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Abstract

The asymmetry in the neutrino mean free path for the absorption reaction ν + n → e− + p,

is evaluated within hot neutron matter under a strong magnetic field. We consider densities in

the range 0.05 ≤ ρ ≤ 0.4 fm−3, several temperatures up to 30 MeV and magnetic field strengths

from B = 0 up to B = 1018 G. Polarized neutron matter is described within the non–relativistic

Hartree–Fock model using the LNS Skyrme interaction. The neutrino mean free path has a weak

dependence with the temperature and in the strong magnetic field region, it decreases for growing

values of it. This contrast with the scattering reaction ν + n → ν ′ + n′, where the average

mean free path is almost independent of the magnetic field and has a strong dependence with the

temperature. We have evaluated the asymmetry from both the absorption and scattering reactions.

Our results shows that the total asymmetry depends on the magnetic field intensity, the density

and the temperature. For a density of 0.16 fm−3 and for a magnetic field strength of B=1017 G,

the asymmetry in the mean free path is found to be, ∼ 9% and ∼ 3.4% for temperatures of T= 15

and 30 MeV, respectively. While the same set of asymmetries for B=1018 G, is ∼ 58% and ∼ 48%.

PACS numbers: 26.60.-c, 26.60.Kp, 25.30.Pt
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I. INTRODUCTION

Neutrinos play an important role in the evolution of stellar objects. The physics of neutri-

nos is relevant at all stages of the stellar evolution, starting from the supernova explosions [1–

3]. After such event, the remaining matter forms a compact object where the neutrinos are

one of the key elements for understanding this process [4, 5]. There are many mechanisms

which produce neutrinos in a neutron star. A complete review on this point can be found

in [6]. The possible reactions depends on the neutron star region under consideration. In

the neutron star crust one has electron–positron annihilation (e−e+ → νν̄), photon de-

cay (γ → νν̄), electron–nucleus bremsstrahlung (e−(A,Z) → e−(A,Z)νν̄), neutron–nucleus

bremsstrahlung (n(A,Z) → n(A,Z)νν̄), neutron–neutron bremsstrahlung (nn → nnνν̄),

Cooper pairing of neutrons (nn → νν̄), among others. In the neutron star core, we quote

just a few of all the possible reactions: baryon direct Urca (e.g. p l → nνe, p l → Σνe),

baryon modified Urca (e.g. pB l → nBνe, pB l → ΣBνe), baryon bremsstrahlung (e.g.

nn → nnνν̄), lepton modified Urca (e.g. e−p → µ pν̄µνe) and Coulomb bremsstrahlung (e.g.

l p → l νν̄).

Certainly, the emission of neutrinos is considered the main mechanism for the neutron

star cooling [7, 8]. In the analysis of this emission, the neutrino mean free path λ is of central

importance. Depending on the conditions of density and temperature, the neutrino mean

free path ranges from small values compared with the neutron star radius, up to very large

values. In the absence of magnetic field this has been extensively discussed in the literature

(see for instance [9–22]). The neutrino mean free path tells us about the neutrino emissivity

from the neutron star and therefore the degree of cooling of the compact object.

The addition of a strong magnetic field modifies these processes. Observational data on

the magnetic field strength in the neutron star surface indicates that this magnitude varies

within the range B= 108–1015G. A comprehensive and detailed review of the magnetic field

in a neutron stars can be found in [23] and references therein. The magnetic field strength

in the surface of a neutron star such as a young radiopulsar (τ ∼ 103 − 107yr) has values in

the range B= 1011–1013G. For an old radiopulsar (τ ∼ 108 − 1010yr) this value decrease to

B= 108–109G, while also in the surface of a magnetar this value rise up to B∼ 1015G and

it can grow by several orders of magnitude in its dense interior [24]. The stability condition

requiring that the total neutron star energy be negative leads to an upper bound on the
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magnetic field strength of B. 1018G [25].

The magnetic field establish a preferred axis for the neutron star, making the emission

of neutrinos asymmetrical. This asymmetry has astrophysical implications and perhaps,

the most important one is as a possible mechanism for the explanation of the “pulsar kick

problem”: the observation that pulsars do not move with the velocity of its progenitor star,

but rather with a substantially greater speed. Even thought this model has been objected

as the only source to explain the problem pulsar kick (see for instance [26]), an asymmetry

of ∼ 1% would be enough to understand this behavior [28]. There are two main mechanisms

responsible for this asymmetry. One is the effect of the magnetic field on the oscillation of

the neutrinos [27]. The second source of asymmetry are the parity violation reactions which

take place inside the neutron star [28–39]. This last approach is the one that we adopt in

this work.

In this work we analyze the asymmetry in the neutrino mean free path for the absorption

reaction ν+n → e−+p, in hot dense neutron matter. In a previous paper we have discussed

the scattering process ν + n → ν ′ + n′ [39]. By considering both reactions, the asymmetry

in the neutrino emission can be originated from the differential cross section and from the

neutrino mean free path (which is the inverse of the total cross section per unit volume).

These two mechanism are independent and should be considered simultaneously to account

for the actual asymmetric neutrino emission. While the first one is restricted to the scattering

reaction and it gives us information on the way in which the weak interaction scatters the

neutrinos, for the mean free path both reactions are present and it tells us about how often

a neutrino interacts with a neutron. We consider that the mean free path is the relevant

variable in this problem: if the mean free path is much larger than the size of the compact

object itself, then the asymmetry in the differential cross section would not act, since it

would be unlikely to have a collision.

As we have already mentioned, we consider the absorption reaction which takes place in

hot dense neutron matter under a strong magnetic field. The magnetic field induces some

degree of polarization of the system, which is partially responsible for the asymmetry in the

mean free path. At this point, it is worth to mention that the total neutrino cross section

shows a dependence on the angle of the incoming neutrino with respect to the magnetic

field also in free space [35]. Neutron matter is described using the Equation of State (EoS)

developed in [40, 41]. In this approach, we describe the nuclear interaction using the non–
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relativistic Skyrme potential model within a Hartree–Fock approximation.

This work is organized as follows. In Section II we present the formalism for the neutrino

mean free path. This is done in two sub–sections where we discuss the EoS in first place and

then we give some details on the derivation of the cross section per unite volume. In the

next step, we discuss our results in Section III, where we also include the scattering mean

free path previously evaluated. Finally, in Section IV we give some conclusions.

II. THE NEUTRINO ABSORPTION CROSS SECTION

In this section we present an expression for the neutrino absorption cross section in hot

neutron matter under a strong constant magnetic field. Much of the information in this

section have been already published in other works and we have done a summary of them

for the convenience of the reader. But also because we add some specific information which

should be given in the right context of our problem.

The absorption reaction under consideration is the absorption of a neutrino by a neutron,

having an electron and a proton as the final state,

ν + n → e− + p, (1)

where the Feynman diagram for this reaction is drawn in Fig. 1. This reaction can take place

either in free space or within a dense medium. We are considering pure hot non–relativistic

neutron matter and to evaluate the cross section we need two basic elements: in first place,

a model for the neutron matter. This means that we have to develop an Equation of State

(EoS) for the dense medium under the influence of a strong magnetic field, from which we

obtain the physical state of the system, characterized by the polarization, the single particle

energies and the chemical potential for equilibrium. The second element is the evaluation

of the diagram in Fig. 1 itself, using the standard rules for the evaluation of diagrams. In

particular, we should employ a model for the weak–interaction which mediate this reaction.

In two sub–section we address these points.

A. The EoS model using a Skyrme interaction

The EoS is evaluated using Hartree-Fock approximation with the Skyrme interaction [40,

41]. We assume a system of neutrons within a strong magnetic field at finite temperature.
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The neutrons interact through the strong interaction among each other and with the external

magnetic field. From the EoS, we obtain the degree of polarization of the system, the single

particle energies of the neutrons and their chemical potential. This is done by giving the

density of the system, its temperature and the intensity of the magnetic field, which we

consider as a constant field in the ẑ–direction. This hypothesis on the magnetic field is

not an important restriction as it should be employed locally (as well as the density and

the temperature). For the whole neutron star one can implement a realistic model for the

magnetic field. The curvature of such a field would allow us to consider it as locally uniform

due to the scale of the neutrino–neutron absorption reaction.

Now we briefly describe how we obtain the different outcomes from the EoS. For a more

detailed analysis we refer the reader to [39–41]. The starting point is to define the adequate

thermodynamical potential for our problem. For a system within a magnetic field ~B, we

employ,

U = F − ~M · ~B, (2)

where F and ~M are, respectively, the Helmhotz free energy density and the magnetization

per unit volume of the system. The expression for the density of the system is given by,

ρ =
∑

sn=±1

1

(2π)3

∫

d3pnfsn(En, µn, T ). (3)

Here En, µn and T stands for the neutron single particle energy, its chemical potential and

the temperature, respectively. The function fsn(En, µn, T ), in thermal equilibrium is given

by the Fermi–Dirac particle distribution function,

fsi(Ei, µi, T ) =
1

1 + exp[(Ei − µi(T ))/T ]
. (4)

It is straightforward to define the spin up and down partial densities as ρ+ and ρ−, respec-

tively. We have ρ = ρ+ + ρ−. The spin asymmetry is,

A =
1

ρ

∑

sn=±1

sn
(2π)3

∫

d3pnfsn(En, µn, T ), (5)

or equivalently, A = (ρ+−ρ+)/(ρ++ρ+). At this point it is convenient to give the expression

for the neutron single particle energy, En. Using the Hartree–Fock model with the Skyrme

interaction, we have [40, 41],

En = mn +
p2n

2m∗
sn

− snµBnB +
vsn
8
, (6)
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where µBn = −1.913µN is the anomalous magnetic moment of the neutron in units of the

nuclear magneton µN . The potential term, vsn depends on the density, the temperature and

the magnetic field, but not on the momentum and it is given by,

vsn = a0(1− snA)ρ+ 2(b0 + snb1)Ksn=1, (7)

where,

Ksn =
1

(2π)3

∫

d3p p2fsn(En, µn, T ) . (8)

The constants a0 = 4t0(1 − x0) + 2t3ρ
σ(1 − x3)/3, b0 = t1(1 − x1) + 3t2(1 + x2) and b1 =

−t1(1 − x1) + t2(1 + x2/2), are written in terms of the standard parameters of the Skyrme

model, t0, t1, t2, x0, x1, x2 and σ. In Eq. (6), for the effective mass we have,

1

m∗
s

=
1

mn
+

1

4
ρ (b0 + s b1A). (9)

The chemical potential corresponding to the physical state, does not depend on the spin

projection of the neutron due to the minimization process. To see this point we write,

µsn =
∂U
∂ρsn

. (10)

This expression can be rewritten in terms of the spin asymmetry A, as,

µsn =
∂U
∂ρ

+ sn

(

1− snA

ρ

)

∂U
∂A

. (11)

The difference between the two chemical potentials is then,

µ+ − µ− =
2

ρ

∂U
∂A

(12)

which shows, that the minimization of U with respect to A implies the existence of a unique

chemical potential in the physical state. We should emphasized that this minimization is

performed with the constrain of a fixed density. This is a self–consistent process: we need

µn to evaluate ρ+ and ρ−, which defines the spin asymmetry A, needed in the single particle

energy, etc. Summarizing, given the density, temperature and the magnetic field of the

system, from the EoS we obtain the actual physical state, characterized by the chemical

potential, the single particle energies of the neutrons and the spin asymmetry which is a

global property of the system.
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B. The Absorption Neutrino Cross Section for a polarized system

In this sub–section we show an expression for the absorption neutrino cross section per

unite volume for a polarized system. The formalism of this sub–section is taken from the

work of Arras and Lai [42], where the reader can find a complete derivation. We briefly

summarized some elements for convenience and we also add some particular expressions not

given in [42], that we need in our work.

The aim of this sub–section is to write an analytical expression for the mean free path

for the absorption reaction ν+n → e−+ p, depicted in Fig. 1. From this diagram, the weak

interaction is given by the effective Hamiltonian,

Hint =
GF√
2
Ψ̄pγµ(gV − gAγ5)Ψn Ψ̄eγ

µ(1− γ5)Ψν + H.c. (13)

Here GF is the Fermi weak coupling constant (GF/(~c)
3 = 1.16637(1)× 10−5 GeV−2). For

the vector and axial–vector couplings we have gV = 0.973 and gA = 1.197, respectively. The

total absorption cross section per unit volume can be written as,

σabs

V
=

∫

dΠp dΠe dΠnWabs
fi (1− fsp(Ep, µp, T ))(1− fse(Ee, µe, T ))fsn(En, µn, T ). (14)

In this expression Wabs
fi is the transition rate, which is linked to the Hamiltonian through

the S–matrix. The S–matrix is defined as,

Sfi = ı

∫

d4xHint. (15)

The square of Sfi, divided by time is the transition rate:

Wabs
fi =

| Sfi | 2
t

. (16)

The Eq. (14), is in fact the Fermi Golden Rule, where we sum over final states and average

over the initial ones, if we do not know the initial state. We are considering massless

neutrinos which are left-handed (or polarized), we assign also a value for its momentum

and direction. That is, we know the initial state for the neutrino. In the same equation,

the
∫

dΠN represents the state summation for the particle N . Is is convenient to show the

explicit expression for each particle, together the corresponding single particle energy.

Protons and electrons are charged particles and therefore, their energy levels are partially

quantized according to the Landau levels. In particular, the single particle energy for a
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proton which interacts only with a constant magnetic field (which we take as the ẑ–direction)

is,

Ep = mp +
p2p,z
2mp

+
eB

mp

(Np +
1

2
) − spµBpB, (17)

where µBp = 2.793µN and Np = 0, 1, 2, ... is the energy level quantum number for the

proton Landau state. The quantization axis for a charge particle is perpendicular to the

magnetic field–direction. For the proton state summation we have,

∫

dΠp =

Np,max
∑

Np=0

Rp,max
∑

Rp=0

∑

sp=±1

∫

∞

−∞

dpp, z
Lpp, z
2π

, (18)

where Np,max is determined by the conservation of energy and Rp is the quantum number

for the proton guiding center, where the cutoff Rp,max ≃ eBA/2π (the degeneracy of the

Landau level) limits the guiding center to lie within the normalization volume V = AL,

where L is the length along the ẑ–axis and A is the area.

Due to the small mass of the electron, we have employed the relativistic expression for

the energy,

Ee = (m2
e + 2eBNe + p2e, z)

1/2, (19)

where Ne = 0, 1, 2, ... is the energy level quantum number for the electron Landau state.

The particular value for the magnetic moment for the electron allows us to employ a single

index (Ne) in its energy. To specify the quantum state of the electron we need also σe = ±1,

the spin projection along Π =pe + eA and Re =0, 1, 2, ... which plays the same role as for

the proton. For a detail discussion on the solution of the Dirac equation for the electron we

refer the reader to [43]. The summation for the electron is then,

∫

dΠe =

Ne,max
∑

Ne=0

∑

σe=±1

c(Ne, σe)

Re,max
∑

Re=0

∫

∞

−∞

dpe, z
Lpe, z
2π

, (20)

where the function c(Ne, σe) = 1 − δNe, 0δσe,−σe0
, with σe0 = −sgn(pe, z). This function is

equal to one, except for its null value when Ne = 0 and σe = −σe0. This is needed because

for the ground Landau level, the electron spin is opposite to the magnetic field. This means

that we can only have the spin projection σe0 [52]. The cutoff Re,max takes the same value

as for the proton.

The single particle energies in Eqs. (17) and (19), are the ones employ in this work, as

we are considering pure neutron matter. Once the neutrino is absorbed by the neutron,
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the final proton and electron do not find others fermions of the same kind. In this sense,

in Eq. (14), we should make the replacement (1 − fsp(Ep, µp, T ))(1 − fse(Ee, µe, T )) → 1.

However, we will retain these functions to preserve a more general expression.

Finally, for the neutron, we have,
∫

dΠn =
∑

sn=±1

1

(2π)3

∫

d3pn. (21)

The single particle energy for the neutron has been already given in Eq. (6). As we have

mentioned, in Eq. (14), we sum over all possible final states and we average over the initial

ones. The next step is to insert all wave functions into this equation and obtain the final

expression for the neutrino cross section. This procedure is developed in full detail in [42],

we will not repeat it here. We employ a non–relativistic wave function for neutron. In

this point we are interested in the spin term of this wave function. In unpolarized matter,

one makes an average over the spin up and down contributions, |u〉 and |d〉, respectively.
For polarized matter, we employ a single mixed spin wave function |χn〉 (for details see

Appendix B in [39]),

|χn〉 =
√

1 + A

2
|u〉+

√

1− A

2
|d〉, (22)

where A is the spin asymmetry as defined in Eq. (5). The mean value of the spin projection

operator Ŝz, using this wave function is,

〈χn|Ŝz|χn〉 = A
~

2
, (23)

which is the same as the mean value of the spin projection operator for the whole system,

as required by the mean value for a mixed wave function [44]. In what follows, we employ

the neutron spin wave function in Eq. (22), for the evaluation of the cross section.

We give now the expression for the cross section. To do so, one has to replace each

particle wave function in Eq. (14). As mentioned, the procedure is developed in detail in

the [42]. With the addition of the neutron spin wave function it is obtained,

σabs

V
=

G2
F

2

eB

2π

Nmax
e
∑

Ne=0

∫

∞

−∞

d pe, z
2π

(1− fNe
(Ee, µe, T ))

Nmax
p
∑

Np=0

∫

∞

−∞

d 2pn,⊥
(2π)2

∑

sp=±1

×
(

(1 + A

2

)

Ssp,1,Np,Ne
LµνN

µν |sp,1 +
(1− A

2

)

Ssp,−1,Np,Ne
LµνN

µν |sp,−1

)

, (24)

where pn,⊥ =
√

p2n,x + p2n,y. In this expression Lµν and Nµν are the leptonic and hadronic

tensors, respectively, as defined in Eqs. (D12) and (D13) in [42]. We have introduced the
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structure function for the absorption process as,

Ssp,sn,Np,Ne
=

∫

∞

−∞

dpn,z

2π

∫

∞

−∞

dp p,z

2π
(2π)2 δ(Ee + Ep − |pν| − En)

× δ(p e,z + p p,z − p ν,z − pn,z) fsn(En, µn, T ) (1− fsp(Ep, µp, T )). (25)

An analytical expression for this function is given in the Appendix A, where at variance

with [42], this function is evaluated in the case where mp 6= mn. Finally, the contraction of

the leptonic and hadronic currents are given by,

LµνN
µν |sp,sn (Ne = 0) = θ(pe, z) I

2
0,Np

(t)
(

g2V + 3g2A +
(

g2V − g2A
)

cos(θν)

+2gA (gA + gV ) (sp + sn cos(θν))− 2gA (gA − gV ) (sn + sp cos(θν))

+
(

g2V − g2A +
(

g2V + 3g2A
)

cos(θν)
)

snsp

)

, (26)

where θν is the angle among the neutrino and the magnetic field and the function INe,Np
(t)

is given by,

INe,Np
(t) =

(Np!

Ne!

)1/2

exp−t/2 t(Ne−Np)/2LNe−Np

Np
(t), (27)

where t = ω2
⊥
/2eB and for the definition of the Laguerre polynomials Li

j, we have adopted

the one from [45]. When Ne ≥ 1, we have,

LµνN
µν |sp,sn (Ne ≥ 1) = g2V

(

I2Ne−1,Np
(t)Σ−

Ne
(pe, z) + I2Ne,Np

(t)Σ+
Ne
(pe, z)

)

(1 + snsp)

+ g2A

(

I2Ne−1,Np
(t)Σ−

Ne
(pe, z) (3 + cos(θν) + 2(sn − sp)(1 + cos(θν))

−snsp(1 + 3 cos(θν))) + I2Ne,Np
(t)Σ+

Ne
(pe, z) (3− cos(θν)

−2(sn − sp)(1− cos(θν))− snsp(1 + 3 cos(θν)))
)

+ 2gV gA

(

I2Ne−1,Np
(t)Σ−

Ne
(pe, z)(−1 + cos(θν))

+I2Ne,Np
(t)Σ+

Ne
(pe, z)(1 + cos(θν))

)

(sn + sp), (28)

where,

Σ±

Ne
(pe, z) ≡

1

2

(

1± pe, z
| (p2e, z + 2eBNe)1/2 |

)

. (29)

The expression in Eq. (26), is the same as the one in [42]. But for the one in Eq. (28), we

have considered all spin terms.

Note that the neutrino mean free path is obtained from the cross section as λabs =

(σabs/V )−1. In the next section we discuss our results.
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III. RESULTS AND DISCUSSION

We present now our results for the neutrino mean free path in homogeneous hot neutron

matter under the presence of a strong magnetic field. We consider a range of densities of

0.04 ≤ ρ ≤ 0.4 fm−3, corresponding approximately to the outer core region a neutron star,

temperatures up to T=30 MeV and different values of the magnetic field intensity ranging

from B=0 up to B=1018 G. The EoS is evaluated within the Hartree–Fock model, using LNS

Skyrme interaction developed by Cao et al. [46]. We have developed our formalism assuming

a particular form for the single–particle energy for the neutron, which is the one from the

Skyrme model. This expression is shown in Eq. (6). In [39] we have employed the same

model together with the Brueckner–Hartree–Fock (BHF) approach using the Argonne V18

[47] nucleon-nucleon potential supplemented with the Urbana IX [48] three-nucleon force.

In that work we have obtained a good agreement between both models for the inelastic

dispersion of neutrinos by neutrons. Note that the LNS Skyrme interaction is specially

suitable for a comparison with the BHF–model, since its parameters were determined by

fitting the nuclear matter EoS calculated in the BHF framework.

Before the discussion of our results, it is convenient to make a summary of the spin

asymmetry of the system, which have been already analyzed in [39] for the same interaction

(see in particular the Fig. 3). The spin asymmetry A characterizes the degree of polarization

of the system. That is, we consider a system of neutrons interacting with each other through

the strong interaction and with an external strong magnetic field. The strong interaction

favors an equal number of neutrons with spin up and down (i.e. A=0), while the magnetic

field tries to align all the neutron spins antiparallel to it (i.e. A=-1). The actual value for

A is then obtained through an energy minimization calculation from the EoS, as discussed

in sub-Section IIA. As expected, the magnitude of A increases for decreasing densities and

also for growing values of the magnetic field. In fact, within the range of B from 1014G up

to 2.5 × 1018G, we have log10(| A |) ∼= a log10(B) + b, where a ∼= 1 and b is approximately

constant for a fixed value of the density (this behavior is depicted in panels b) and d) in

Fig. 3, in [39]). Our concern is the neutrino mean free path and the corresponding cross

section has different values according to the state of polarization of the neutron matter. This

is developed in the following lines.

We turn now to the analysis of the absorption structure function as defined in Eq. (25).
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An analytical expression for this structure function is given in the Appendix A. At variance

with the well studied structure function for the dispersion mean free path (see Eq. (23)

in [39]), this structure function has some particular features which deserves to be discussed.

One should keep in mind that our structure function represents only a fraction of the proton–

neutron phase space and due to this, it depends on many variables. Beyond its rather simple

expression, it is the great number of independent variables which makes it difficult to analyze.

Following the same pattern as for the dispersion structure function, we plot the absorption

structure function as a function of q0 (the energy transfer by the weak interaction). But

instead of using a fix value for qz, we employ qz ∼= q0 − |~pν |(1− cos(θν)). This expression is

obtained by solving the first two expressions in Eqs. (A5), for qz > 0 and Ee
∼= p e,z.

In Fig. 2 we plot the structure function at a fixed density for different proton–neutron

spin projections, denoted as sp, sn = uu, ud, du and dd. In this figure we study the effect

of the magnetic field over the structure function. The first obvious result is that the split

among the different spin components is more relevant for B = 1018G. This split is due to

two main elements. In first place, to the coupling of the magnetic field with the magnetic

moment of protons and neutrons: from Eqs. (A2) we notice that there is an energy shift of

∆E = (spµBp − snµBn)B. Keeping in mind that µBp > 0 and µBn < 0, the main source of

the split is understood. Secondly, the neutron effective mass depends on its spin projection,

which represents the second contribution to the split. However, due to the particular Skyrme

model that we have employed, this effect is small.

The shape of the different structure functions is linked to the single–particles energies and

to the chemical potential derived from the EoS. But it is the area under the different functions

which really matters: comparing the different areas, the bigger ones leads to bigger cross

sections and smaller mean free paths. Let us call the different areas under each structure

functions as
∫

Ssp,sn,Np,Ne
. From Fig. 2 and assuming that the whole area contributes to the

cross section, we notice that
∫

Suu,0,0 <
∫

Sud,0,0 and
∫

Sdu,0,0 <
∫

Sdd,0,0: for a fix proton

spin projection, the contribution for neutrons with spin up is smaller than the one with spin

down. The same behavior takes place for the dispersion structure function, having the same

origin, which is the character of the phase space for polarization matter: the phase space

for neutrons with spin up is smaller than that of neutrons with spin down. A complete

discussion on this point is given in [39]. A corollary of this discussion is that the structure

function has a clear spin dependence and in the spin summation in Eq. (24), it can not be
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taken as a common factor.

In the following two figures, we limit ourselves to one spin configuration for simplicity,

as the other contributions have the same behavior. In Fig. 3, we show the Np–dependence

of the structure function for two values of the magnetic field. By drawing the structure

function for Np = 0 and for Np = 20, we observe an energy shift stemming from the

(Np + 1/2) eB/mp–term in the proton single particle energy. Being this term proportional

to B, it is straightforward to understand that this shift is one order of magnitude bigger

for B = 1018G than for B = 1017G. The problem here is up to which Np–value should we

sum up. Or equivalently, which is the biggest value for q0. The value for q0 is limited by

the conservation of energy: |pν | + En = Ee + Ep. The initial energy of the system depends

on the particular values of the momentum carried by each particle, its potential energy

and the value for the magnetic field. Note that q0 = |pν | − Ee: |pν | has a fixed value and

Ee < |pν | + En. This gives a maximum value for q0, keeping in mind that Ep
∼= 0 is not

a realistic situation. This is the first constrain to the value for Np, but as we discuss soon

Np has also restrictions by the accessible phase space. Before ending this paragraph, it is

worth to mention that Ne is indirectly present in q0. This quantum number is part of the

electron single particle energy. In this figure, we have employed the approximate equality,

qz ∼= q0 − |~pν |(1 − cos(θν)), which is valid only if Ne = 0. A similar figure can be done for

Ne 6= 0, but leading to the same conclusions.

Coming back the the energy conservation Ee + Ep = |pν |+ En, it is convenient to make

some comment on the relative values for Np and Ne. We show a simple model to compare the

Np–contribution to the proton energy term ∆ENp ≡ NpeB/mp with the corresponding term

for the electron, ∆ENe ≡ (m2
e + 2eBNe)

1/2 −me. By defining ∆Etot ≡ ∆ENp +∆ENe and

just to give an example, we set the maximum possible value for ∆Etot, at ∆Emax
tot = 64MeV.

We consider two cases: i) B= 1018G, we have ∆ENp=10 = 63MeV, but ∆ENe=1 = 108MeV,

which means that no electron Landau level contributes to the cross section and we have

to sum Np from zero up to ten. ii) B= 1017G, ∆ENp=100 = 63MeV and in this case,

∆ENe=3 = 59MeV. Then, we have combinations among the proton and the electron Landau

levels: Np = 100 and Ne = 0, Np = 0 and Ne = 3, Np = 1 and Ne = 1, etc. Due to the small

electron mass, the energy gap is always bigger for the electron.

In Fig. 4, which is the last one for the structure function, we consider the temperature

dependence of this function for B = 1018G and for three values of the temperature T= 5, 15
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and 30MeV. By comparing this results with the ones from the dispersion structure function

(see Fig. 4a in [39]), we notice that the behavior of the absorption structure function with

temperature is quite different from the one in the dispersion process. For the dispersion

process, the area under the structure function strongly grows with temperature. At variance,

for the absorption one, the areas are similar, but with a clear decrease as one increases the

temperature. The absorption structure function represents only a part of the available

phase space and as so, gives a different result. A complete analysis of the temperature

dependence requires the full phase space of the problem. This is done soon, when we discuss

the temperature dependence of the neutrino mean free path.

We have considered the absorption structure function with some detail, because it helps

us to understand the mean free path. Another ingredient is the function I2Ne,Np
(t) (see

Eqs. (27)), which we have plot in Fig. 5 for different values of Np and Ne. As discussed

in Section II, this function is part of the wave function of charged particles in a constant

magnetic field: the energy levels are quantized for an axis perpendicular to the magnetic field

direction and has continuum values parallel to the field. This is a function of t = ω2
⊥
/2eB

and in the panel a) in this figure, we consider different values for Np with a fixed Ne = 0.

In panel b) we take Np = 100 for two values of Ne. Our concern is how this function affects

the result for the neutrino mean free path. Keeping in mind that
∫

∞

0
dt I2Ne,Np

(t) = 1,

the weight of this function is linked to the maximum value for t. The maximum value

for ω⊥ = [(pn,x + pν,x)
2 + (pn,y + pν,y)

2]1/2, results from the particle distribution function

fsn(En, µn, T ) and the neutrino momentum. For the same ωmax
⊥

, different values for the

magnetic field give different tmax. Together with the structure function, this tmax–value

establish a constrain over the maximum values for Np and Ne.

We turn now to the analysis of the neutrino absorption mean free path. We conclude our

study by adding the dispersion contribution, which have been discussed in [39]. The behavior

of these two contributions with temperature and with the magnetic field is very different.

Due to this and for the benefit of the reader, we recall some aspects of the dispersion cross

section in the following paragraphs. The presence of a constant magnetic field, establishes

a preferred direction in space and consequently, the total cross section depends both on

the magnitude of the momentum of the incoming neutrino and on the angle θν between its

momentum and the direction of the magnetic field. For the dispersion reaction, an incoming

angle of θν = π/2 results in a cross section almost identical to the one in the absence of the

14



magnetic field. This is because the phase space for this reaction is barely modified by the

magnetic field. As we show soon, this is not the case for the absorption reaction, where the

phase space (of final states) is substantially modified by the magnetic field.

In first place, in Eq. (24) we sum over all spin components. However and by taking for

simplicity the Ne = 0 case, the weak dynamics from Eq. (26) already gives us some relevant

information about this sum. In Table I, we show results from Eq. (26), where we have

used gV = 0.973 and gA = 1.197. From this table, we can see that contributions with the

spin down for the proton are zero for du and are almost negligible for dd. Moreover, for

the two extreme values for θν , only one spin component contributes to the cross section:

the uu–component for θν = 0 and the ud–component for θν = π. Each component is

weighed by a different factor, even thought these factors are similar in magnitude. This

fact, together with the different shapes for the spin components of the absorption structure

function shown in Fig. 2, contribute to the asymmetry in the neutrino absorption cross

section. Another ingredient is the partial polarization of the system, which is represented

by the spin asymmetry A.

TABLE I: Some values for the function [LµνN
µν/I20,Np

(t)](sp, sn, cos(θν)) from Eq. (26) for pe, z > 0.

Note that this function has no dimensions.

sp, sn θν = 0 θν = π/2 θν = π

uu 18.84 9.42 0.

ud 0. 11.46 22.92

du 0. 0. ∼ 0.

dd 0.20 0.10 0.

In Fig. 6, we present our result for the absorption neutrino mean free path as a function

of the density, at a temperature T= 15MeV, for two values of the magnetic field B= 1017G

and B= 1018G and for three different angles of the incoming neutrino. If we compare these

results with the dispersions ones (see Fig. 10 in [39]), we notice that the mean free path shows

the same qualitative behavior. But, at variance with the dispersion case, the magnitude of

the absorption mean free path has a strong dependence with the magnetic field. From

B= 1017G to B= 1018G there is an important reduction in the mean free path. The reason
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for this reduction is due to the magnetic dependence of the phase space for final states. An

increase of this phase space result in an increase of the cross section and consequently a

reduction in the mean free path. As we have already discussed, when the magnetic field

grows, the number of the Landau levels which contribute to the cross section decrease. But

the degeneracy of the levels, given by eBA/2π, grows. Therefore, for increasing values of

the magnetic field there is some kind of competition between the increase of the final phase

space due to the degeneracy and the reduction in the number of Landau levels. From our

numerical results, it turns out that within a range for the magnetic field between B= 1016G

up to B= 1018G, the absorption neutrino mean free path decrease for increasing values of

the magnetic field. Referring now to the maximum values for Np and Ne, we can give only

indicative values, as they change with density (they depend also on the temperature, on the

single particle energies and on the chemical potential). For ρ = 0.16fm−3, we have Np ≃ 150

and Ne ≃ 10 for B= 1017G, while the values for B= 1018G are Np ≃ 15 and Ne = 0.

In the next step, we analyze the temperature dependence of the absorption neutrino mean

free path. In Fig. 7, we consider three temperatures: T= 5, 15 and 30MeV, for B= 1017G

and B= 1018G. For simplicity, we have plotted only the results for θν = π/2 and for the

energy of the neutrino we have used the prescription |~pν | = 3T . Our results show that the

temperature dependence is rather weak, specially when compared with the dispersion case.

To understand this behavior it is useful to compare the dispersion structure function in

Fig. 3, [39] with the absorption ones in Fig. 4: the area of the absorption structure function

decreases, instead of increasing. This means that the absorption mean free path should

increase for higher temperature values. However, our structure function spread over a wider

energy region as the temperature grows, populating more Landau levels. The increase in the

number of Landau levels turn down the value of the mean free path. The combined result

is a small decrease in the absorption mean free path with temperature.

The temperature dependence is further explored in Fig. 8, where the neutrino absorption

mean free path is depicted as a function of the momentum of the neutrino for three values

of the temperature, B= 1018G, a density ρ = 0.16fm−3 and θν = π/2. The |~pν |–dependence
of the neutrino mean free path shows a qualitative agreement for both the dispersion and

absorption reactions. This is because the structure function is larger for larger values of

the momentum of the neutrino. For the absorption reaction, for an increasing value for

|~pν | we have more energy in the initial state and therefore more Landau levels contribute
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to the mean free path. The reduction in the structure function for higher temperatures

obviously remains. The interplay among these elements for the absorption reaction, results

in a neutrino mean free path almost independent of the temperature. This is a particular

result and we can not give a deeper explanation. Having in mind the rule |~pν| = 3T and going

back to Fig. 7, we notice the same result: the mean free path for T= 5MeV (|~pν | = 15MeV)

is clearly separated from the ones for T= 15 (|~pν | = 45MeV) and 30MeV (|~pν | = 90MeV),

for all densities.

At this point, it is clear that the phase space for the final state in the absorption reaction is

very different from the one in the dispersion reaction due to the magnetic field. The magnetic

field can be reduced continuously up to B= 0. In the absence of magnetic field, the phase

space for absorption and for the dispersion reaction is the same [17]. In Fig. 9, we show the

absorption neutrino mean free path for magnetic fields B=0, 1017G and 1018G, θν = π/2

and two temperatures: T=5MeV in panel a) and T=15MeV in panel b). Note that in panel

a) we have employed a logarithmic scale for λabs. The absorption mean free path for B= 0

has a different functional dependence with the density and a very pronounced temperature–

dependence, consistent with the one for the dispersion reaction. Let us recall that the phase

space for the dispersion reaction is barely affected by the magnetic field. It is not a trivial

subject to perform the limit from a strong magnetic field to B= 0. This discussion goes

beyond the scope of the present contribution and we refer the reader to [35, 42] for details

on how to perform this limit process.

In what follows, we focus on the asymmetry of the neutrino mean free path. In the panel

a) in Fig. 10, we show λabs as a function of the magnetic field intensity. This is done at a

density ρ = 0.16fm−3, T= 15MeV and for three angles: θν = 0, π/2 and π. As the magnitude

of λabs decreases for increasing values of the magnetic field, this figure is somehow misleading

because the asymmetry is not clearly seen. Due to this, we have defined the quantity,

ζabs =
λabs(θν)− λabs(θν = π/2)

λabs(θν = π/2)
, (30)

which gives a more accurate idea of the increase of the asymmetry in the neutrino mean free

path. The ζabs–function is depicted in the panel b) in the same figure. As already discussed,

the magnetic field establish a preference axis in space. Our results show that it is more likely

for a neutrino moving antiparallel to the magnetic field (θν = π) to be absorbed, than a one

which moves parallel to it. Assuming an isotropic production of neutrinos, this implies that
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more neutrinos are emitted parallel to the magnetic field. In an actual neutron star model,

the whole magnetic field can not be considered as a constant vector field. Our model should

be applied locally, according to the geometry of the field.

The asymmetry in the mean free path for both the absorption and for the dispersion

reactions, results from the interplay among several elements. Considering the different

interactions which take place in the process, we have: i) the results from Table I, give us

information on the weak–interaction contribution to the asymmetry in the mean free path.

ii) the strong–interaction, which favors the situation A = 0 and iii) the coupling of the

magnetic field with protons, neutrons and electrons, which tends to polarized the system.

The balance among these two last elements leads to the equilibrium values for the spin

asymmetry A, the effective masses and the chemical potential. For simplicity, sometimes

all these contributions are summarized in one single quantity: the spin asymmetry A. In

Fig. 11, we show the mean free path, under the same conditions of panel b) in Fig. 6, but

evaluating the neutrino mean free path putting arbitrarily A = 0 (continuous lines in the

figure). For comparison we give also the results from Fig. 6 (dotted lines). We can see that

the isolated contribution from A, does not explain the main contribution to the mean free

path asymmetry. Our point here, is that the evaluation of the asymmetry in the neutrino

mean free path requires a consistent model, starting from the EoS and considering all the

just mentioned elements.

As a final point, we include the dispersion contribution to the mean free path. The

addition of this contribution gives the total neutrino mean free path, λtot,

λtot =

(

1

λabs

+
1

λdis

)−1

. (31)

Results for λdis have been taken from [39]. We give our results for this quantity in Figs. 12

and 13. In the first figure we show λtot as a function of the density, for B= 1017 and

= 1018G, three angles for the incoming neutrino: θν = 0, π/2 and π and a temperature

T= 15MeV. The second figure has the same variables except for the temperature where we

have employed T= 30MeV. In both figures we have included also λabs for θν = π/2. This is

done as a reference of the relative importance of the absorption contribution. Before we go

on with our analysis, it is worth to recall that λabs and λdis have very different behavior for

the temperatures and the magnetic fields considered in the present contribution. While λdis

has a strong dependence with temperature and its value for θν = π/2 is almost independent
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of the magnetic field, λabs has a weak dependence with temperature and it decreases for

increasing values of the magnetic field. This contrasts with the result for B= 0: in this

case both λabs and λdis have the same (strong) dependence with temperature and due to the

values of the coupling constants, one has λabs < λdis.

By comparing now the panel a) and b) in Fig. 12, we notice that the dispersion reaction

is as important as the absorption one for B= 1017G, while it is negligible for B= 1018G. This

is because of the dependence of λabs with the magnetic field. By doing the same comparison

in Fig. 13, we notice that the dispersion contribution becomes more important, due to the

strong temperature dependence of λdis.

We want to finish the discussion on our results, by performing a quantitative analysis of

the asymmetry. To this end, we define the mean free path asymmetry as,

χtot =
λtot(θν = 0)− λtot(θν = π)

< λtot(θν) >
, (32)

where we have employed < λtot(θν) >∼= (λtot(θν = 0) + λtot(θν = π))/2. Note that for the

dispersion reaction, one has < λtot(θν) >= λtot(θν = π/2). We give numerical values for χtot

in Table II, for three values of the density and for B= 1017G and 1018G, with temperatures of

T= 15MeV and 30MeV. As expected, the mean free path asymmetry is more important for

the stronger magnetic fields. The reduction in χtot for higher values of the density is because

the strong interaction becomes more important. Let us recall that the strong intereaction

favors a non-polarized system. Some increase of χtot at ρ = 0.40fm−3 is particular to many

of the Skyrme–parameterizations. Beyond this difficulty, we have preferred to employ the

same parametrization as in [39], in order to make a fair comparison of both contributions to

the total mean free path.

The increase of the temperature leads to a decrease in the mean free path asymmetry.

This result seems intuitively correct, as temperature reduce the spin asymmetry A. How-

ever, it is convenient to give some details on the origin of this results. In first place, λabs

has a weak temperature–dependence. On the other hand, λdis depends strongly with the

temperature, but it mean free path asymmetry (χdis), is rather independent of the temper-

ature. The last element is that the absorption mean free path asymmetry is bigger than the

dispersion one. This is because in the absorption reaction we deal with charged particles

which have a stronger interaction with the magnetic field. Now, as temperature grows, the

λdis contribution to χtot becomes more important, which leads to smaller values for χtot,
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TABLE II: Mean free path asymmetry χtot, as a function of the density for two values of the

magnetic field intensity and two values of the temperature.

ρ [fm−3] χtot(B = 1017G) χtot(B = 1018G)

T= 15MeV T= 30MeV T= 15MeV T= 30MeV

0.050 0.112 0.068 0.740 0.565

0.160 0.088 0.034 0.579 0.479

0.400 0.094 0.042 0.603 0.506

which explains the temperature dependence of our results in this table.

In the last point for this section, we make some comparison with other works. We start

with the work of S. Shinkevich and A. Studenikin [35]. This work makes a similar analysis,

but using a relativistic framework in free space. In free space, it is the total cross section

the magnitude that makes sense. The spin asymmetry A (named as S in that work), is

taken as an input of the model (i.e. it is not explicitly evaluated). The spin asymmetry is

incorporated to their results by making the replacement sn → A. In the absence of dense

medium, this replacement leads to the correct expression. We have an overall agreement with

their results, having in mind that in our case the effect of the dense medium is important and

the comparison is only qualitative. In our case, a dense medium imposes restrictions on the

available phase space, which depends on the temperature. The net effect is a smoothing of

the results in relation to theirs. The work by D.A. Baiko and D.G. Yakovlev [33], a formalism

similar to ours is employed. However, they focus on very low temperatures, being the scope

of this paper different than ours. To the best of our knowledge perhaps the most complete

analysis on the subject has been made by Maruyama et al. [38]. We should quote that we

have obtained a general agreement with all these papers. What sets us apart from the other

works is the treatment we make of the equation of state. We have determined the EoS

with a magnetic field and from this we obtain spin–dependent single particle energies and a

chemical potential which lead to specific values for ρ+ and ρ−, the density of neutron with

spin up and down, respectively. Even though the spin asymmetry A, appears explicitly in

the expression for the cross section, an accurate evaluation of the structure function requires

single particles and chemical potential consistent with the value of the magnetic field.
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IV. SUMMARY AND CONCLUSIONS

In this work we have evaluated the neutrino mean free path for the absorption reaction

ν + n → e− + p, in hot dense neutron matter under a strong magnetic field. In first place,

we have evaluated an EoS using the Hartree-Fock model with an Skyrme interaction with a

strong magnetic field. As mentioned, we have a proton and an electron as final state. Being

charged particles in a magnetic field, their quantum state is partially quantized, showing

the so-called Landau levels. Due to this quantization, the phase space of final states is

quite different from that of the same reaction but in the absence of a magnetic field. This

contrast with the scattering reaction (ν + n → ν ′ + n′), where the phase space of final

states are very similar. While for B= 0 the absorption reaction is always more important

than the dispersion one, when B6= 0, the situation is different: λabs has a weak dependence

with the temperature and decreases when the magnetic field grows, while λdis has a strong

dependence with the temperature (it decreases for growing values of T), and for θν = π/2 is

almost independent of the magnetic field. Therefore, in the presence of a strong magnetic

field, either λabs or λdis can be the dominant contribution depending on the temperature.

As a corollary of this behavior λabs can be important for low temperatures as long as the

magnetic field is strong.

For not null magnetic field, the neutrino mean free path depends on the angle between

the neutrino momentum and the magnetic field (which we take as ẑ–axis). This establish

a preferred direction in space resulting in an asymmetrical emission. This asymmetry is

the result of the interplay among the weak, strong and electromagnetic interactions. The

weak interaction is the responsible for the reaction ν + n → ν ′ + n′, giving as a result a

transition matrix element which depends on the spin of the particles involved. On the other

hand, by solving the EoS for hot dense neutron matter under a strong magnetic field, we

obtain a partially polarized system, from which we obtain single particle energies and the

chemical potential needed for the evaluation of the neutrino mean free path. As already

mentioned, the EoS gives us the equilibrium situation among the strong interaction (which

favors A = 0 ) and the coupling to the magnetic field (A → −1 ). It is worth to mention that

this kind of analysis is quite involved for a more complex medium. If we simple add protons

to the medium (see for instance [49]), we need to work with two spin asymmetries: the one

for neutrons and another one for protons. In this case, we already have Landau levels in the
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initial state and the whole scheme should be re–formulated.

Our results shows that the shortest neutrino mean free path is obtained for neutrinos

moving anti–parallel to the magnetic field. As a consequence it is expected that the flux

of emitted neutrinos parallel to the magnetic field is bigger than the one in the opposite

direction. In Eq. (32) we have defined the mean free path asymmetry χtot, in order to

account for this asymmetry in a quantitative way. We have obtained rather big values for

χtot. However, it would be speculative to draw a conclusion from these values: the geometry

of the magnetic field in a neutron stars should be considered as well as the local density

and temperature. Moreover, as discussed in the last paragraph, the actual composition of a

neutron star is more complex. In any case, we consider that in the search for an explanation

for the pulsar kick problem, this asymmetry can not be ignored.

In this work we have tried to give a self-consistent treatment of the mean free path for

neutrinos, starting from the EoS and putting special emphasis in its asymmetry. Both the

weak transition matrix element and the EoS contribute to the asymmetry in the neutrino

mean free path. We have employed pure hot dense neutron matter due to it simplicity and

because it is a reasonable assumption that this model represents one important contribution

to the problem. Nuclear correlations beyond the mean field could have a relevant effect

on the mean free path and its asymmetry. One way to deal with these correlations is the

so-called ring approximation (see for instance [50, 51]). But there are other correlations that

can be also important. From this, our aim for a next work is to analyze the role of nuclear

correlations beyond the mean field on the neutrino mean free path.

22



Appendix A: Evaluation of the structure function Ssp,sn,Np,Ne

In this Appendix we evaluate the structure function for the absorption process Ssp,sn,Np,Ne
.

We present a general expression, but at the end of this Appendix, we show a simpler ex-

pression which is more appropriate for our work. We recall the structure function defined

in Eq. (25),

Ssp,sn,Np,Ne
=

∫

∞

−∞

dpn,z

2π

∫

∞

−∞

dp p,z

2π
(2π)2 δ(Ee + Ep − |pν| − En)

× δ(p e,z + p p,z − p ν,z − pn,z) fsn(En, µn, T ) (1− fsp(Ep, µp, T )), (A1)

where fsi(Ei, µi, T ) has been given in Eq. (4). The single-particle energies Ei and the

chemical potentials µi should be obtained from a particular model for the medium, which

in our case is the Skyrme model (see [40, 41] and references therein). Within the Skyrme

model, the nucleons single–particle energies for particles in a magnetic field, can be written

as,

Ep = mp +
p2p,z
2m∗

sp

+
eB

mp
(Np +

1

2
) − spµBpB +

vsp
8

En = mn +
p2n

2m∗
sn

− snµBnB +
vsn
8
, (A2)

where µBp and µBn are the proton and neutron magnetic moments, respectively and Np

indicates the Landau level. The effective masses (m∗

sp and m∗

sn), together with the residual

terms vsp and vsn , depend on the density of the system and explicit expressions are found

in [40, 41]. The structure function gives us information on the accessible phase–space of

protons and neutrons. Even thought we work with neutron matter, the single particle

energies in Eq. (A2) are the ones for proton–neutron matter. We have employed these

energies to give a more general expression for the structure function.

We take both the neutrino and the electron energies as in free space (with a magnetic

field). We are considering massless neutrinos which are left-handed (or polarized). The

energy of the electron is taken as,

Ee = (m2
e + 2eBNe + p2e, z)

1/2. (A3)

Note that due to the particular value for the magnetic moment of the electron, one can

arrange the expression so that the energy depends only on Ne.
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We now use the delta–function representing the momentum conservation in Eq. (A1), to

obtain,

Ssp,sn,Np,Ne
=

∫

∞

−∞

dpn,z δ(Ee + Ep − |pν | − En)fsn(En, µn, T ) (1− fsp(Ep, µp, T )), (A4)

where p p,z = p ν,z + pn,z − p e,z. By assigning impulse values to the lines in the diagram in

Fig. 1, energy–momentum conservation allow us to write,

q0 = |pν | − Ee

qz = p ν,z − p e,z

p p,z = pn,z + qz. (A5)

Using these expressions we replace the energy and the z–momentum component of the

electron by q0 and qz. The remainder integral in Eq. (A4) can be done, by solving the

energy–conservation equation:

Ee + Ep − |pν | − En = 0, (A6)

which in fact, is a polynomial of second order in pn,z. After some algebra, we have,

αn p
2
n,z + βn pn,z + γn = 0, (A7)

where,

αn =
1

2
(

1

m∗
sp

− 1

m∗
sn

)

βn =
qz
m∗

sp

γn = −
p2n,⊥
2m∗

sn

+
q2z

2m∗
sp

−mn +mp − q0 +
eB

mp

(Np +
1

2
)− spµBpB

+ snµBnB +
1

8
(vsp − vsn), (A8)

We recall that pn,⊥ =
√

p2n,x + p2n,y. The energy–momentum of the neutrino and the electron

enter into the structure function through the external quantities q0 and qz. This means that

our expression for the structure function remains valid also for a dense system build up from

protons, neutrons, electrons and neutrinos. Energy conservation can now be rewritten as,

δ(Ep − En − q0) =
1

(β2
n − 4α2

nγ
2
n)

1/2
[δ(pn,z − p+n,z) + δ(pn,z − p−n,z)], (A9)
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where p±n,z are the roots of Eq. (A7). Finally, the expression for the structure function is

given by,

Ssp,sn,Np,Ne
=

1

(β2
n − 4α2

nγ
2
n)

1/2
[fsn(En, µn, T ) (1− fsp(Ep, µp, T ))|p n,z=p+n,z

+ fsn(En, µn, T ) (1− fsp(Ep, µp, T ))|p n,z=p−n,z
]. (A10)

In particular, in this work we consider pure neutron matter. Therefore, in Eqs. (A2,A8,A10),

we have to replace, fsp(Ep, µp, T )) → 1, m∗

sp → mp and vsp → 0, having,

Ssp,sn,Np,Ne
=

1

(β2
n − 4α2

nγ
2
n)

1/2
[fsn(En, µn, T )|p n,z=p+n,z

+ fsn(En, µn, T )|p n,z=p−n,z
]. (A11)

As mentioned in the text, we should recall that the structure function is a function of many

variables. For simplicity, we show explicitly only the discrete variables, but it also depends

on q0, qz, p
2
n,⊥, m

∗

sp, m
∗

sn , µp, µp, T and B.

Another limit is when m∗

sp = m∗

sn = mN . In this case, we have αn = 0 and Eq. (A7)

reduce to,

βn pn,z + γn = 0, (A12)

that is, pn,z = −γn/βn and
1

(β2
n − 4α2

nγ
2
n)

1/2
→ mN

| qz |
(A13)

and the structure function is,

Ssp,sn,Np,Ne
=

mN

| qz |
fsn(En, µn, T ) (1− fsp(Ep, µp, T ))|p n,z=−γn/βn

, (A14)

which is the same expression as in Eq. (E2) in [42].

As a final comment on this Appendix, we should mention that for β2
n − 4α2

nγ
2
n = 0 (or

equivalently for qz = 0 in Eq. (A14)), there is a point for which the structure function is

undefined. This is because at this point the energy has a double pole (p+n,z = p−n,z).
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FIG. 1: The lowest order Feynman diagram for the scattering reaction ν + n → e− + p. The

quantities pi and q denote, respectively, the four–momentum of the involved particles and the

corresponding four–momentum transfer by the interaction.
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FIG. 2: Energy dependence of the structure function Ssp,sn,Np,Ne
for ρ = 0.16 fm−3. In all panels

we consider Np = Ne = 0, we take qz > 0 and qz ∼= q0 − |~pν |(1 − cos(θν)) and we employ

as a representative value for the square of the transverse momentum transfer by the neutron,

pn,⊥ = 170MeV. Also we use |~pν | = 3T , with T = 15MeV. The values for sp, sn are uu, ud, du and

dd. In panels a) and b) we show results for two values of the the magnetic field intensity, where we

have used θν = 0.
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FIG. 3: Dependence of the structure function Ssp,sn,Np,Ne
with Np for two values of the magnetic

field intensity and Ne = 0. We have considered θν = π/2, pn,⊥ = 120MeV, |~pν | = 3T , with

T = 30MeV and sp, sn = ud, while the others conditions are the same as in Fig. 2.
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FIG. 4: The structure function Ssp,sn,Np,Ne
for different temperatures. We have considered θν = 0,

pn,⊥ = 70MeV, |~pν | = 3T , with T = 30MeV and sp, sn = ud, while the others conditions are the

same as in Fig. 2.
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(t)–function as defined in Eq. (27).
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FIG. 6: The absorbtion neutrino mean free path as a function of the density and for three different

values for the neutrino incoming angle, θν . In panel a) we show results for a magnetic field intensity

B = 1017G, while we have B = 1018G for panel b). The momentum of the incoming neutrino is

|~pν | = 3T .
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FIG. 7: The absorbtion neutrino mean free path for three different values for the temperature. As

in Fig. 6, the panel a) (b) is the results for a magnetic field intensity B = 1017 (B = 1018G), using

the same approximation for the momentum of the incoming neutrino.
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FIG. 8: The absorbtion neutrino mean free path as a function of the momentum of the incoming

neutrino |~pν |, for θν = π/2. We have chosen three values for the temperature.
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FIG. 9: The absorbtion neutrino mean free path as a function of the density and for three different

values for the magnetic field intensity. For the neutrino incoming angle we have employed θν = π/2

and we have used |~pν | = 3T . In panel a) the temperature is T= 5MeV, while in panel b) we have

T= 15MeV.

37



16 17 18
0.0

0.5

1.0

1.5 a)

 =0
 =  /2
 =

 
ab

s
[m

]
  

 

16 17 18

-0.2

0.0

0.2

0.4

 
ab

s

b)
 =0
 =  /2
 =

  

 

log
10

(  

FIG. 10: Dependence on the magnetic field intensity. We have fixed the density at ρ = 0.16 fm−3
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incoming neutrino θν, while in panel b) we show ζabs as defined in Eq. (30), for the same set of

angles. Units of the magnetic field intensity B, is given in Gauss.
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FIG. 11: The absorbtion neutrino mean free path as a function of the density and for three different

values for the neutrino incoming angle, θν , B = 1018G and T= 15MeV, where the momentum of

the incoming neutrino is taken as |~pν | = 3T . The continuous lines are the case where the spin

asymmetry A, is arbitrarily taken as zero, while for the dotted lines we employed the not–null

A–value from our EoS.
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FIG. 12: The total neutrino mean free path for three different values for the neutrino incoming

angle, θν and for T= 15MeV. As in Fig. 6, the panel a) (b) is the results for a magnetic field

intensity B = 1017 (B = 1018G), using the same approximation for the momentum of the incoming

neutrino. For convenience, we show also the absorption neutrino mean free path for θν = π/2.
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FIG. 13: The same as in Fig. 12, but for T= 30MeV.
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