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Abstract

A k−coloring of a graph G = (V,E) is a k-partition Π = {S1, . . . , Sk} of V into
independent sets, called colors. A k-coloring is called neighbor-locating if for ev-
ery pair of vertices u, v belonging to the same color Si, the set of colors of the
neighborhood of u is different from the set of colors of the neighborhood of v.
The neighbor-locating chromatic number, χNL(G), is the minimum cardinality of a
neighbor-locating coloring of G.

In this paper, we examine the neighbor-locating chromatic number for various
graph operations: the join, the disjoint union and Cartesian product. We also
characterize all connected graphs of order n ≥ 3 with neighbor-locating chromatic
number equal either to n or to n−1 and determine the neighbor-locating chromatic
number of split graphs.

Keywords: Coloring, location, neighbor-location, complete multipartite graph,
join graph, split graph, disjoint union, Cartesian product.



1 Introduction

Domination and location in graphs are two important concepts that have re-
ceived a lot of attention, usually separately, but sometimes also both together.
There are mainly two types of location, the metric location and the neighbor
location. In this work, we are interested in the neighbor location, and we study
this concept in the particular context of a special kind of vertex partitions,
called colorings.

In [6], G. Chartrand, E. Salehi and P. Zhang, brought the concept of
metric-location to the ambit of vertex partitions. Metric-location and domi-
nation, in the context of vertex partitions, is studied in [7]. In [3], there were
introduced the so-called locating colorings considering partitions formed by
independents sets.

Neighbor location in sets was introduced by P. Slater in [8]. In [2], bounds
of this parameter are given. In [1], merging the concepts of papers [3,8], there
were introduced the so-called neighbor-locating colorings and the neighbor-
locating chromatic number, studying this parameter in some basic families of
graphs.

In this work, we examine the neighbor-locating chromatic number for vari-
ous graph operations. In Section 2, we study the join graph and all connected
graphs with order n and neighbor-locating chromatic number equal to n are
characterized.

The neighbor-locating chromatic number of all connected split graphs is
determined in Section 3. The disjoint union and the Cartesian product are
studied in Section 4. Finally, in Section 5, all connected graphs of order n ≥ 3
with neighbor-locating chromatic number n− 1 are given.

We introduce now some basic terminology. The distance between vertices
v, w ∈ V of a graph G = (V,E) is denoted by d(v, w). The diameter of G is
diam(G) = max{d(v, w) : v, w ∈ V }. The distance d(v, S) between a vertex
v ∈ V and a set of vertices S ⊆ V is d(v, S) = min{d(v, w) : w ∈ S}. Let
Π = {S1, . . . , Sk} be a partition of V . If all the parts of Π are independent
sets, then we say that Π is a coloring of G and each part is a color.

A coloring Π = {S1, . . . , Sk} is called a (metric-)locating coloring, an ML-
coloring for short, if for every i ∈ {1, . . . , k} and for every pair of distinct
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vertices u, v ∈ Si, there exists j ∈ {1, . . . , k} such that d(u, Sj) 6= d(v, Sj).
The (metric-)locating-chromatic number χ

L
(G) is the minimum cardinality of

an ML-coloring of G.

A coloring Π = {S1, . . . , Sk} is called a neighbor-locating coloring, an NL-
coloring for short, if for every i ∈ {1, . . . , k} and for every pair of not iso-
lated distinct vertices u, v ∈ Si, there exists j ∈ {1, . . . , k} such that either
d(u, Sj) = 1 and d(v, Sj) 6= 1 or d(u, Sj) 6= 1 and d(v, Sj) = 1 and there
may be at most one isolated vertex for each color. The neighbor-locating chro-
matic number χ

NL
(G) is the minimum cardinality of an NL-coloring of G. For

undefined basic concepts of graph theory we refer the reader to the text [5].

2 Join graphs

A graph G = (V,E) is said to be a join graph if it is the join G1 ∨ G2

of two graphs G1 = (V1, E1) and G2 = (V2, E2), i.e., if V = V1 ∪ V2 and
E = E1 ∪ E2 ∪ E ′, where E ′ = {v1v2 : v1 ∈ V1, v2 ∈ V2}.

As a straightforward consequence of this definition, the following properties
hold.

Proposition 2.1 Let G1, G2 and G3 be three graphs.

(i) G1 ∨G2 is a connected graph of diameter at most 2.

(ii) G1 ∨ (G2 ∨G3) ∼= (G1 ∨G2) ∨G3.

Theorem 2.2 Let G and H be two graphs. Then,

χ
NL

(G ∨H) = χ
NL

(G) + χ
NL

(H).

Let r, n1, . . . , nr, n integers such that 2 ≤ r, 1 ≤ n1 ≤ . . . ≤ nr and n =
n1 + . . .+ nr. Then, the complete r-partite graph Kn1,...,nr is the graph Kn1 ∨
. . .∨Knr , where Kni

denotes the empty graph of order ni, i.e., the complement
of the complete graph of order ni. Notice that complete graphs, complete
bipartite graphs and stars are some examples of complete multipartite graphs.

Theorem 2.3 Let G be a connected graph of order n ≥ 3. Then, χ
NL

(G) = n
if and only if G is a complete multipartite graph.

3 Split graphs

A split graph is a graph such that the vertices can be partitioned into a clique
and an independent set. When every vertex in the independent set is adjacent



to every vertex in the clique it is said to be a complete split graph. Observe
that complete split graphs are examples of complete multipartite graphs that
we just studied in the previous section. We have taken a step further and we
have studied the neighbor-locating chromatic number in general split graphs.

For any connected split graph G = (V,E) we can assume that there are
two subsets U and W of V in such a way that (i) V = U ∪W , U ∩W = ∅; (ii)
G[U ] is a complete graph; (iii) G[W ] is an empty graph; (iv) W is a maximal
independent set, i.e., for each vertex u ∈ U there exists a vertex w ∈ W such
that uw ∈ E.

For every X ⊆ U , we consider the set P(X) = {w ∈ W : N(w) = X} and
we denote ρ(G) = max{|X|+ |P(X)| : X ⊆ U}. Observe that ρ(G) ≥ |U |.
Theorem 3.1 If G = (V,E) is a connected split graph, then

χNL(G) =

 ρ(G), if P(X) = ∅ for all X ⊆ U s.t. |X| = |U | − 1

max(|U |+ 1, ρ(G)), if P(X) 6= ∅ for some X ⊆ U s.t. |X| = |U | − 1

Remark 3.2 The value of the neighbor-locating chromatic number obtained
for general split graphs fits with some known results, such as χ

NL
(S1,n−1) = n

or χ
NL

(G) = n, if G is a complete split graph.

4 Disjoint union and Cartesian product

The disjoint union, G+H, of graphs G and H such that V (G)∩ V (H) = ∅ is
a graph where the vertex set is V (G)∪V (H) and the edge set is E(G)∪E(H).
In this section, we study the relationship between χ

NL
(G + H), χ

NL
(G) and

χ
NL

(H).

Theorem 4.1 Let G,H be two graphs. If χ
NL

(G) = k and χ
NL

(H) = h, with
k ≥ h, then k ≤ χ

NL
(G+H) ≤ k + h.

Theorem 4.2 Let k, h integers numbers where k ≥ h. Then, for every l ∈
[k, k+h], there exist graphs G and H such that χ

NL
(G) = k, χ

NL
(H) = h and

χ
NL

(G+H) = l.

Theorem 4.3 Let G,H be two graphs and let χ
NL

(G) = k, χ
NL

(H) = h. If
H has no isolated vertices, then k ≤ χ

NL
(G+H) ≤ k + h− 1.

Theorem 4.4 Let G be a graph and let χ
NL

(G) = k. If G contains a universal
vertex, then χ

NL
(G+G) ≤ k + 1.

The Cartesian product, G�H, of graphs G and H is a graph such that
the vertex set is V (G)×V (H) and two vertices (u, u′) and (v, v′) are adjacent



in G�H if and only if either u = v and u′ is adjacent to v′ in H, or u′ =
v′ and u is adjacent to v in G. Now, we study the relationship between
χ

NL
(G�H), χ

NL
(G) and χ

NL
(H).

Theorem 4.5 Let G, H be connected graphs, then

χ
NL

(G�H) ≤ χ
NL

(G)χ
NL

(H).

Note that for G ∼= H ∼= K2 the above inequality is attained.

Theorem 4.6 If G is a graph with a universal vertex and H is a connected
graph, then χ

NL
(G�H) ≤ χ

NL
(G) + |V (H)| − 1.

5 Extremal graphs: case χ
NL

(G) = n− 1

In Section 2, we have characterized all the connected graphs with neighbor-
locating chromatic number equal to the order of the graph. Now, we determine
the connected graphs of order n and neighbor-locating chromatic number equal
to n− 1.

• Let H denote the set of all connected graphs G or order n ≥ 3 such that
H ∼= G− v is a complete multipartite graph for some vertex v of G.

• Let V1, V2, ..., Vk, k ≥ 2, the partite sets of H, where |Vi| = ni and
ai = |N(v) ∩ Vi| (1 ≤ i ≤ k).

• Let F denote the set of all graphs G ∈ H that satisfy al least one of the
following properties:

(1) For each integer i ∈ {1, . . . , k}, we have ai ∈ {0, ni} and there are at least
two distinct integers j, j′ ∈ {1, . . . , k} for which aj = aj′ = 0.

(2) There is exactly one integer j ∈ {1, . . . , k} such that 0 < aj < nj, and
aj = nj − 1 for this integer j.

• Let G denote the set of all graphs G = Gn ∨ 2K2 where Gn is a complete
multipartite graph Gn of order n− 4 ≥ 1.

Theorem 5.1 Let G be a connected graph of order n ≥ 5. Then, χ
NL

(G) =
n− 1 if and only if G ∈ F ∪ G.

The proof of this Theorem is based on the following lemmas and previous
results.

Theorem 5.2 ([4]) Let G be a connected graph of order n ≥ 4. Then,
χ

L
(G) = n− 1 if and only if G ∈ F ∪ G.

If a graph G1 is an induced subgraph of a graph G2, we write G1 ≺ G2.



Lemma 5.3 Let G be a connected graph of order n ≥ 5. If χ
NL

(G) = n − 1
and 2K2 ≺ G, then G ∈ G.

Lemma 5.4 ([4]) Let G be a connected graph of order n ≥ 4. If χ
L
(G) =

n− 1 and 2K2 6≺ G, then G ∈ F .

Lemma 5.5 Let G be a graph of order n ≥ 5 and diameter 3 such that 2K2 6≺
G. If χ

NL
(G) = n− 1, then χ

L
(G) = n− 1.

Lemma 5.6 Let G be a connected graph of order n ≥ 3.

(i) If diam(G) ≤ 2, then χ
L
(G) = χ

NL
(G).

(ii) If diam(G) ≥ 4, then χ
NL

(G) ≤ n− 2.
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