De Giusti, A., Naiouf, M.: Blocked All-Pairs Shortest Paths Algorithm on
Intel Xeon Phi KNL Processor: A Case Study. In: De Giusti, A.E. (ed.) Computer
Science – CACIC 2017. pp. 47–57. Springer Int. Pub., Cham (2018)

17. Rucci, E., Garcia, C., Botella, G., De Giusti, A., Naiouf, M., Prieto-Matias,
M.: SWIFOLD: Smith-Waterman implementation on FPGA with OpenCL
for long DNA sequences. BMC Systems Biology 12(5), 96 (Nov 2018).
https://doi.org/10.1186/s12918-018-0614-6

18. Sakamoto, R., Kondo, M., Fujita, K., Ichimura, T., Nakajima, K.: The ef-
fectiveness of low-precision floating arithmetic on numerical codes: A case
study on power consumption. In: Proceedings of the International Conference
on High Performance Computing in Asia-Pacific Region. p. 199–206. HPCA-
sia2020, Association for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3368474.3368492, https://doi.org/10.1145/3368474.

3368492

19. Scheidegger, S., Mikushin, D., Kubler, F., Schenk, O.: Rethinking large-scale eco-
nomic modeling for efficiency: Optimizations for gpu and xeon phi clusters. In: 2018
IEEE International Parallel and Distributed Processing Symposium (IPDPS). pp.
610–619 (2018)

20. Trader, T.: Requiem for a Phi: Knights Landing Discontinued (2018),
https://www.hpcwire.com/2018/07/25/end-of-the-road-for-knights-landing-phi

21. Venkataraman, G., Sahni, S., Mukhopadhyaya, S.: A Blocked All-Pairs
Shortest-Paths Algorithm, pp. 419–432. Springer Berlin Heidelberg (2000).
https://doi.org/10.1007/3-540-44985-X 36

22. Véstias, M., Neto, H.: Trends of cpu, gpu and fpga for high-performance computing.
In: 2014 24th International Conference on Field Programmable Logic and Appli-
cations (FPL). pp. 1–6 (Sept 2014). https://doi.org/10.1109/FPL.2014.6927483

https://doi.org/10.1016/j.compeleceng.2015.03.035
https://doi.org/10.1016/j.compeleceng.2015.03.035
https://doi.org/10.1016/j.compeleceng.2015.03.035
http://arxiv.org/abs/1001.4108
https://bit.ly/2Ozrrk1
https://doi.org/10.1002/cpe.5072
https://doi.org/10.1186/s12918-018-0614-6
https://doi.org/10.1145/3368474.3368492
https://doi.org/10.1145/3368474.3368492
https://doi.org/10.1145/3368474.3368492
https://doi.org/10.1007/3-540-44985-X_36
https://doi.org/10.1109/FPL.2014.6927483

	Comparison of HPC Architectures for Computing All-Pairs Shortest Paths. Intel Xeon Phi KNL vs NVIDIA Pascal

