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Abstract

A graph G is a B0-VPG graph if one can associate a horizontal or vertical path
on a rectangular grid with each vertex such that two vertices are adjacent if and
only if the corresponding paths intersect in at least one grid-point. A graph G is
a contact B0-VPG graph if it is a B0-VPG graph admitting a representation with
no one-point paths, no two paths crossing, and no two paths sharing an edge
of the grid. In this paper, we present a minimal forbidden induced subgraph
characterisation of contact B0-VPG graphs within four special graph classes:
chordal graphs, tree-cographs, P4-tidy graphs and P5-free graphs. Moreover, we
present a polynomial-time algorithm for recognising chordal contact B0-VPG
graphs.

Keywords: contact B0-VPG graph, chordal graph, tree-cograph, P4-tidy graph,
P5-free graph.

1. Introduction

Golumbic et al. introduced in [2] the concept of vertex intersection graphs of
paths in a grid (referred to as VPG graphs). An undirected graph G = (V,E)
is called a VPG graph if one can associate a path in a rectangular grid with
each vertex such that two vertices are adjacent if and only if the corresponding
paths intersect in at least one grid-point. In the seminal paper on VPG graphs
it was shown that this class is equivalent to the earlier defined class of string
graphs [14].

Under the perspective of paths in grids, a particular attention was paid to
the case where the paths have a limited number of bends. An undirected graph
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G = (V,E) is then called a Bk-VPG graph, for some integer k ≥ 0, if one can
associate a path with at most k bends in a rectangular grid with each vertex such
that two vertices are adjacent if and only if the corresponding paths intersect
in at least one grid-point. Recognition of VPG graphs is NP-complete by the
equivalence with string graphs. Moreover Bk-VPG recognition is NP-complete
for all k [6].

Since their introduction, Bk-VPG graphs have been studied by many re-
searchers and the community of people working on these graph classes or related
ones is still growing (see for instance [1, 2, 5, 7, 8, 9, 15, 18]).

In this paper, we are interested in a subclass of Bk-VPG graphs called contact
Bk-VPG. A contact Bk-VPG representation of G is a VPG representation in
which each path has length at least one, at most k bends, and intersecting paths
neither cross each other nor share an edge of the grid. A graph is a contact Bk-
VPG graph if it has a contact Bk-VPG representation. Here, we will focus on
the special case when k = 0, i.e. each path is a horizontal or vertical path in
the grid.

Contact graphs in general (graphs where vertices represent geometric objects
which are allowed to touch but not to cross each other, a natural model arising
from real physical objects) have been considered in the past (see for instance [10,
11, 19, 20]). In particular, for intersection models of lines in the plane, it is often
the case that three lines intersecting at a same point is not allowed, but we do
not impose such a restriction.

As for many graph classes having not many known full characterisations (for
example, a complete list of minimal forbidden induced subgraphs is not known),
their characterisation within well studied graphs classes or with respect to graph
parameters was investigated. In the case of contact Bk-VPG graphs, it was
shown in [12] that every planar bipartite graph is a contact B0-VPG graph.
Later, in [7], the authors show that every triangle-free planar graph is a contact
B1-VPG graph. In a recent paper (see [13]), contact Bk-VPG graphs have
been investigated from a structural point of view and it was for instance shown
that they do not contain cliques of size 7 and they always contain a vertex of
degree at most 6. Moreover, it was shown that they are 6-colourable. Regarding
contact B0-VPG graphs, it was shown that they are 4-colourable. Furthermore,
3-colouring and the recognition problem were shown to be NP-complete.

In this paper, our goal is to get a better understanding and knowledge of the
underlying structure of contact B0-VPG graphs. Even though classical graph
problems may be difficult to solve in this graph class (see for instance [13]), a
better knowledge of its structural properties may lead to good approximation
algorithms for these problems. We will consider the following four special graph
classes: chordal graphs, tree-cographs, P4-tidy graphs and P5-free graphs, and
we will characterise those graphs from these families that are contact B0-VPG.
Moreover, we will present a polynomial-time algorithm for recognising chordal
contact B0-VPG graphs based on our characterisation. For the other graph
classes considered here, the characterisation immediately yields a polynomial-
time recognition algorithm.

A preliminary version of this paper appears in [4].
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2. Preliminaries

For concepts and notations not defined here we refer the reader to [3]. All
graphs in this paper are simple (i.e., without loops or multiple edges). Let
G = (V,E) be a graph. If u, v ∈ V and uv /∈ E, uv is called a nonedge of G. We
write G− v for the subgraph obtained by deleting a vertex v and all the edges
incident to v. Similarly, we write G − e for the subgraph obtained by deleting
an edge e without deleting its endpoints.

For each vertex v of G, NG(v) denotes the neighbourhood of v in G and
NG[v] denotes the closed neighbourhood, i.e. NG(v) ∪ {v}. For a set A ⊆ V , we
denote by N(A) the set of vertices having a neighbour in A, and by N [A] the set
of vertices belonging to A or having a neighbour in A. Two vertices v and w of
G are false twins (resp. true twins) if NG(v) = NG(w) (resp. NG[v] = NG[w]).

Given a subset A ⊆ V , G[A] stands for the subgraph of G induced by A, and
G \A denotes the induced subgraph G[V \A]. We say that a vertex v ∈ V \A is
complete to A if v is adjacent to every vertex of A, and that v is anticomplete to
A if v has no neighbour in A. Similarly, we say that two disjoint sets A,B ⊂ V
are complete (resp. anticomplete) to each other if every vertex in A is complete
(resp. anticomplete) to B.

A clique is a set of pairwise adjacent vertices. A vertex v is simplicial, if
NG(v) is a clique. A stable set is a set of vertices no two of which are adjacent.
A complete graph is a graph such that all its vertices are adjacent to each other,
i.e. a graph induced by a clique. The complete graph on n vertices is denoted
by Kn. In particular, K3 is called a triangle. K−4 stands for the graph obtained
from K4 by deleting exactly one edge.

The complement graph of G = (V,E) is the graph G = (V,E) such that
E = {uv| uv 6∈ E}. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The
disjoint union of G1 and G2, denoted by G1∪G2, is the graph whose vertex set
is V1 ∪ V2 and whose edge set is E1 ∪ E2. The join of G1 and G2, denoted by
G1∨G2, is the graph obtained by first taking the disjoint union of G1 and G2 and
then making V1 and V2 complete to each other. Notice that G1 ∪G2 = G1∨G2.

Given a graph H, we say that G contains no induced H, if G contains no
induced subgraph isomorphic to H. If H is a family of graphs, G is said to be
H-free if G contains no induced subgraph isomorphic to some graph belonging
to H.

Let G be a class of graphs. A graph belonging to G is called a G-graph. If
G ∈ G implies that every induced subgraph of G is a G-graph, G is said to be
hereditary. If G is a hereditary class, a graph H is a minimal forbidden induced
subgraph of G, or more briefly, minimally non-G, if H does not belong to G but
every proper induced subgraph of H is a G-graph.

A path is a sequence of vertices v1, . . . , vk such that vi is adjacent to vi+1,
for i = 1, . . . , k − 1. The vertices v2, . . . , vk−1 are called internal vertices of
the path. If there is no edge vivj such that |i − j| ≥ 2, the path is said to be
chordless or induced. A cycle C is a sequence of vertices v1, . . . , vk such that vi
is adjacent to vi+1 for i = 1, . . . , k, where indices are taken modulo k. If there
is no edge vivj such that |i− j| ≥ 2, C is said to be chordless or induced. The
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Figure 1: A graph G and a contact B0-VPG representation of it.

induced path (resp. induced cycle) on n vertices is denoted Pn (resp. Cn). A
graph is called chordal if it does not contain any chordless cycle of length at
least four. A block graph is a chordal graph which is K−4 -free.

A graph is bipartite, if its vertex set can be partitioned into two stable sets.
If, in addition, the two stable sets are complete to each other, the graph is
called complete bipartite. Kn,m stands for the complete bipartite graph whose
vertex set can be partitioned into two stable sets V1, V2 such that |V1| = n and
|V2| = m.

A graph G is connected, if for each pair of vertices u, v there exists a path
from u to v. A tree is a connected graph with no induced cycle. Given a
connected graph G = (V,E), the distance between two vertices u, v ∈ V , denoted
by dG(u, v), is the number of edges of a shortest path from u to v. The diameter
of G is the maximum distance between two vertices.

An undirected graph G = (V,E) is called a Bk-VPG graph, for some integer
k ≥ 0, if one can associate a path with at most k bends (a bend is a 90 degrees
turn of a path at a grid-point) on a rectangular grid with each vertex such that
two vertices are adjacent if and only if the corresponding paths intersect in at
least one grid-point. Such a representation is called a Bk-VPG representation.
The horizontal grid lines will be referred to as rows and denoted by x0, x1, . . . and
the vertical grid lines will be referred to as columns and denoted by y0, y1, . . ..
We are interested in a subclass of B0-VPG graphs called contact B0-VPG. A
contact B0-VPG representation R(G) of G is a B0-VPG representation in which
each path in the representation is either a horizontal path or a vertical path on
the grid, with length at least one (the length is the number of grid-points minus
one), such that two vertices are adjacent if and only if the corresponding paths
intersect in at least one grid-point without crossing each other and without
sharing an edge of the grid. A graph is a contact B0-VPG graph if it has
a contact B0-VPG representation. For every vertex v, we denote by Pv the
corresponding path in R(G) (see Figure 1). Consider a clique K in G. A path
Pv representing a vertex v ∈ K is called a path of the clique K.

Let us start with an easy but very helpful lemma.

Lemma 1. Let G be a contact B0-VPG graph. Then the size of a biggest clique
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in G is at most 4, i.e. G is K5-free.

Proof. Given two adjacent vertices in G, the intersection of their paths in any
contact B0-VPG representation is exactly one grid point. Moreover, it is easy
to see that all paths corresponding to vertices in a clique of G must intersect in
the same grid point. Assume there is a clique K of size 5 in G and let P be the
point of intersection of the corresponding paths in the grid. At least two of the
paths must be in the same row or the same column, and contain at least one
grid edge intersecting P (a path cannot be only a grid point), a contradiction.
�

Remark 2. Let G be a K−4 -free graph containing an induced cycle C of at least
4 vertices. Then no vertex is adjacent to 3 consecutive vertices of C.

Let G be a contact B0-VPG graph, and K be a clique in G. A vertex v
is called an end in a contact B0-VPG representation of K if the grid point
representing the intersection of the paths of K corresponds to an endpoint of
Pv.

Remark 3. Let G be a contact B0-VPG graph, and K be a clique in G of size
four. Then, every vertex in K is an end in any contact B0-VPG representation
of K.

Lemma 4. In any contact B0-VPG representation of C4, the union of the paths
representing vertices in C must enclose a rectangle of the grid.

Proof. Consider a B0-VPG representation of C4. At least two vertices, say a
and b, in C have the same direction. We can assume that Pa and Pb are both
vertical. If a and b are adjacent, then the corresponding paths intersect in a
row xi of the grid. One of them, say Pa, is above xi and the other is below
xi. Let c be the vertex adjacent to a and non adjacent to b. Clearly, the path
Pc representing c must be also above xi. Similarly, the path representing the
vertex d adjacent to b and non adjacent to a must be below xi. But then it
is impossible for Pc and Pd to intersect. Therefore, a and b are non adjacent.
Now, it is clear that Pc and Pd must be both horizontal, otherwise we could
repeat the previous argument. If Pa and Pb lie in columns yi and yj , then Pc

and Pd must contain all points of the grid between yi and yj in their respective
columns, say xk and xl. Then, these paths enclose the rectangle limited by rows
yi, yj and columns xk, xl. �

In what follows, we give a set of graphs that are not contact B0-VPG graphs.
We will use this result later to obtain our characterisations. Let H0 denote the
graph composed of three K4’s that share a common vertex and such that there
are no further edges (see Figure 2).

Lemma 5. If G is a contact B0-VPG graph, then G is {K5,K3,3, H0,K
−
4 }-free.
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Figure 2: The graph H0.

Proof. Let G be a contact B0-VPG graph. It immediately follows from
Lemma 1 that G is K5-free.

Now consider the graph K3,3. Let C be a cycle of length four in K3,3

induced by the vertices a, b, c, d. If K3,3 is contact B0-VPG, then, by Lemma 4,
in any contact B0-VPG representation of C, the union of the paths representing
vertices in C must enclose a rectangle of the grid. Assume that Pa, Pc are
horizontal paths, and Pb, Pd are vertical paths. Now, consider vertices e and f
in K3,3 with e being adjacent to a and c, and f being adjacent to b and d. Each
of the paths Pe, Pf must intersect opposite paths of the rectangle. Clearly, Pe

must be a vertical path and Pf must be a horizontal. If Pe is contained inside
the rectangle, then it is impossible for Pf to intersect Pb, Pd while being inside
the rectangle without crossing Pe. So Pf must be outside the rectangle, but
then it cannot intersect Pe. If Pe lies outside the rectangle, then of course Pf

has to lie outside the rectangle as well, otherwise it cannot intersect Pe. But
now it cannot intersect both Pb, Pd without crossing at least one of them. So
we conclude that K3,3 is not B0-VPG.

Now let v, w be two adjacent vertices in G. Then, in any contact B0-VPG
representation of G, Pv and Pw intersect at a grid-point P . Clearly, every
common neighbour of v and w must also contain P . Hence, v and w cannot
have two common neighbours that are non-adjacent. So, G is K−4 -free.

Finally, consider the graph H0 which consists of three cliques of size four,
say A, B and C, with a common vertex x. Suppose that H0 is contact B0-
VPG. Then, it follows from Remark 3 that every vertex in H0 is an end in
any contact B0-VPG representation of H0. In particular, vertex x is an end in
any contact B0-VPG representation of A, B and C. In other words, the grid-
point representing the intersection of the paths of each of these three cliques
corresponds to an endpoint of Px. Since these cliques have only vertex x in
common, these grid-points are all distinct. But this is a contradiction, since Px

has only two endpoints. So we conclude that H0 is not contact B0-VPG, and
hence the result follows. �

3. Chordal graphs

In this section, we will consider chordal graphs and characterise those that
are contact B0-VPG. First, let us point out the following corollary.

Corollary 6. A chordal contact B0-VPG graph is a block graph.
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This follows directly from Lemma 5 and the definition of block graphs.

The following lemma states an important property of minimal chordal non
contact B0-VPG graphs that contain neither K5 nor K−4 .

Lemma 7. Let G be a {K5,K
−
4 }-free graph. If G is a minimal non contact

B0-VPG graph, then every simplicial vertex of G has degree exactly three.

Proof. Since G is K5-free, every clique in G has size at most four. Therefore,
every simplicial vertex has degree at most three. Let v be a simplicial vertex
of G. Assume first that v has degree one and consider a contact B0-VPG
representation of G− v (which exists since G is minimal non contact B0-VPG).
Let w be the unique neighbour of v in G. Without loss of generality, we may
assume that the path Pw lies on some row of the grid. Now clearly, we can
add one extra column to the grid between any two consecutive vertices of the
grid belonging to Pw and adapt all paths without changing the intersections
(if the new column is added between column yi and yi+1, we extend all paths
containing a grid-edge with endpoints in column yi and yi+1 in such a way that
they contain the new edges in the same row and between column yi and yi+2

of the new grid, and any other path remains the same). But then we may add
a path representing v on this column which only intersects Pw (adding a row
to the grid and adapting the paths again, if necessary) and thus, we obtain a
contact B0-VPG representation of G, a contradiction. So suppose now that v
has degree two, and again consider a contact B0-VPG representation of G− v.
Let w1, w2 be the two neighbours of v in G. Then, w1, w2 do not have any other
common neighbour since G is K−4 -free. Let P be the grid-point corresponding
to the intersection of the paths Pw1

and Pw2
. Since these paths do not cross

and since w1, w2 do not have any other common neighbour (except v), there is
at least one grid-edge having P as one of its endpoints and which is not used
by any path of the representation. But then we may add a path representing
v by using only this particular grid-edge (or adding a row/column to the grid
that subdivides this edge and adapting the paths, if the other endpoint of the
grid-edge belongs to a path in the representation). Thus, we obtain a contact
B0-VPG representation of G, a contradiction. We conclude therefore that v has
degree exactly three. �

Let v be a vertex of a contact B0-VPG graph G. An endpoint of its corre-
sponding path Pv is free in a representation of G, if Pv does not intersect any
other path at that endpoint; v is called internal if no representation of G with
a free endpoint of Pv exists. If in a representation of G a path Pv intersects a
path Pw but not at an endpoint of Pw, v is called a middle neighbour of w.

In the following two lemmas we associate the fact of being or not an internal
vertex of G with the contact B0-VPG representation of G.

Lemma 8. Let G be a chordal contact B0-VPG graph and let v be a non inter-
nal vertex in G. Then, there exists a contact B0-VPG representation of G in
which all the paths representing vertices in G−v lie to the left of a free endpoint
of Pv (by considering Pv as a horizontal path).
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Proof. We will do a proof by induction on the number of vertices of G. If
there is only one vertex in G the result is trivial. Suppose G is a graph with at
least two vertices. Consider a contact B0-VPG representation of G. Without
loss of generality, we may assume that Pv lies on a row xi between columns
yj , yk, j < k, and its right endpoint is free. Such a representation exists, since
v is not internal.

If v is a middle neighbour of another vertex, say u, we do the following.
Assume Pu lies on column yj between rows x` and xt, ` < t. We split Pu

into two paths, Pu1
, Pu2

, such that Pu1
goes from row xi to row xt and Pu2

goes from row x` to row xi (see Figure 3). We denote the corresponding graph
by G∗. If v is not a middle vertex of another vertex, then we simply set G∗ = G.

Claim. The graph G∗ is chordal.

In the second case, it is trivial. In the first case, suppose G∗ contains a
chordless cycle C of length at least 4. Since G is chordal, C contains at least
one of u1, u2. Suppose first it contains both u1 and u2. As they are adjacent in
G∗, and contracting them into the vertex u yields an induced subgraph of G, it
follows that C has length 4. As in the proof of Lemma 4, it can be seen that the
paths corresponding to two consecutive vertices in a C4 cannot be both vertical.
So, suppose that C contains only one of u1, u2, say u1. Since G is chordal, u2 has
to be adjacent to every vertex of C \NG∗ [u1]. Since u1 and u2 cannot have two
non-adjacent common neighbours, at least one of the neighbours of u1 in C is
not adjacent to u2. Thus, its corresponding path either lies on column yj having
its lower endpoint in row xt or lies on some row between xi+1 and xt. In either
case, this vertex cannot have a common neighbour with u2, a contradiction. ♦

Now, for every vertex w in NG∗(v), consider the connected component Cw

of G∗ − (NG∗ [v] − w) containing w. Notice that Cw is also chordal contact
B0-VPG and w is non internal in G∗ − (NG∗ [v] − w). Furthermore, if there
are two distinct vertices w and w′ in NG∗(v), then Cw and Cw′ are disjoint.
By contradiction, suppose that a vertex x is in the intersection of Cw and Cw′ .
Then, there is a path α1 between w and x, and a path α2 between x and w′.
First, suppose w and w′ are non adjacent. Joining both paths we can extract a
new induced path α3 between w and w′ which necessarily has length ≥ 3. But
then, adding v to α3 forms an induced cycle with length ≥ 4, a contradiction.
On the other hand, if w and w′ are adjacent, first remove the edge w and w′.
Joining the paths α1 and α2 we can extract an induced path α3 between w and
w′, which necessarily has length ≥ 4, since G is K−4 -free (see Lemma 5) and,
therefore, any vertex adjacent to both w and w′ must be also adjacent to v,
implying that it does not belong to Cw. Adding the edge between w and w′

again, we obtain an induced cycle with length ≥ 4, a contradiction.
Finally, considering the case in which G∗ = G, it is clear that Cw has at

least one vertex less than G, namely v; otherwise, if u was split, the size of G∗ is
one more than the size of G, but then at least two vertices are removed in Cw,
namely v and one between u1 and u2 (since there is only one vertex in NG∗ [v]
that we are not removing).
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Figure 4: Figure illustrating Lemma 8.

Then, by induction, there exists a contact B0-VPG representation of Cw, for
each such w, with all the paths lying to the left of one free endpoint of Pw. Now,
we replace the initial representation of Cw by the new one (the one where all
the paths lie to the left of one free endpoint of Pw) by rotating it such that Pw

has its free endpoint on the grid-point corresponding to the intersection of Pw

and Pv, and belongs to the same side as in the old representation. Notice that
we may need to extend the path Pv to the right before doing the replacement
of these new representations to assure that they do not overlap. Therefore, by
extending if necessary the path Pv a little more to the right, we obtain a contact
B0-VPG representation of G∗ in which all the paths lie to the left of one free
endpoint of Pv. In case Pu was split into Pu1 and Pu2 , we now glue these two
paths together again. �

Lemma 9. Let G be a chordal contact B0-VPG graph. A vertex v in G is inter-
nal if and only if in every contact B0-VPG representation of G, each endpoint
of the path Pv either corresponds to the intersection of a representation of K4

or intersects a path Pw, which represents an internal vertex w, but not at an
endpoint of Pw.

Proof. The if part is trivial. Assume now that v is an internal vertex of G
and consider an arbitrary contact B0-VPG representation of G. Let P be an
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Figure 5: Figure illustrating Lemma 9.

endpoint of the path Pv and K the maximal clique corresponding to all the
paths containing the point P . Notice that clearly v is an end in K by definition
of K. First, suppose there is a vertex w in K which is not an end. Then, it
follows from Remark 3 that the size of K is at most three. Without loss of
generality, we may assume that Pv lies on some row and Pw on some column.
If w is an internal vertex, we are done. So we may assume now that w is not
an internal vertex in G. Consider G \ (K \ {w}), and let Cw be the connected
component of G\(K\{w}) containing w. Notice that w is not an internal vertex
in Cw either. By Lemma 8, there exists a contact B0-VPG representation of Cw

with all the paths lying to the left of a free endpoint of Pw. Now, replace the
old representation of Cw by the new one such that P corresponds to the free
endpoint of Pw in the representation of Cw (it might be necessary to refine –by
adding rows and/or columns– the grid to ensure that there are no unwanted
intersections) and Pw uses the same column as before. Finally, if K had size
three, say it contains some vertex u in addition to v and w, then we proceed
as follows. Similar to the above, there exists a contact B0-VPG representation
of Cu, the connected component of G \ (K \ {u}) containing u, with all the
paths lying to the left of a free endpoint of Pu, since u is clearly not internal in
Cu. We then replace the old representation of Cu by the new one such that the
endpoint of Pu that intersected Pw previously corresponds to the grid-point P
and Pu lies on the same column as Pw (again, we may have to refine the grid).
This clearly gives us a contact B0-VPG representation of G. But now we may
extend Pv such that it strictly contains the grid-point P and thus, Pv has a free
endpoint, a contradiction (see Figure 5). So w must be an internal vertex.

Now, assume that all vertices in K are ends. If |K| = 4, we are done. So we
may assume that |K| ≤ 3. Hence, there is at least one grid-edge containing P ,
which is not used by any paths of the representation. Without loss of generality,
we may assume that this grid-edge belongs to some row xi. If Pv is horizontal,
we may extend it such that it strictly contains P . But then v is not internal
anymore, a contradiction. If Pv is vertical, then we may extend Pw, where
w ∈ K is such that Pw is a horizontal path. But now we are again in the first
case discussed above. �

In other words, Lemma 9 tells us that a vertex v is an internal vertex in
a chordal contact B0-VPG graph if and only if we are in one of the following
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situations:

• v is the intersection of two cliques of size four (we say that v is of type 1);

• v belongs to exactly one clique of size four and in every contact B0-VPG
representation, v is a middle neighbour of some internal vertex (we say
that v is of type 2);

• v does not belong to any clique of size four and in every contact B0-VPG
representation, v is a middle neighbour of two internal vertices (we say
that v is of type 3).

Notice that two internal vertices of type 1 cannot be adjacent (except when
they belong to a same K4). Furthermore, an internal vertex of type 1 cannot
be the middle-neighbour of some other vertex.

Let T be the family of graphs containing H0 (see Figure 2) as well as all
graphs that can be partitioned into a nontrivial tree T0 of maximum degree at
most three and the disjoint union of triangles, in such a way that each triangle
is complete to a vertex v of T0 and anticomplete to T0−{v}, every leaf v of T0 is
complete to exactly two triangles, every vertex v of degree two in T0 is complete
to exactly one triangle, and vertices of degree three in T0 have no neighbours
outside T0 (see Figure 6).

Notice that all graphs in T are chordal. We denote by B(T ) the base tree
of T in T .

Figure 6: An example of a graph in T .

Lemma 10. The graphs in T are not contact B0-VPG.

Proof. By Lemma 5, the graph H0 is not contact B0-VPG. Consider now
a graph T ∈ T , T 6= H0. Suppose that T is contact B0-VPG. Consider an
arbitrary contact B0-VPG representation of T . Consider the base tree B(T )
and direct an edge uv of it from u to v if the path Pv contains an endpoint of
the path Pu (this way some edges might be directed both ways). If a vertex
v has degree dB(v) in B(T ), then by definition of the family T , v belongs to
3 − dB(v) K4’s in T . Notice that Pv spends one endpoint in each of these
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K4’s. Thus, any vertex v in B(T ) has at most 2 − (3 − dB(v)) = dB(v) − 1
outgoing edges. This implies that the sum of out-degrees in B(T ) is at most∑

v∈B(T )(dB(v) − 1) = n − 2, where n is the number of vertices in B(T ). But

this is clearly impossible since there are n − 1 edges in B(T ) and all edges are
directed. �

We will show now how to construct new graphs in T from others.

Lemma 11. i) Given T ∈ T and v ∈ B(T ) such that v belongs to at least
one K4, say K, then the graph T ′ constructed by removing the other ver-
tices in K (different from v) and adding one vertex w to B(T ), belonging
to two copies of K4 (sharing vertex w), and adjacent to v, belongs to T .

ii) Given T1, T2 ∈ T , v1 ∈ B(T1) and v2 ∈ B(T2) such that v1 and v2 belong
to at least one K4 each, say K1 and K2, then the graph T ′ constructed by
removing the other vertices in K1 and K2 (different from v1 and v2) and
adding one vertex w to B(T1)∪B(T2), belonging to a K4, and adjacent to
both v1 and v2, belongs to T .

Proof. i) In this case we have B(T ′) = B(T ) ∪ {w}. It is clear that every
vertex in B(T ′) has degree 3 or less, since we only changed the degree of v,
which is one less, and the degree of w is one (only adjacent to v in B(T ′)).
Moreover, w is a leaf in B(T ′) and, by construction, it belongs to two
copies of K4 (sharing vertex w). Finally, notice that v has degree 1 or 2 in
B(T ) since vertices of degree 3 in B(T ) does not belong to any K4. If v is
a leaf in B(T ), then v is a degree 2 vertex in B(T ′) and, since we removed
the other vertices in K, it belongs to only one K4 in T ′. Otherwise, v
has degree 2 in B(T ) and therefore, it has degree 3 in B(T ′) and does not
belong to any K4 in T ′. Thus, T ′ ∈ T .

ii) In this case we have B(T ′) = B(T1) ∪ B(T2) ∪ {w}. The proof follows in
the same manner as the previous item. �

For the next lemma we need to consider an orientation of some edges related
to a contactB0-VPG representation ofG, given by the following rule. If v, w ∈ G
and v is a middle neighbour of w, then we give the orientation from v to w.
Let Cv be the reachable vertices starting from v, including v. Notice that if
v is internal, Cv = {v} if and only if v is of type 1. Also notice that Cv is
independent of the representation for internal vertices. As a consequence of the
previous lemma, we can prove the following.

Lemma 12. Let G be a chordal contact B0-VPG graph. If a vertex v in G is
internal, the graph G′ constructed by adding a K4, say K, containing v to G
contains an induced subgraph T ∈ T . Moreover, B(T ) = Cv.

Proof. We will prove this by induction in the number of vertices in Cv. By
Lemma 9, v must be of type 1, 2 or 3. As noted before, the base case is when v is
of type 1. But then v is the intersection of three cliques of size 4 in G′, namely
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K and the two cliques in which v is an end; and thus, G′ contains T = H0.
Therefore B(T ) = {v} = Cv.

Now, if v is of type 2, v is a middle neighbour of exactly one other internal
vertex w. Therefore Cv = Cw ∪ {v}. Define Gw as the induced subgraph of the
connected component of G − v containing w. Notice that w is still internal in
Gw since v is a middle neighbour of w in G. Then, adding a K ′ = K4 containing
w to Gw we obtain a T1 ∈ T induced in Gw (and, therefore, also induced in G)
with B(T1) = Cw, by inductive hypothesis applied to w in Gw. By Lemma 11 i),
we can construct T ∈ T by removing the other vertices in K ′ (different from w)
and adding the vertex v (in G) to B(T1), which belongs to two copies of K4 (one
is K and the other is the one in which v is an end), and is adjacent to w. Then,
T is an induced subgraph of G and we have B(T ) = Cw ∪ {v} = Cv. Finally, if
v is of type 3, v is a middle neighbour of exactly two other internal vertices w1

and w2. The proof continues in the same manner as before, applying inductive
hypothesis to the corresponding Gw1

and Gw2
and then using the second item

of Lemma 11. �

Using Lemmas 7–12, we are able to prove the following theorem, which pro-
vides a minimal forbidden induced subgraph characterisation of chordal contact
B0-VPG graphs.

Theorem 13. Let G be a chordal graph. Let F = T ∪ {K5,K
−
4 }. Then, G is

a contact B0-VPG graph if and only if G is F-free.

Proof. Suppose that G is a chordal contact B0-VPG graph. It follows from
Lemma 5 and Lemma 10 that G is T -free and contains neither a K−4 nor a K5.

Conversely, suppose now that G is chordal and F-free. By contradiction,
suppose that G is not contact B0-VPG and assume furthermore that G is a
minimal non contact B0-VPG graph. Let v be a simplicial vertex of G (v exists
since G is chordal). By Lemma 7, it follows that v has degree three. Consider
a contact B0-VPG representation of G − v and let K = {v1, v2, v3} be the set
of neighbours of v in G. Since G is K−4 -free, it follows that any two neighbours
of v cannot have a common neighbour which is not in K. First suppose that
all the vertices in K are ends in the representation of G− v. Thus, there exists
a grid-edge not used by any path and which has one endpoint corresponding
to the intersection of the paths Pv1 , Pv2 , Pv3 . But now we may add the path
Pv using exactly this grid-edge (we may have to add a row/column to the grid
that subdivides this grid-edge and adapt the paths, if the other endpoint of the
grid-edge belongs to a path in the representation). Hence, we obtain a contact
B0-VPG representation of G, a contradiction.

Thus, we may assume now that there exists a vertex in K which is not an
end, say v1. Notice that v1 must be an internal vertex. If not, there is a contact
B0-VPG representation of G−v in which v1 has a free end. Then, using similar
arguments as in the proof of Lemma 9, we may obtain a representation of G−v
in which all vertices of K are ends. As described previously, we can add Pv to
obtain a contact B0-VPG representation of G, a contradiction. Now, consider
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the graph G − K. This graph is clearly chordal contact B0-VPG as being an
induced subgraph of G − v. Then, by Lemma 12, adding the clique K ∪ {v}
(containing the internal vertex v) to G−K (which gives the graph G) contains
an induced subgraph T ∈ T , a contradiction. �

Interval graphs form a subclass of chordal graphs. They are defined as being
chordal graphs not containing any asteroidal triple, i.e. not containing three
pairwise non-adjacent vertices such that there exists a path between any two
of them avoiding the neighbourhood of the third one. Clearly, any graph in T
for which the base tree has maximum degree three contains an asteroidal triple.
On the other hand, H0 and every graph in T obtained from a base tree of max-
imum degree at most two are clearly interval graphs. Denote by T ′ the family
consisting of H0 and the graphs of T whose base tree has maximum degree at
most two. We obtain the following corollary which provides a minimal forbid-
den induced subgraph characterisation of contact B0-VPG graphs restricted to
interval graphs.

Corollary 14. Let G be an interval graph and F ′ = T ′ ∪ {K5,K
−
4 }.Then, G

is a contact B0-VPG graph if and only if G is F ′-free.

4. Recognition algorithm

In this section, we will provide a polynomial-time recognition algorithm for
chordal contact B0-VPG graphs which is based on the characterisation given in
Section 3. This algorithm takes a chordal graph as input and returns YES if
the graph is contact B0-VPG and, if not, it returns NO as well as a forbidden
induced subgraph. The main loop (step 7) will try to find a graph T ∈ T ,
T 6= H0. For this purpose, some vertices will be marked and some edges will
be directed and coloured. At the beginning all vertices are unmarked and all
edges are undirected and uncoloured. We will first give the pseudo-code of our
algorithm and then explain the different steps.

Input: a chordal graph G = (V,E);
Output: YES, if G is contact B0-VPG; NO and a forbidden induced subgraph,
if G is not contact B0-VPG.

1. list all maximal cliques in G;

2. if some edge belongs to two maximal cliques, return NO and K−4 ;

3. if a maximal clique contains at least five vertices, return NO and K5;

4. label the vertices such that l(v) = number of K4’s that v belongs to;

5. if for some vertex v, l(v) ≥ 3, return NO and H0;

6. if l(v) ≤ 1 ∀v ∈ V \ {w} and l(w) ≤ 2, return YES;

7. while there exists an unmarked vertex v with 2−l(v) outgoing arcs incident
to it, do
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7.1 mark v as internal;

7.2 direct the edges that are currently undirected, uncoloured, not be-
longing to a K4, and incident to v towards v;

7.3 for any two incoming arcs wv,w′v such that ww′ ∈ E, colour ww′;

8. if there exists some vertex v with more than 2 − l(v) outgoing arcs, re-
turn NO and find T ∈ T by running BFS starting with v, following the
outgoing arcs, and adding for each vertex the corresponding K4’s that it
belongs to; else return YES.

1

2

5
6

4

3
R

Figure 7: An example of a possible running of the algorithm. The vertices marked in the
algorithm are numbered in the order of the marking process. The vertex labeled R corresponds
to the root of the tree in the forbidden structure, given in step 8 (whose other vertices are
marked as 3 and 4).

Steps 1-5 can clearly be done in polynomial time (see for example [16] for
listing all maximal cliques in a chordal graph). Furthermore, it is obvious to see
how to find the forbidden induced subgraph in steps 2, 3 and 5. Notice that if the
algorithm has not returned NO after step 5, we know that G is {K−4 ,K5, H0}-
free. So we are left with checking whether G contains some graph T ∈ T ,
T 6= H0. Since each graph T ∈ T contains at least two vertices belonging to
two K4’s, it follows that if at most one vertex has label 2, G is T -free (step 6),
and thus we conclude by Theorem 13 that G is contact B0-VPG.

During step 7, we detect those vertices in G that, in case G is contact B0-
VPG, must be internal vertices (and mark them as such) and those vertices
w that are middle neighbours of internal vertices v (we direct the edges wv
from w to v). Furthermore, we colour those edges whose endpoints are middle
neighbours of a same internal vertex.

Consider a vertex v with 2 − l(v) outgoing arcs. If a vertex v has l(v) = 2,
then, in case G is contact B0-VPG, v must be an internal vertex (see Lemma
9). This implies that any neighbour of v, which does not belong to a same K4

as v, must be a middle neighbour of v. If l(v) = 1, this means that v belongs to
one K4 and is a middle neighbour of some internal vertex. Thus, by Lemma 9
we know that v is internal. Similarly, if l(v) = 0, this means that v is a middle

15



neighbour of two distinct internal vertices. Again, by Lemma 9 we conclude
that v is internal. Clearly, step 7 can be run in polynomial time.

So we are left with step 8, i.e., we need to show that G is contact B0-VPG
if and only if there exists no vertex with more than 2− l(v) outgoing arcs. First
notice that only vertices marked as internal have incoming arcs. Furthermore,
notice that every maximal clique of size three containing an internal vertex has
two directed edges of the form wv, w′v and the third edge is coloured, where
v is the first of the three vertices that was marked as internal. This is because
the graph is K−4 -free and the edges of a K4 are neither directed nor coloured.

Lemma 15. Every vertex marked as internal in step 7 has either label 2 or is
the root of a directed induced tree (directed from the root to the leaves) where
the root w has degree 2 − l(w) and every other vertex v has degree 3 − l(v) in
that tree, namely one incoming arc and 2− l(v) outgoing arcs.

Proof. By induction in the number of iterations in step 7. In the first iteration,
no edge has been directed. Therefore, any vertex marked as internal must have
label 2, having zero outgoing edges. Now assume the result is true for any
vertex marked before the n-th iteration. Let v be the vertex marked in the n-th
iteration. If l(v) = 2 we are done. Suppose l(v) = 1. Then, there is an outgoing
edge from v to a vertex w. Since only vertices marked as internal have incoming
arcs, w must be internal. Now, by inductive hypothesis (w was marked in a
previous iteration), the result is true for w. If l(w) = 2, v is the root of the tree
consisting of the two vertices v and w, where v has degree 2 − l(v) = 1 and w
has degree 3 − l(w) = 1 (one incoming arc). Otherwise, w is the root of a tree
T ′ satisfying the hypothesis of the lemma, but then the tree T constructed from
T ′ by adding v with an outgoing edge to w also clearly satisfies the hypothesis.
In a similar manner can be constructed the tree in the case l(v) = 0. Finally,
let us show that the tree is necessarily induced. Suppose there is an edge not in
the tree that joins two vertices of the tree. Since the graph is a block graph, the
vertices in the resulting cycle induce a clique, so in particular there is a triangle
formed by two edges of the tree and an edge not in the tree. But, as observed
above, in every triangle of G having two directed edges, the edges point to the
same vertex (and the third edge is coloured, not directed). Since no vertex in
the tree has in-degree more than one, this is impossible. �

Based on the lemma, it is clear now that if a vertex has more than 2− l(v)
outgoing arcs, then that vertex is the root of a directed induced tree (directed
from the root to the leaves), where every vertex v has degree 3 − l(v), i.e., a
tree that is the base tree B(T ) of a graph T ∈ T . Indeed, notice that every
vertex v in a base tree has degree 3− l(v). The fact that tree is induced can be
proved the same way as above. This base tree can be found by a breadth-first
search from a vertex having out-degree at least 3−l(v), using the directed edges.
Thanks to the labels, representing the number of K4’s a vertex belongs to, it
is then possible to extend the B(T ) to an induced subgraph T ∈ T . This can
clearly be implemented to run in polynomial time.
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To finish the proof that our algorithm is correct, it remains to show that
if G contains an induced subgraph in T , then the algorithm will find a vertex
with at least 3− l(v) outgoing arcs. This, along with Theorem 13, says that if
the algorithm outputs YES then the graph is contact B0-VPG (given that the
detection of K5, K−4 and H0 is clear). Recall that we know that G is a block
graph after step 2. Notice that if a block of size 2 in a graph of T is replaced
by a block of size 4, we obtain either H0 or a smaller graph in T as an induced
subgraph. Moreover, adding an edge to a graph of T in such a way that now
contains a triangle, then we obtain a smaller induced graph in T . Let G be a
block graph with no induced K5 or H0. By the remark above, if G contains a
graph in T as induced subgraph, then G contains one, say T , such that no edge
of the base tree B(T ) is contained in a K4 in G, and no triangle of G contains
two edges of B(T ). So, all the edges of B(T ) are candidates to be directed or
coloured.

In fact, by step 7 of the algorithm, every vertex of B(T ) is eventually marked
as internal, and every edge incident with it is either directed or coloured, unless
the algorithm ends with answer NO before. Notice that by the remark about
the maximal cliques of size three and the fact that no triangle of G contains
two edges of B(T ), if an edge vw of B(T ) is coloured, then both v and w have
an outgoing arc not belonging to B(T ). So, in order to obtain a lower bound
on the out-degrees of the vertices of B(T ) in G, we can consider only the arcs
of B(T ) and we can consider the coloured edges as bidirected edges. With an
argument similar to the one in the proof of Lemma 10, at least one vertex has
out-degree at least 3− l(v).

5. Tree-cographs

In this section, we present a minimal forbidden induced subgraph character-
isation for contact B0-VPG graphs within the class of tree-cographs.

Tree-cographs [24] are a generalisation of cographs, i.e. P4-free graphs. They
are defined recursively as follows: trees are tree-cographs; the disjoint union of
tree-cographs is a tree-cograph; and the complement of a tree-cograph is also a
tree-cograph.

It follows from the definition that every tree-cograph is either a tree, or
the complement of a tree, or the disjoint union of tree-cographs, or the join of
tree-cographs. Let us start with the following two trivial facts.

Fact 16. Every tree is a contact B0-VPG graph.

Fact 17. The disjoint union of contact B0-VPG graphs is contact B0-VPG.

Now let us consider the complement of trees. We obtain the following.

Lemma 18. Let T be a tree. Then T is contact B0-VPG if and only if it is
{K5,K

−
4 }-free.
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Proof. If T is contact B0-VPG, then it follows from Lemma 5 that T is
{K5,K

−
4 }-free.

Suppose now that T is {K5,K
−
4 }-free, then T has stability number at most

4. In particular, it has at most four leaves. Since it does not have co-(K4-e)’s
either, we conclude that T is either a star with at most 4 leaves, a P4 or a P5.
Hence, T is either a K4 ∪K1, a P4 or P5. Clearly, all these graphs are contact
B0-VPG. �

Using the previous results, we are able to obtain the following characterisa-
tion of tree-cographs that are contact B0-VPG.

Theorem 19. Let G be a tree-cograph. Then G is contact B0-VPG if and only
if G is {K5,K3,3, H0,K

−
4 }-free.

Proof. If G is contact B0-VPG, then it follows from Lemma 5 that G is
{K5,K3,3, H0,K

−
4 }-free.

Suppose now that G is a {K5,K3,3, H0,K
−
4 }-free tree cograph on n vertices.

We will do a proof by induction on the number of vertices of G. Let us assume
the theorem holds for graphs of less than n vertices. If G is a tree, the comple-
ment of a tree or the disjoint union of tree-cographs, then the result holds by
Facts 16, 17, Lemma 18 and the induction hypothesis. So we may assume now
that G is the join of two tree-cographs, say G1, G2.

Since G is K−4 -free, both G1 and G2 are P3-free, i.e., they are the disjoint
union of cliques. Furthermore, since G is K5-free, it follows that ω(G1) +
ω(G2) ≤ 4 and, in particular, none of G1, G2 contains a K4.

First suppose that one of G1, G2, say G1, contains a triangle. Then G2

contains no K2. But since G is K−4 -free, G2 contains no 2K1 either. So G2 is
the trivial graph. Now, since G is H0-free, G1 contains at most two triangles.
But then G is clearly contact B0-VPG. We show in Figure 8 how to represent
the join of the trivial graph and a graph consisting in the disjoint union of
at most two triangles, an arbitrary number of edges and isolated vertices as a
contact B0-VPG graph.

Next suppose that ω(G1) = ω(G2) = 2. Since G is K−4 -free, neither G1 nor
G2 contains 2K1. So G = K4, and hence it is contact B0-VPG.

Suppose now ω(G1) = 2 and ω(G2) = 1. Since G is K−4 -free, G2 contains
no 2K1, so G2 is the trivial graph and hence clearly contact B0-VPG.

Finally, consider the case when ω(G1) = ω(G2) = 1. Since G is K3,3-free, it
follows that G is either the star K1,n−1 or the complete bipartite graph K2,n−2.
Thus again, G is clearly contact B0-VPG. �

From the proofs of the previous results, the following fact can be deduced.

Corollary 20. Every contact B0-VPG tree-cograph is the disjoint union of
trees, P5’s, and contact B0-VPG cographs.
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Figure 8: A graph G with G1 with a most two triangles and G2 = K1, and a contact B0-VPG
representation of G.

6. P4-tidy graphs

Let G be a graph and let A be a vertex set that induces a P4 in G. A
vertex v of G is said to be a partner of A if G[A ∪ {v}] contains at least two
induced P4’s. The graph G is called P4-tidy, if each vertex set A inducing a P4

in G has at most one partner [17]. The class of P4-tidy graphs is an extension
of the class of cographs, i.e. P4-free graphs, and it contains many other graph
classes defined by bounding the number of P4’s according to different criteria;
e.g., P4-sparse graphs [21], P4-lite graphs [22], and P4-extendible graphs [23].

A spider [21] is a graph whose vertex set can be partitioned into three sets
S, C, and R, where S = {s1, . . . , sk} (k ≥ 2) is a stable set; C = {c1, . . . , ck}
is a clique; si is adjacent to cj if and only if i = j (a thin spider), or si is
adjacent to cj if and only if i 6= j (a thick spider); R is allowed to be empty and
if it is not, then all the vertices in R are adjacent to all the vertices in C and
non-adjacent to all the vertices in S. The triple (S,C,R) is called the spider
partition. By think(H) and thickk(H) we respectively denote the thin spider
and the thick spider with |C| = |S| = k and H the subgraph induced by R. If
R is an empty set we denote them by think and thickk, respectively. Clearly,
the complement of a thin spider is a thick spider, and vice versa. A fat spider
is obtained from a spider by adding a true or false twin of a vertex v ∈ S ∪ C.
The following theorem characterises P4-tidy graphs.

Theorem 21. [17] Let G be a P4-tidy graph with at least two vertices. Then,
exactly one of the following conditions holds:

1. G is disconnected.
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2. G is disconnected.

3. G is isomorphic to P5, P5, C5, a spider, or a fat spider.

This allows us to obtain the following characterisation of contact B0-VPG
P4-tidy graphs.

Theorem 22. Let G be a P4-tidy graph. Then G is contact B0-VPG if and
only if G is {K5,K3,3, H0,K

−
4 }-free.

Proof. If G is a contact B0-VPG graph, then it follows from Lemma 5 that G
is {K5,K3,3, H0,K

−
4 }-free.

Suppose that G is a {K5,K3,3, H0,K
−
4 }-free P4-tidy graph on n vertices. We

will do a proof by induction on the number of vertices of G. Let us assume the
theorem holds for graphs of less than n vertices. It follows from Theorem 21 that
G is (i) either disconnected; (ii) or G is disconnected; (iii) or G is isomorphic to
P5, P5, C5, a spider, or a fat spider.

If G is disconnected, G is the union of P4-tidy graphs. Thus the result holds
by Fact 17 and the induction hypothesis.

If G is disconnected, it follows that G is the join of two P4-tidy graphs, say
G1, G2. Then we do exactly the same case analysis as in the proof of Theorem 19.

Now suppose that G is a spider with partition (C, S,R). Since G is K−4 -free,
G is necessarily a thin spider. Furthermore, since G is K5-free, we have |C| ≤ 4.
If |C| = 4, then R must be empty. If |C| = 3, then |R| ≤ 1 because G is
{K5,K

−
4 }-free. If |C| = 2, then, for the same reasons, |R| ≤ 2 and if |R| = 2,

then R induces K2. Notice that for all these cases, the graph obtained is an
induced subgraph of the graph corresponding to the case |C| = 4 and R = ∅.
We provide a contact B0-VPG representation of that case in Figure 9.

Pc3

Ps3

Pc4Ps4

Pc1

Ps1

Pc2 Ps2

Representation|C| = 4 and R = ∅

c1 c2

c3c4

s1

s4

s2

s3

Figure 9: Representation of a thin spider (C, S,R) with |C| = 4 and R empty.

Suppose now that G is a fat spider arising from the thin spider with partition
(C, S,R). Since G is K−4 -free, it does not arise from adding a true twin to a
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vertex of C. For the same reason, if |C| ≥ 3, G does not arise from adding a
false twin to a vertex of C, and if |C| = 2, we may add a false twin of a vertex
of C only if R is empty. We provide a contact B0-VPG representation for each
of these remaining cases in Figure 10.

Representations

Adding a true twin to a vertex of S. Adding a false twin to a vertex of S. Adding a false twin to a vertex of C, |C| = 2.

Figure 10: G is a fat spider arising from the thin spider (C, S,R).

Finally, it is easy to see that P5, P5, and C5 are all contact B0-VPG graphs.
�

For P4-tidy graphs a linear time recognition algorithm is known [17]. Using
the decomposition properties of the class, the characterisation of the possible
cases in the proof of Theorem 19 for graphs with disconnected complement, and
the possible cases in the proof of Theorem 22 for spiders and fat spiders, we can
obtain a linear-time algorithm to determine whether a P4-tidy graph is contact
B0-VPG. Moreover, we can output a minimal forbidden induced subgraph in
the case the answer is no.

7. P5-free contact B0-VPG graphs

In this section, we will present a characterisation of P5-free contact B0-VPG
graphs. Notice that every Pk-free graph, with 1 ≤ k ≤ 2, is clearly contact
B0-VPG. Moreover, a P3-free graph G is a disjoint union of cliques, therefore
G is contact B0-VPG if and only if G is K5-free.

Concerning P4-free graphs, we have the following corollary of Theorem 19 or
Theorem 22, since P4-free graphs form a subclass of tree-cographs and P4-tidy
graphs.
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Theorem 23. Let G be a P4-free graph. Then G is contact B0-VPG if and
only if G is {K5,K3,3, H0,K

−
4 }-free.

Thus, the next graph class to consider is the class of P5-free graphs. As we
will see, the characterisation of P5-free contact B0-VPG graphs is much more
complex than the characterisation of Pk-free graphs, k ≤ 4. Consider a P5-
free graph G. If G is chordal, we obtain a characterisation using Theorem 13.
Hence, we may assume that G is non chordal. Since G is P5-free it follows
that G contains an induced cycle of length ` ∈ {4, 5}. In what follows, we will
first analyse the case when G contains an induced cycle of length four, but no
induced cycle of length five.

Lemma 24. Let G be a non chordal {P5, C5,K3,3,K
−
4 }-free graph. Then, there

exists an induced cycle C of length four in G such that N [C] = G.

Proof. Since G is not chordal but {P5, C5}-free, it follows that G must contain
an induced cycle of length four. Let C0 be such a cycle induced by the vertices
v1, v2, v3, v4. If N [C0] = G, we are done. Suppose there exists a vertex v
at distance two of C0. So we may assume, without loss of generality, that
there is a vertex a adjacent to v1 and v. It follows from Remark 2 that a
must be non-adjacent to at least one of v2, v4. Without loss of generality, we
may assume that a is non-adjacent to v4. But then a must be adjacent to v3,
otherwise v, a, v1, v4, v3 induce a P5, a contradiction. Thus, by Remark 2, a is
non-adjacent to v2.

Now, consider the cycle C1 induced by the vertices a, v1, v2, v3. If N [C1] = G,
we are done. Suppose there is a vertex w at distance two of C1. Notice that
v, a, v1, v4 induce a P4. Thus, w cannot be adjacent to any of v, v4 otherwise
we obtain a P5 or a C5, a contradiction. Hence, there exists a vertex b 6= v, v4
adjacent to w and to some vertex in C1. If b is adjacent to exactly one vertex
in C1 or to exactly two consecutive vertices in C1, we clearly obtain a P5,
a contradiction. Thus, it follows from Remark 2, that b is adjacent to two
nonconsecutive vertices in C1. We distinguish two cases:

(a) b is adjacent to a and v2. Then b must be adjacent to v4, otherwise
w, b, a, v1, v4 induce a P5, a contradiction. But now v1, v3, b, a, v2, v4 induce
a K3,3, a contradiction.

(b) b is adjacent to v1 and v3. Then b must be adjacent to v, otherwise
w, b, v1, a, v induce a P5, a contradiction. Now consider the cycle C in-
duced by a, v1, b, v3. We claim that N [C] = G. Suppose there is a vertex
z at distance two of C. Then, following the same reasoning as above, z
cannot be adjacent to any of v4, v, w, v2, since otherwise we obtain a P5

or C5, a contradiction. Thus, as before for vertex b, there exists a vertex
c adjacent to z and to two non-adjacent vertices of C. If c is adjacent to
v1 and v3, then c must also be adjacent to v, otherwise z, c, v3, a, v induce
a P5. But now v1, v3, v, a, b, c induce a K3,3, a contradiction. Using the
same arguments, we can show that if c is adjacent to a, b, then it must
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be adjacent to v2, and again we obtain an induced K3,3, a contradiction.
Thus z does not exist and hence, G = N [C]. �

We will define now the following family of graphs. Start with a cycle C
induced by the vertices a1, b1, a2, b2. Add two (possibly empty) stable sets Sa,
Sb, such that every vertex in Sa is adjacent to a1, a2 (but not to b1, b2), every
vertex in Sb is adjacent to b1, b2 (but not to a1, a2) and Sa is anticomplete to
Sb. Furthermore, add two (possibly empty) sets Ka, Kb such that Ka (resp.
Kb) is complete to {a1} (resp. {b1}) and anticomplete to {a2, b1, b2} (resp.
{a1, a2, b2}). Also, every vertex in Ka (resp. Kb) is a simplicial vertex of
degree at most three and Ka (resp. Kb) is anticomplete to Sa ∪ Sb ∪Kb (resp.
Sa ∪ Sb ∪ Ka). Finally, add a (possibly empty) set Kab of vertices forming a
clique of size at most two that is complete to {a1, b1} and anticomplete to the
rest of the graph. Moreover, neither of a1, b1 can belong to three cliques of
size four and only a1 may belong to two cliques of size four not containing any
vertices from Kab. There are no other edges in the graph. Let us denote by W1

the family of graphs described here before (see Figure 11 for an example).
Let B1, B2 and B3 be the graphs shown in Figure 12. Finally, let W =

W1 ∪ {B1, B2, B3}.

Lemma 25. Let G be a non chordal {P5, C5,K5,K3,3, H0, GP2
, C6,K

−
4 }-free

graph. Then G ∈ W.

Proof. Let G be a non chordal {P5, C5,K5,K3,3, H0, GP2
, C6,K

−
4 }-free graph.

It follows from Lemma 24 that there exists an induced cycle C of length four in
G such that N [C] = G. Let C be induced by vertices a1, b1, a2, b2. Let Sa (resp.
Sb) be the set of vertices adjacent to a1, a2 but not b1, b2 (resp. to b1, b2 but
not a1, a2). Notice that Sa (resp. Sb) must be a stable set since G is K−4 -free.
Furthermore, Sa is anticomplete to Sb. Indeed, if a vertex v ∈ Sa is adjacent to
some vertex w ∈ Sb then a1, a2, w, b1, b2, v induce a K3,3, a contradiction.

Now, suppose there is a vertex v in G adjacent to only one vertex in C.
Without loss of generality, we may assume that v is adjacent to a1. Then, it is
not possible to have a vertex w 6= v in G adjacent only to a2 in C, since the
vertices v, a1, b1, a2, w would induce a P5 (in case v and w are non-adjacent)
or a C5 (in case v and w are adjacent). Therefore, if there is a vertex w 6= v
adjacent to only one vertex in C and different from a1, then we may assume,
without loss of generality, that it is adjacent to b1. Let Ka (resp. Kb) be the set
of vertices adjacent to only a1 (resp. b1). If there is a vertex v ∈ Ka adjacent
to a vertex w ∈ Kb, then v, w, b1, a2, b2 induce a P5, a contradiction. Hence Ka

is anticomplete to Kb.
Let us now show that all the vertices in Ka are simplicial. Indeed, suppose

that v ∈ Ka is not simplicial. Then, there exists w, u ∈ N(v) such that u,w are
non-adjacent. It follows from the above that u,w ∈ Ka. But then, v, w, u, a1
induce a K−4 , a contradiction. By symmetry, all vertices in Kb are simplicial as
well. We will distinguish two cases.

First assume now that G is P5-free. Thus every vertex not in C is adjacent
to exactly 1 vertex in C, since G is K−4 -free. We claim that Sa is anticomplete
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to Ka. Indeed, if a vertex v ∈ Sa is adjacent to some vertex w ∈ Ka, then
a1, b1, a2, v, w induce a P5, a contradiction. Similarly, Sb is anticomplete to Kb.
Next, suppose that some vertex v ∈ Sa is adjacent to some vertex w ∈ Kb.
If Sb is non empty, then for any vertex u ∈ Sb we obtain a P5 induced by
b2, u, b1, w, v, a contradiction. Thus, Sb is empty. Then, we may redefine our
cycle C by taking the vertices a1, b1, a2, v. Notice that this cycle also verifies
N [C] = G. Now, w ∈ Sb (where Sb is now the set of vertices adjacent to b1, v
but not to a1, a2) and b2 ∈ Sa. We can proceed similarly if Sa is empty and
there are adjacent vertices in Sb and Ka. Now, since Sb 6= ∅, Sa (resp. Sb) is
anticomplete to Kb (resp. Ka). Since G is K5-free, it follows that the degree
of the simplicial vertices is at most three. Finally, since G is {H0, GP2

}-free, it
follows that only a1 can belong to two cliques of size four and neither of a1, b1
can belong to three cliques of size four. Hence, G ∈ W1.

Now, suppose that G contains a P5 induced by the cycle C and a vertex v
adjacent to a1 and b1. First, assume there are no other vertices in G adjacent to
two consecutive vertices in C. Notice that v cannot be adjacent to any vertex
in Sa ∪ Sb ∪ Ka ∪ Kb, since G is K−4 -free. Moreover, Sa is anticomplete to
Ka. Indeed, if w ∈ Ka is adjacent to u ∈ Sa, then w, u, a2, b1, v induce a P5,
a contradiction. The same applies to Kb and Sb. Finally, we may assume that
Ka (resp. Kb) is anticomplete to Sb (resp. Sa) by using the same arguments as
above and redefining the cycle C if necessary. Hence, G belongs to W1.

Next, assume there is another vertex in G (in addition to v) adjacent to
two consecutive vertices in C. Notice that a1 and b2 (resp. a2 and b1) cannot
have a common vertex since G is P5-free. If there is another vertex w adjacent
to a1 and b1, but there is no vertex adjacent to a2 and b2, then w must be
adjacent to v, otherwise a1, b1, v, w induce a K−4 , a contradiction. Also, a1
(resp. b1) cannot belong to two cliques of size four whose vertices belong to
Ka ∪ {a1} (resp. Kb ∪ {b1}), since G is H0-free. Thus, G belongs to W1, since
G is K5-free and thus no further vertex is adjacent to both a1 and b1. Finally,
suppose there is a vertex w adjacent to a2 and b2. First notice that v and w
are non-adjacent, otherwise v, w, a1, b1, a2, b2 induce a C6, a contradiction. We
claim that all the sets Sa, Sb, Ka and Kb must be empty. Indeed, if u ∈ Sa,
then u is non-adjacent to w, since G is K−4 -free. But then w, a2, u, a1, v induce
a P5, a contradiction. Thus, Sa = ∅ and by symmetry we also conclude that
Sb = ∅. Now suppose u ∈ Ka. Then the vertices u, a1, b1, a2 and w induce a
P5 (if u,w are non-adjacent) or a C5 (if u,w are adjacent). Hence Ka = ∅ and
by symmetry Kb = ∅. If there are no more vertices, G is isomorphic to B1. If
there are more vertices in G, then by using the same arguments as before, these
vertices have to be common neighbours of a1 and b1, or a2 and b2. But then G
is necessarily isomorphic to either B2 or B3, since G is {K5, C6,K

−
4 }-free (the

same arguments as before apply again).
Finally assume that the P5 contained in G is not induced by the cycle C

together with some vertex v adjacent to two consecutive vertices in C. The
only possibility is that the house is induced by a1, b1, a2, u, w, with u ∈ Sa and
w ∈ Ka (resp. a1, b1, b2, u, w, with u ∈ Sb and w ∈ Kb). But then, we may
redefine our cycle C by taking the vertices a1, b1, a2, u (resp.a1, b1, b2, u). Clearly
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this new cycle C also verifies that N [C] = G. Thus, we can apply the same
arguments as before and show that G ∈ W. �

Lemma 26. Every graph in W is contact B0-VPG.

Proof. Let G be a graph in W1. We construct a contact B0-VPG representa-
tion of G as follows. First represent the main cycle C induced by a1, b1, a2, b2:
Pa1 is a horizontal path lying on row xi; Pa2 is a horizontal path lying on row
xj , j < i; Pb1 is a vertical path lying on column yk; Pb2 is a vertical path lying
on column y`, with ` > k + |Sa|; furthermore, we make sure that b1 and b2 are
middle-neighbours of a1 and a2 is a middle neighbour of b1 and b2; finally the
paths Pb1 and Pb2 use column yk respectively y` down to row xt with t+|Sb| < j.
Now, each vertex in Sa can be represented by a vertical path on some column
yr, with k < r < `, and every vertex in Sb can be represented by a horizontal
path on some row u with t < u < j. First assume that Kab = ∅. Since Pa1

has
both endpoints free, one can easily represent two cliques of size four, in case a1
belongs to such cliques and similarly, since Pb1 has one endpoint free, one can
easily represent one clique of size four, in case b1 belongs to such a clique. All
other vertices in Ka or Kb can clearly be represented by extending enough the
paths Pa1

and Pb1 .
Now, assume that Kab = {v}. Then, given a contact B0-VPG representation

of G− v as described before, we can easily obtain a contact B0-VPG represen-
tation of G as follows: we add a path Pv lying on column yk between some row
xq and row xi, with i < q.

Next, assume that Kab = {v, v′}. Thus, a1 belongs to at most one clique of
size four in G−{v, v′} (the vertices of that clique belong to Ka, except for a1).
We obtain a contact B0-VPG representation as follows. Start with a contact
B0-VPG representation of G−v′ as described above. Make sure that all vertices
in Ka are represented by paths intersecting Pa1 to the right of column y` (this is
clearly always possible, since a1 belongs to at most one clique of size four whose
vertices (except for a1) belong to Ka). Finally, if necessary, reduce Pa1

such
that its left endpoint corresponds to the grid point (xi, yk) (this is possible since
Pa1

does not intersect any path to the left of that grid point anymore). Now
add Pw as a horizontal path on row xi with its right endpoint corresponding to
the grid point (xi, yk).

Finally, if G is one of the graphs B1, B2 or B3, then G is clearly contact B0-
VPG as can be seen in Figure 12(b). Notice that B1, B2 are induced subgraphs
of B3. �

From the lemmas above, we conclude the following.

Corollary 27. Let G be a non chordal {P5, C5,K5,K3,3, H,GP2 , C6,K
−
4 }-free

graph. Then G is contact B0-VPG.

Let us now focus on P5-free graphs containing an induced cycle of length
five.

25



Figure 11: (a) An example of a graph from the family W1. (b) The corresponding contact
B0-VPG representation.

Figure 12: (a) The graphs B1, B2 and B3. (b) A contact B0-VPG representation of B3.
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Figure 13: (a) An example of a graph in L2. (b) The corresponding contact B0-VPG repre-
sentation.

Lemma 28. Let G be a {P5,K
−
4 }-free graph. Let C be an induced cycle of

length five in G such that no vertex is adjacent to exactly three non consecutive
vertices in C. Then, N [C] = G and every vertex v ∈ N(C) is adjacent to exactly
two non-consecutive vertices in C.

Proof. Let C be induced by v1, · · · , v5 and let v be a vertex in N(C). It
follows from Remark 2 that v cannot be adjacent to three consecutive vertices
in C. If v is adjacent to exactly one vertex or to two consecutive vertices in
C, then we clearly obtain a P5, a contradiction. Thus, v has exactly two non
consecutive neighbours in C.

Now assume that there exists a vertex u which is at distance two of C. Thus,
there is a vertex w ∈ N(C) adjacent to u and to two non consecutive vertices in
C, say v1, v3. But then, v, w, v1, u5, v4 induce a P5, a contradiction. Therefore
N [C] = G. �

Let K∗3,3 be the graph obtained by subdividing exactly one edge in the graph
K3,3. We will now define several families of graphs. Start with a cycle C of
length five induced by the vertices a, v, b, c, w. Add two (possibly empty) stable
sets Sv, Sw such that Sv is complete to {a, b}, Sw is complete to {a, c} and Sv is
anticomplete to Sw. There are no other edges. Let us denote by L1 the family
of graphs described here before.

Let G ∈ L1 and let G′ be the graph obtained from G by adding a vertex u
adjacent to a, b and c. Furthermore, add a (possible empty) set Ku, such that
Ku is complete to {u} and anticomplete to V (C) ∪ Sv ∪ Sw. Also, every vertex
in Ku is a simplicial vertex of degree at most three. Moreover, u can belong to
only one clique of size four. There are no other edges. Let us denote by L2 the
family of graphs described here before (see Figure 13(a) for an example).

Next, consider a graph G′ in L2 with Sv = Sw = ∅ and u not belonging to
any clique of size four. Add a vertex z adjacent to v, w and u. There are no
other edges. Let us denote by L3 the family of graphs obtained that way and
let L = L1 ∪ L2 ∪ L3.

Finally, let G1, G2, G3 and G4 be the graphs shown in Figure 14.
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Figure 14: The graphs G1, G2, G3 and G4.

Lemma 29. Let G be a {P5,K5,K
∗
3,3, C6, G1, G2, G3, G4,K

−
4 }-free graph and

assume G contains a cycle of length five. Then G ∈ L.

Proof. Let C be an induced cycle of length five with vertices a, v, b, c, w.
Clearly, no vertex in N(C) is adjacent to exactly one vertex in C or to two
consecutive vertices in C, since G is P5-free. Consider first the vertices adjacent
to two non-consecutive vertices in C. For any two vertices u, z that are adjacent
to the same two non-consecutive vertices in C, we have that u and z are non-
adjacent otherwise we obtain K−4 , a contradiction. Suppose that there exist
vertices u, z such that they have distinct neighbours in C, say u is adjacent to a
and b, and z is adjacent to v and c. If u, z are adjacent, then together with the
vertices of C, they induce a K∗3,3, a contradiction. If u, z are non-adjacent, then
u, a, v, z, c induce a P5, a contradiction. Thus, we may assume now, without
loss of generality, that every vertex adjacent to two nonconsecutive vertices in
C is either adjacent to both a and b or adjacent to both a an c. Let Sv (resp.
Sw) be the set of vertices not in C adjacent to a, b (and not to v, c, w) (resp.
a, c (and not to b, v, w)). It follows from the above that Sv and Sw are stable
sets. Finally, if there is a vertex u ∈ Sv adjacent to some vertex z ∈ Sw, then
we obtain G2, a contradiction. So Sv is anticomplete to Sw.

First assume that there exists no vertex in G that is adjacent to three non-
consecutive vertices in C. It immediately follows from Lemma 28 that G = N [C]
and that every vertex not in C is adjacent to two non-consecutive vertices in C.
Thus, G ∈ L1.

Now, suppose that there exists a vertex u adjacent to three non-consecutive
vertices in C, say a, b and c. We will first show that there cannot be another
vertex adjacent to three non-consecutive vertices. If there is another vertex z
adjacent to a, b and c, then u and z must be adjacent otherwise u, z, c, b induce
a K−4 , a contradiction. But now the vertices a, u, z and b induce a K−4 , again
a contradiction. Now, suppose z is adjacent to v, b and w. Then, z and u are
non-adjacent, since otherwise u, z, b, c induce a K−4 , a contradiction. But now,
the vertices of C together with u and z induce G3, a contradiction as well. By
symmetry, we conclude that z cannot be adjacent to v, w and c. Finally, if z
is adjacent to a, v and c, the vertices a, v, z, u, b and c induce a C6 if z and
u are non-adjacent, a contradiction. But if z and u are adjacent, then u, z, b, c
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induce a K−4 , again a contradiction. By symmetry, z cannot be adjacent to
a, w and b. Hence, we conclude that u is the unique vertex adjacent to three
non-consecutive vertices in C.

Now we will distinguish several cases, depending on which vertices u is ad-
jacent to. First, assume that u is adjacent to a, b and c, and that Sv ∪ Sw is
non empty. Notice that u cannot be adjacent to any vertex in Sv ∪ Sw, since G
is K−4 -free. It follows from Remark 2 and the fact that G is P5-free that any
vertex in G not belonging to V (C)∪ Sv ∪ Sw ∪ {u} has to be adjacent to u and
anticomplete to V (C) ∪ Sv ∪ Sw. Let Ku = N(u) \ V (C) be the set of these
vertices and consider z ∈ Ku. Then z is simplicial. Indeed, if z is not simpli-
cial, it follows that there exist vertices z′, z′′ ∈ Ku ∩ N(z) such that z′, z′′ are
non-adjacent. But then z, z′, z′′, u induce K−4 , a contradiction. Furthermore,
since G is K5-free, it follows that every vertex z ∈ Ku has degree at most three.
Finally, notice that u can only belong to at most one clique of size four, since
G is G1-free. Thus, we conclude that G ∈ L2.

Notice that if Sv = Sw = ∅, we can relabel the vertices in C such that u is
adjacent to a, b and c, and we obtain a graph in L2 as before. Thus, we may
assume, without loss of generality, that there is a vertex z ∈ Sv. Now, we will
consider different cases:

• If u is adjacent to v, b and w, or if u is adjacent to a, v and c, then
we obtain G2 (notice that z and u cannot be adjacent since the graph is
K−4 -free),a contradiction.

• If u is adjacent to a, b and w, then Sw = ∅, otherwise a, v, b, c, u, w, t,
where t ∈ Sw, induce G2 a contradiction. Now, we can relabel the vertices
in C such that u is adjacent to a, b and c, without changing Sv, and we
obtain a graph in L2 as before.

• If u is adjacent to v, c and w, and z is non-adjacent to u, then z, a, v, u, c
induce a P5, a contradiction. So z and u must be adjacent. Notice again
that Sw = ∅. Indeed, if t ∈ Sw, then t, a, v, b, u, c, w induce G2, a contra-
diction. Moreover, |Sv| = 1: if z′ ∈ Sv, z 6= z′, then z′ must be adjacent
to u as well, but now v, z, z′, a, b, u induce a K3,3, a contradiction. So we
can relabel the vertices in C such that u is adjacent to a, b, c. With this
new labeling, Sv = Sw = ∅ and z is adjacent to v, w and u. Clearly, any
vertex not belonging to V (C) ∪ {u, z} has to be adjacent to u, since G is
P5-free. Let Ku be the set of these vertices. Using the same arguments
than above, one can show that ever vertex in Ku is simplicial and have
degree at most three since the graph is K5-free. Finally, u cannot belong
to a clique of size four, since G is G4-free. So we conclude that G ∈ L3.�

Lemma 30. Every graph in L is contact B0-VPG.

Proof. Let G ∈ L1. We construct a contact B0-VPG representation of G as
follows. Vertex b is represented by a path Pb lying on column yj between rows
xk and xt, with t > k + |Sv|; vertex c is represented by a path Pc lying on
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Figure 15: A graph in L3 and the corresponding contact B0-VPG representation.

column yj between rows xt and x`, with ` > t + |Sw|; vertex a is represented
by a path Pa lying on column yi, i < j, between rows xk and x`; vertex v is
represented by a path Pv lying on row xk between rows yi and yj and vertex w
is represented by a path Pw lying on row x` between rows yi and yj . Now each
vertex in Sv is represented by a path between columns yi and yj lying on one
of the |Sv| rows between xk and xt, and each vertex in Sw is represented by a
path between columns yi and yj lying on one of the |Sw| rows between xt and
x`.

If G ∈ L2, consider a representation of G− (Ku ∪ {u}) as described above.
Now, it is possible to add Pu on row xt, such that b and c are middle-neighbours
of u, and u is a middle-neighbour of a. If u belongs to one clique of size four,
then it is possible to represent this clique using the right endpoint of Pu. All
the other vertices of Ku can easily be represented by eventually extending the
path Pu to the right.

Finally, if G ∈ L3, consider the contact B0-VPG representation of the graph
shown in Figure 15. Clearly, it is possible to add the paths representing the
vertices of Ku, since u does not belong to any clique of size four. �

Lemma 31. The graphs K∗3,3, C6, G1, G2, G3, G4 are not contact B0-VPG.

Proof. Consider the graph K3,3 with vertices a, c, e on one side of the bipar-
tition and b, d, f on the other side. Assume that the edge ef is subdivided to
obtain K∗3,3. Consider the cycle induced by the vertices a, b, c, d. Following the
same approach as in Lemma 5, we may assume that Pa, Pc are horizontal paths,
Pb, Pd are vertical paths and Pe is a horizontal path lying inside the rectangle,
and Pf is a vertical path lying outside the rectangle. But now it is clearly im-
possible to add a path intersecting Pe and Pf without intersecting any other
path. Thus, K∗3,3 is not B0-VPG.

Next consider the graph C6 with vertex set a, b, c, d, v, w such that a, b, c, d
induce a cycle of length four, v is a common vertex of a and b, w is a common
neighbour of c and d, and v is adjacent to w. If C6 is contact B0-VPG, then
we may assume that in a contact B0-VPG representation, the paths Pa, Pc are
horizontal and the paths Pb, Pd are vertical. Since b, c, v, w induce a cycle of
length four, we conclude from the above that Pv has to be horizontal. But since
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a, d, v, w induce a cycle of length four as well, we also conclude that Pv has to
be vertical, a contradiction. Hence, C6 is not B0-VPG.

Suppose now that the graph G1 is contact B0-VPG. Without loss of gen-
erality, we may assume that Pu lies on some row xi. Since u belongs to two
cliques of size four, it follows from Remark 3 that both endpoints of Pu are not
free. Thus, a, b and c are middle neighbours of u, i.e. Pa, Pb, Pc are necessarily
vertical paths. Thus, Pv, Pw must be horizontal paths, but this is impossible
since no two paths can cross. We conclude that G1 is not contact B0-VPG.

Using similar arguments, we conclude that if G4 is contact B0-VPG, then
b, c have to be middle neighbours of u, u has to be a middle neighbour of a and
Pv, Pw have to be horizontal paths. But now it is clearly impossible to add Pz

such that it intersects Pv, Pw, Pu without crossing any path. Hence, G4 is not
contact B0-VPG.

Finally, consider the graphs G2, G3 and suppose that they are contact B0-
VPG. First consider a contact B0-VPG representation of G2− v (resp. G3− v).
Since t is adjacent to three non-consecutive vertices of a induced cycle of length
five, we may assume, without loss of generality, that we have the following
configuration: Pa, Pc, Pz are horizontal paths with Pa, Pz lying on a same row;
Pb, Pw are vertical paths; Pt is a vertical path with one endpoint corresponding
to the endpoints of Pa, Pz that intersect; t is a middle neighbour of c. But
now it is clearly impossible to add a path representing vertex v, since it has to
intersect Pa and Pb. Therefore, G2, G3 are not contact B0-VPG. �

We are now ready to prove the main result of this section.

Theorem 32. Let G be a P5-free graph. Let G = {K5, H0, GP2
,K3,3,K

∗
3,3,

C6, G1, G2, G3, G4,K
−
4 }. Then G is contact B0-VPG if and only if G is G-free.

Proof. For the only if part, we use Theorem 13, Lemma 5 and Lemma 31.
Suppose now that G is a P5-free graph which is also G-free. If G is chordal,

the result follows from Theorem 13, since G is F-free (indeed, the graphs in F
different from H0 and GP2

contain an induced P5). Now, assume that G is not
chordal. If G is C5-free, by Corollary 27, G is contact B0-VPG. Similarly, if G
contains a C5, by Lemmas 29 and 30, G is also contact B0-VPG. �

8. Conclusions and Future work

In this paper, we considered some special graph classes, namely chordal
graphs, tree-cographs, P4-tidy graphs and P5-free graphs. We gave a charac-
terisation by minimal forbidden induced subgraphs of those graphs from these
families that are contact B0-VPG. Moreover, we presented a polynomial-time
algorithm for recognising chordal contact B0-VPG graphs based on our charac-
terisation. Notice that for the other graph classes considered here, the charac-
terisation immediately yields a polynomial-time recognition algorithm.

In order to get a better understanding of the structure of general contact
B0-VPG graphs, one way could be to find further characterisations by forbidden
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induced subgraphs of contact B0-VPG graphs within other interesting classes.
Since classical graph problems are difficult in contact B0-VPG graphs (see for
instance [13]), these further insights in their structure may lead to good approx-
imation algorithms for these problems.
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