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Abstract: In the first part of this paper, we investigate the possible existence of a structured
hadron-quark mixed phase in the cores of neutron stars. This phase, referred to as the hadron-quark
pasta phase, consists of spherical blob, rod, and slab rare phase geometries. Particular emphasis is
given to modeling the size of this phase in rotating neutron stars. We use the relativistic mean-field
theory to model hadronic matter and the non-local three-flavor Nambu–Jona-Lasinio model to
describe quark matter. Based on these models, the hadron-quark pasta phase exists only in very
massive neutron stars, whose rotational frequencies are less than around 300 Hz. All other stars are
not dense enough to trigger quark deconfinement in their cores. Part two of the paper deals with the
quark-hadron composition of hot (proto) neutron star matter. To this end we use a local three-flavor
Polyakov–Nambu–Jona-Lasinio model which includes the ’t Hooft (quark flavor mixing) term. It is
found that this term leads to non-negligible changes in the particle composition of (proto) neutron
stars made of hadron-quark matter.

Keywords: quark matter; hadronic matter; quark deconfinement; neutron star matter; nuclear
equation of state; phase transition

1. Introduction

Neutron stars are extremely compact objects. They are typically about 20 to 30 km across and
spin rapidly, often making many hundreds of rotations per second (pulsar PSR J1748-2446ad is the
fastest spinning neutron star known to date, rotating at 716 Hz.) Depending on mass and rotational
frequency, gravity compresses the matter in the core regions of neutron stars to densities that are
several times higher than the density of atomic nuclei. At such enormous densities, atomic nuclei are
squeezed so tightly together that new types of particles and novel states of matter may be created.
These include the creation of hyperons and delta isobars and the formation of a mixed phase of
hadrons and quarks deep in the central regions of neutron stars. As shown by Glendenning [1,2],
the quark-hadro mixed phase region could segregate phases by net charge to minimize the total
energy of the system, leading to the formation of a hadron-quark Coulomb lattice. Since this lattice is
qualitatively similar to the hypothesized “nuclear pasta” structures in the crustal regions of neutron
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stars [1–5], it is referred to as hadron-quark pasta phase.1 All these possibilities make neutron stars
and the events creating them (e.g., GW 170817) superb astrophysical laboratories for a wide range of
physical studies. With observational data accumulating rapidly from both orbiting (HST, ATHENA,
NICER) and ground based (skA, FAST, LIGO, VIRGO) observatories there has never been a more
exciting time than today to study neutron stars.

2. Hadronic Composition of Neutron Star Matter at Finite Temperature

A neutron star is born as a result of the gravitational collapse of the iron core of a massive evolved
progenitor star (M∼8–25 M�) in a type-II supernova explosion. The iron core of such a star collapses
when its mass reaches the Chandrasekhar limit, which depends on the mass of the progenitor star. Due
to the Fermi pressure of the nucleons, the collapse stops when nuclear matter density is reached and
the core bounces back. Shortly after core bounce (some 10 ms) a hot, lepton rich neutron star, called
a proto-neutron star, is formed [8–13]. This star consists of a shocked envelope with an entropy per
baryon of s∼4–10 (in units of the Boltzmann constant) and an unshocked core with s∼1. The envelope
and the core contain nearly the same mass of about 0.6–0.8 M�. During the so-called Kelvin-Helmholtz
cooling phase the lepton number decreases in the proton-neutron star due to the loss of neutrinos and
the proto-neutron star evolves in about 10 to 30 s to a hot, lepton poor neutron star with an entropy
per baryon of s∼1–2. After several minutes, this hot neutron star cools to a cold neutron star with
temperatures T < 1 MeV, which then continues to slowly cool via neutrino and photon emission until
its thermal radiation becomes too weak to be detectable with X-ray telescopes, after about 107 years.

To study hot hadronic matter at conditions that exist in the cores of (proto) neutron stars, we use
the relativistic nuclear mean-field (RMF) approximation and choose the GM1L, HV, and DD2 nuclear
parametrizations listed in Table 1 that satisfy current constraints from studies of symmetric nuclear
matter and from observations of neutron stars. The GM1L parametrization is based on the standard
RMF model and was proposed in Refs. [1,14] but has been constructed to satisfy recent constraints from
symmetric nuclear matter at saturation density while simultaneously being able to satisfy the 2.01 M�
mass constraint set by PSR J0348+0432 with the inclusion of hyperons in SU(3) flavor symmetry.
The DD2 parametrization is also based on the standard RMF approach but utilizes a density dependent
meson-baryon coupling scheme, with the parameters of the density dependence set such that the
model reproduces the properties of finite nuclei [15–18]. The lagrangian of the density-dependent
relativistic mean-field model is given by [17–20]

L = ∑B ψ̄B
[
γµ[i∂µ − gωB(n)ωµ − gρB(n)τ · ρµ]− [mB − gσB(n)σ]

]
ψB + 1

2 (∂µσ∂µσ−m2
σσ2)

− 1
3 b̃σmN [gσN(n)σ]3 − 1

4 c̃σ[gσN(n)σ]4 − 1
4 ωµνωµν + 1

2 m2
ωωµωµ + 1

2 m2
ρρ µ · ρ µ − 1

4 ρ µν · ρ µν ,
(1)

where gσB(n), gωB(n) and gρB(n) are density dependent meson-baryon coupling constants and
n = ∑B=N,Y,∆ nB is the total baryon number density. In this work we consider all members of the
spin-1/2 baryon octet, which include nucleons N = (n, p) and hyperons Y = (Λ, Σ−, Σ0, Σ+, Ξ−, Ξ0),
as well as the spin 3/2 delta isobar quartet (∆−, ∆0, ∆+, ∆++). The density dependent coupling
constants are given by [19]

giB(n) = giB(n0) ai
1 + bi(

n
n0

+ di)
2

1 + ci(
n
n0

+ di)2 , (2)

for i = σ, ω, and

gρB(n) = gρB(n0) exp
[
−aρ

(
n
n0
− 1
) ]

(3)

1 This phase has nothing to do with the crystalline quark matter phases that have been introduced in the context of discussing
color superconducting quark matter phases [6,7].
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for the ρ meson. This approach is parametrized to reproduce the properties of symmetric nuclear matter
at saturation density n0. The parametrizations used in this work (GM1L, HV, and DD2) are shown in
Table 1. The properties listed in this table are the energy per nucleon (E0), nuclear incompressibility
(K0), isospin asymmetry energy (J), and effective nucleon mass (m∗/mN). The isovector meson-baryon
coupling constant is treated density-dependent. Its numerical value has been fit to the slope of the
asymmetry energy (L0) at n0.

Table 1. Properties of symmetric nuclear matter at saturation density for the hadronic parametrizations
GM1L, DD2, and HV considered in this work.

Saturation Property GM1L [1,14] DD2 [21] HV [22]

n0 (fm−3) 0.153 0.149 0.145
E0 (MeV) −16.30 −16.02 −15.98
K0 (MeV) 300.0 242.7 285
m∗/mN 0.70 0.56 0.77
J (MeV) 32.5 32.8 36.8

L0 (MeV) 55.0 55.3 –

The parameters ai, bi, ci, di, and aρ in Equations (2) and (3) are fixed by the binding energies,
charge and diffraction radii, spin-orbit splittings, and the neutron skin thickness of finite nuclei.
The density dependence of the meson-baryon couplings of the DD2 parametrization eliminates the need
for non-linear self-interactions of the σ-meson field. The non-linear terms [23,24] of the σ-meson field
in Equation (1) therefore only contribute to the GM1L and HV models. The meson–hyperon coupling
constants have been determined following the Nijmegen extended soft core (ESC08) model [25].
The relative isovector meson-hyperon coupling constants were scaled with the hyperon isospin.
For the ∆-isobar we used xσ∆ = xω∆ = 1.1 and xρ∆ = 1.0, where xi∆ = gi∆/giN (for details, see
Ref. [14]).

The meson mean-field equations following from Equation (1) are given by

m2
σσ̄ = ∑

B
gσB(n)ns

B − b̃σ mN gσN(n)(gσN(n)σ̄)2 − c̃σ gσN(n) (gσN(n)σ̄)3 , (4)

m2
ωω̄ = ∑

B
gωB(n)nB , (5)

m2
ρρ̄ = ∑

B
gρB(n)I3BnB , (6)

where I3B is the 3-component of isospin and ns
B and nB are the scalar and particle number densities of

each baryon B, given by

ns
B = γB

∫ d3 p
(2π)3 [ fB−(p)− fB+(p)]

m∗B
E∗B

, (7)

nB = γB

∫ d3 p
(2π)3 [ fB−(p)− fB+(p)] . (8)

The quantity fB∓ denotes the Fermi-Dirac distribution function, and E∗B stands for the effective
single-baryon energy,

fB∓(p) =
1

exp
[

E∗B(p)∓µ∗B
T

]
+ 1

, E∗B(p) =
√

p2 + m∗2B . (9)
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The quantity γB = 2JB + 1 accounts for the spin degeneracy, and m∗B = mB − gσB(n)σ̄ denotes
the effective baryon mass. The effective baryon chemical potential, µ∗B, is defined as

µ∗B = µB − gωB(n)ω̄− gρB(n)ρ̄I3B − R̃ , (10)

where R̃ is the so-called rearrangement term given by

R̃ = ∑
B

(
∂gωB(n)

∂n
nBω̄ +

∂gρB(n)
∂n

I3BnBρ̄− ∂gσB(n)
∂n

ns
Bσ̄

)
, (11)

which is important for achieving thermodynamic consistency. The total baryonic pressure of the matter
follows from

P = ∑
B

γB
3

∫ d3 p
(2π)3

p2

E∗B
[ fB−(p) + fB+(p)]− 1

2
m2

σσ̄2 +
1
2

m2
ωω̄2 +

1
2

m2
ρρ̄2

− 1
3

b̃σmN(gσN(n)σ̄)3 − 1
4

c̃σ(gσN(n)σ̄)4 + nR̃ , (12)

while the energy density of the system follows from the standard Gibbs relation ε(P, T, n) = −P +

TS + ∑B µBnB.
To complete the description of the matter in the cores of (proto) neutron stars, leptons (L) need

to be included in the treatment. Leptons can be treated as free, relativistic Fermions whose total
thermodynamic potential is given by (γL = 2)

ΩL = −∑
L

γL
3

∫ d3 p
(2π)3

p2

EL
[ fL−(p) + fL+(p)] , (13)

with

fL∓(p) =
1

exp
[

EL(p)∓µL
T

]
+ 1

, EL(p) =
√

p2 + m2
L . (14)

The sum in Equation (13) is over electrons and muons (with masses mL) as well as over massless
neutrinos, νe. Neutrinos do not contribute to cold neutron stars matter, but are present in the cores of
newly formed proto-neutron stars.

3. Electric Charge Neutrality, Chemical Equilibrium and Conserved Charges

The composition of the matter in (proto-) neutron stars is constrained by the conditions of electric
charge neutrality, chemical equilibrium, and baryon number conservation. Electric charge neutrality
and baryon number conservation leads to

∑
B

qB nB + ∑
L

qL nL = 0 and ∑
B

nB − n = 0 , (15)

where qB and qL denote the electric charges of baryons and leptons, respectively, and nB and nL are
the respective number densities of these particles. The condition of chemical equilibrium among the
different particle species present at a given density reads

µB = µn + qB(µe − µνe) , (16)

where µn, µe, and µνe are the chemical potentials of neutrons, electrons, and neutrinos, respectively.
The lepton chemical potentials obey

µe = µµ + µνe + µν̄µ . (17)
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Neutrinos are trapped in the core during the very early stages in the life of a neutron star. Accepted
lepton fractions at that stage of stellar evolution are [8]

YLe =
ne + nνe

n
= ξ ' 0.4 , (18)

YLµ =
nµ + nνµ

n
= 0 . (19)

During this stage the system is characterized by three independent chemical potentials, µn,
µe, and µνe , which, together with the hadronic field equations and the conditions of electric charge
neutrality and baryon number conservation, determine the composition of hot (proto-) neutron star
matter. The condition YLµ = 0 has to be imposed in addition since no muons are present when neutrinos
are trapped. When a proto-neutron star cools down, the matter in the core becomes transparent to
neutrinos quickly, leading to µνe = µν̄µ = 0 for cold neutron stars. In this case, the number of
independent chemical potentials reduces from three to two (µn and µe). Figure 1 shows the equation of
state (EoS) of neutron star matter at three different temperatures. The matter is composed of neutrons,
protons, hyperons, delta isobars, and leptons in chemical equilibrium with each other. Since the number
of hyperons and delta isobars in the matter increases drastically with temperature, the pressure at a
given density drops for increasing temperatures.

Figure 1. Pressure versus energy density of hot neutron star matter computed for parameter set HV.

In Figures 2 and 3 we show the particle compositions of neutron stars at zero as well as
finite temperature. As can be seen, the complexity of the compositions intensifies quickly with
increasing temperature, lepton content, and assumptions about the neutrino population.

Figure 2. Particle composition of neutron star matter at 0 MeV (left) and 25 MeV (right), computed for
parameter set GM1L. Neutrinos are not included.
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Figure 3. Particle composition of neutron star matter at 50 MeV with (left) and without (right) neutrinos,
computed for parameter set GM1L.

4. Quark Matter Modeled with the Non-Local NJL Model

A model widely used to describe the properties of deconfined 3-flavor quark matter is the
Nambu–Jona-Lasinio model [26]. In the following, we present a non-local extension of this model
(denoted n3NJL). The effective action of this model reads (for details, see Refs. [27,28])

SE =
∫

d4x
{

ψ̄(x) [−i∂/ + m̂]ψ(x)− GS
2
[
jSa (x) jS

a (x) + jP
a (x) jP

a (x)
]

−H
4 Tabc

[
jSa (x)jS

b (x)jS
c (x)− 3 jSa (x)jP

b (x)jP
c (x)

]
−GV

2

[
jµ
V(x)jV,µ(x)

]}
,

(20)

where ψ ≡ (u, d, s)T and m̂ denotes the current quark mass matrix give by m̂ = diag(mu, md, ms).
The currents jS,P

a (x) and jµ
V(x) depend on form factors which describe non-local interactions among

the quarks. The quantity Tabc in the ’t Hooft term accounts for quark-flavor mixing. The current
quark mass m̄ of up and down quarks and the coupling constants GS and H in Equation (20) are fitted
to the pion decay constant, fπ , and meson masses mπ , mK, mη′ [29,30]. This leads to m̄ = 6.2 MeV,
Λ = 706.0 MeV, GSΛ2 = 15.04, and HΛ5 = −337.71. The current mass of the strange quark is treated
as a free parameter. Its value is set to ms = 140.7 MeV. It is customary to express the vector interaction,
GV , in terms of the strong coupling constant, GS, according to ξV ≡ GV/GS. The value of ξV is then
typically varied from 0 to around 0.09.

The expression of the thermodynamic potential that follows from SE of Equation (20) is given,
for the mean-field approximation, by

Ω = − 3
π3 ∑ f=u,d,s

∫ ∞
0 dp0

∫ ∞
0 dp ln

{[
ω̂2

f + M2
f (ω

2
f )
]

1
ω2

f +m2
f

}
− 3

π2 ∑ f=u,d,s
∫√µ2

f−m2
f

0 dp p2×

[(
µ f − E f

)
θ
(

µ f −m f

)]
− 1

2

[
∑ f=u,d,s

(
σ̄f S̄ f +

GS
2 S̄2

f

)
+ H

2 S̄u S̄d S̄s

]
−∑ f=u,d,s

ω2
f

4GV
.

(21)

The quantities σ̄f , ω f , and S̄ f denote the scalar, vector, and auxiliary mean-fields of quarks,
respectively. The quantity E f denotes the energy-momentum relation of free quarks given by

E f =
√

p2 + m2
f . The symbol ω2

f stands for ω2
f = (p0 + iµ f )

2 + p2. The relation of the

momentum-dependent quark masses reads M f (ω
2
f ) = m f + σ̄f g(ω2

f ). The quantities g(ω2
f ) =

exp(−ω2
f /Λ2) are Gaussian form factors, which describe the nonlocal nature of the interactions

among quarks [28]. The quantities S̄ f denote auxiliary mean fields [31]. The scalar and vector quark
mean-fields are obtained by minimizing the thermodynamic potential, ∂Ω/∂σ̄f = 0 and ∂Ω/∂ω f = 0.
The number densities of quarks are obtained from the thermodynamic potential as n f = ∂Ω/∂µ f .
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To determine the equation of state of the system is given in terms of the quark mean-fields σ̄f , ω̄ f
and the neutron and electron chemical potentials µn and µe. The pressure pQ and the energy density
εQ of the system at zero temperature are given by

PQ = Ω0 −Ω , (22)

and
εQ = −PQ + ∑

f=u,d,s
n f µ f + ∑

λ=e− ,µ−
nλµλ , (23)

where Ω0 is chosen such that PQ vanishes at T = µ = 0 [27,28].

5. Pasta Structure of the Hadron-Quark Phase

In this section, we provide a brief discussion of the mathematical treatment of the mixed phase
region of hadrons and quarks in neutron stars. The starting point is the Gibbs condition for phase
equilibrium between hadronic (H) matter and quark (Q) matter [1,2],

PH(µn, µe, {φH}) = PQ(µn, µe, {φQ}) , (24)

where PH and PQ denote the pressures of hadronic matter and quark matter, respectively [1,2].
The quantities {φH} and {φQ} in Equation (24) collectively denote the field variables of hadronic (σ̄,
ω̄, ρ̄) and quark (σ̄f , ω̄ f , S̄ f ) matter as well as the Fermi momenta (kB, kλ) that characterize a solution
of the equations of hadronic matter described in Section 2. The quantity χ ≡ VQ/V describes the
volume proportion of quark matter, VQ, in the unknown volume V. χ, therefore, varies between 0 and
1, where 0 means that 0% quark matter is present and 1 means that the matter consist of 100% quark
matter. Equation (24) is solved subject to the conditions of global baryon number conservation and
global electric charge conservation. The global conservation of baryon charge is expressed as [1,2]

nb = χ nQ(µn, µe, {φQ}) + (1− χ) nH(µn, µe, {φ}) , (25)

where nQ and nH are the baryon number densities of the quark and hadronic phases, respectively.
Global electric charge neutrality is given by [1,2]

0 = χ nQ(µn, µe, {φQ}) + (1− χ) nH(µn, µe, {φ}) , (26)

where qQ and qH denoting the electric charge densities of the quark phase and hadronic phase, respectively.
As demonstrated by Glendenning [1,2], a mixed phase of hadron-quark matter may arrange

itself in such a way that the total energy of the system is minimized. For matter described by global
electric charge neutrality, this is the same as minimizing the contributions to the total energy due to
phase segregation, which includes the surface and Coulomb energy contributions. Mathematically,
the relations for the Coulomb (εC) and the surface (εS) energy densities are given by [1,2,32]

EC = 2πe2 [qH(χ)− qQ(χ)
]2 r2x fD(x) , (27)

ES = Dxα(χ)/r , (28)

where qH denotes the charge density of the hadronic phase and qQ stands for the charge density of the
quark phase. The symbol r is the radius of the rare phase structures (i.e., quark blobs embedded in
hadronic matter at the onset of phase equilibrium). The surface tension between hadronic matter and
quark matter is denoted by α(χ) where 0 ≤ χ ≤ 1. The quantity fD(x) in Equation (27) is defined as

fD(x) =
1

D + 2

[
1

D− 2
(2− D x1−2/D) + x

]
, (29)
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where D is the dimensionality of the lattice and x ≡ min(χ, 1− χ). The phase rearrangements will
result in the formation of geometrical structures of the rare phase distributed in a lattice that is
immersed in the dominant phase. For the sake of simplicity, the rare phase structures are approximated
by spherical blobs, rods, and slabs. The spherical blobs populate sites in a three dimensional (D = 3)
body centered cubic (BCC) lattice, the rods in a two dimensional (D = 2) triangular lattice, and the
slabs in a simple one dimensional (D = 1) lattice. At a volume ratio of χ = 0.5 both hadronic and
quark matter exist as slabs in the same proportion, and at χ > 0.5 the hadronic phase becomes the
rare phase with its geometry evolving in reverse order (from slabs to rods to blobs) with increasing
density [1,2,32].

The determination of the surface tension, α, of the quark-hadro interface is hampered by the fact
that a single theory that can accurately describe both hadronic matter and quark matter does not exist.
We therefore make use of an approximation proposed by Gibbs where the surface tension is taken to
be proportional to the difference in the energy densities of the interacting phases,

α(χ) = ηL
[
EQ(χ)− EH(χ)

]
. (30)

The quantity L is proportional to the surface thickness which should be on the order of the range
of the strong interaction (1 fm). The quantity η denotes a proportionality constant. For the results
shown in this work we maintained the energy density proportionality but set the parameter η = 0.08
so that the surface tension falls below 70 MeV fm−2, which is a reasonable upper limit for the existence
of a hadron-quark mixed phase [33]. The surface tension as a function of χ is given in Figure 4 for the
nuclear GM1L parametrization introduced in Section 2.

0.0 0.2 0.4 0.6 0.8
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M
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V

]

Figure 4. Surface tension α in the hadron-quark mixed phase for the GM1L parameter set [14].

The size of the rare phase structures is given by the radius (r) and is determined by minimizing
the sum of the Coulomb and surface energies, ∂(EC + ES)/∂r, and solving for r

r(χ) =

(
Dα(χ)

4πe2 fD(χ)
[
qH(χ)− qQ(χ)

]2
) 1

3

. (31)

Rare phase structures are centered in the primitive cell of the lattice, taken to be a Wigner-Seitz
cell of the same geometry as the rare phase structure. The Wigner–Seitz cell radius R is set so that the
primitive cell is charge neutral, i.e., R(χ) = rx−1/D.

In Figure 5 we show r and R as a function of the quark fraction in the mixed phase. Both r and R
increase with an increase in the baryonic degrees of freedom, particularly when χ <∼ 0.5 and the vector
interaction is included.
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Figure 5. Radius of the rare phase structure, r, and of the Wigner-Seitz cell, R, in the quark-hadro mixed
phase computed for the DD2 parametrization [14]. A similar figure for the GM1L parametrization can
be found in Ref. [14].

The transport properties of a hypothetical quark-hadro Coulomb lattice in the core of a neutron
star and the neutrino emissivity in this phase have been investigated in Refs. [32,34–36].

6. Hadron-Quark Lattices in the Cores of Rotating Neutron Stars

In this section we use the equations of state discussed in Sections 2 and 4 to explore the possible
existence of hadron-quark lattices in the cores of (cold) rotating neutron stars. Depending on rotational
frequency, such stars are highly deformed and experience significant density changes (up to 50%) in
their cores which drastically alters their core compositions. The line element that is used to model
rotating neutron stars has the form [37]

ds2 = −e2νdt2 + e2ψ(dφ−ωdt)2 + e2µdθ2 + e2λdr2 , (32)

where ν, ψ, µ and λ denote metric functions and ω stand for the angular velocity of the local inertial
frames. Each quantity depends on the radial coordinate r, the polar angle θ, and on the rotating star’s
angular velocity Ω. The metric functions and the frame dragging frequency are to be computed from
Einstein’s field equation,

Rκσ − 1
2

Rgκσ = 8πTκσ , (33)

where Tκσ = Tκσ(ε, P(ε)) denotes the energy momentum tensor of the stellar matter, whose equation
of state is given by P(ε). The other quantities in Equation (33) are the Ricci tensor Rκσ, the curvature
scalar R, and the metric tensor, gκσ. A strict limit on rapid rotation is given by the Kepler frequency,
Ω K, at which mass shedding from the equator terminates stable rotation. This frequency is of great
theoretical value because it sets an absolute limit on rapid rotation, but it may not be accessible to
neutron stars as other instabilities set tighter constraints on stable rotation [38,39]. As a case in point,
even the most rapidly spinning neutron star observed to date, PSR J1748-244ad, spinning at 716 Hz
(i.e., 1.4 milliseconds) [40], rotates only at a fraction of the Kepler frequency.

The general relativistic expression for the Kepler frequency is obtained by evaluating δ
∫

ds2 = 0
in the star’s equatorial plane, which leads to [37,38]

Ω K = ω +
ω,r

2ψ,r
+ eν−ψ

√
ν,r

ψ,r
+
( ω,r

2ψ,r
eψ−ν

)2
, (34)

where r ≡ ∂/∂r. This equation is to be computed self-consistently in combination with Einstein’s field
equation at the equator of a rotating neutron star.

In Figure 6 we show the gravitational mass versus central energy density relationships for both
neutron stars spinning at their Kepler frequencies, as well as non-rotating neutron stars. As one moves
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along either of these two lines, the baryon mass MB of the stars changes, increasing with larger central
density. Isolated neutron stars spinning down due to the loss of energy would follow a path of constant
baryon mass, from the Kepler frequency curve down to the non-rotating one. Four such evolutionary
paths (marked with arrows) are depicted in Figure 6.

1 2 3 4 5 6 7 8
 εc /  εo

0.5

1

1.5

2

2.5
M

 / 
M

su
n

MB = 1.8 Msun
MB = 2.0 Msun
MB = 2.284 Msun
MB = 2.20 Msun
 Ω =  ΩK
 Ω = 0

Quark Rods Quark SlabsQuark Blobs

Figure 6. (Color online) Gravitational mass as a function of central stellar density (in units of the energy
density at nuclear saturation, ε0 = 140 MeV/fm3) of non-rotating and rotating neutron stars for nuclear
equation of state (EoS) GM1L. Shown are several stellar paths that would be followed by neutron stars
with a constant baryon mass, MB, as they spin down from their respective Kepler frequencies (curve
labeled Ω = Ω K to zero frequency (curve labeled Ω = 0).

One sees that neutron stars with baryon masses less than 2.20 M� do not become dense enough
during spin down to produce hadron-quark phases in their cores. This is only possible for the most
massive neutron stars of our study, which contains a Coulomb lattice made of quark blobs and quark
rods if the star’s rotational frequency has dropped to 300 Hz (25% of Ω K). Other quark phases
(e.g., quark slabs) would not be present in stable neutron stars.

7. Quark Matter at Finite Temperature Modeled with the Local PNJL Model

The non-local 3-flavor NJL model has been introduced in Section 4. This model has then be used,
together with the model for hadronic matter introduced in Section 2, to determine the possible possible
pasta structure of hadrons and quarks in the hadron-quark mixed phase of neutron star matter. In this
section, we introduce a local version of the Polyakov–Nambu–Jona-Lasinio (PNJL) model which will
be used to study quark matter at zero as well as at finite temperatures [13,41–43]. The Polyakov loop
effective potential, which relates quark confinement to color confinement, is included, so that from
here on we refer to this model as PNJL. The general expression for the mean-field thermodynamic
potential of the model can be written as

Ω = Ωreg + Ωfree + Ω0 + Ωv + U (Φ, T) , (35)

where Ω0 is defined by the condition that Ω vanishes at zero temperature and chemical potential,
T = µ = 0. Allowing for three independent chemical potentials µ f for the three quark flavors
f = (u, d, s), the SU(3) regularized thermodynamic potential in the presence of the quark condensates
σf =

〈
f̄ f
〉

reads

Ωreg = −2Nc ∑
f

∫ Λ

0

d3 p

(2π)3 E f + Gs(σ
2
u + σ2

d + σ2
s ) + 4Hσuσdσs , (36)
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and the corresponding free term is given by

Ωfree = −2T ∑
f ,c

∫ ∞

0

d3 p

(2π)3

{
ln
(

1 + e−
E f −µ f +icφ3

T

)
+ ln

(
1 + e−

E f +µ f −icφ3
T

)}
, (37)

where Nc = 3 is the number of quark colors and E f =
√

p2 + M2
f is the energy of a quark of flavor f .

The color background fields due the coupling to the Polyakov loop are φc = cφ3, i.e., φr = −φg = φ3

and φb = 0. The sums over the flavor and color indices are over f = (u, d, s) and c = (r, g, b),
respectively. The constituent quark masses M f are given by

M f = m f − 2Gsσf − 2Hσjσk , (38)

with f , j, k = u, d, s indicating cyclic permutations of the quark flavors. For our calculations we have
used the Polyakov loop effective potential as given in Ref. [44],

U (Φ, T) =

[
− 1

2
a1(T, T0)Φ2 + a2(T, T0) ln(1− 6 Φ2 + 8 Φ3 − 3 Φ4)

]
T4 , (39)

where the coefficients a1(T, T0) and a2(T, T0) are fixed by Lattice QCD simulations of gluon dynamics
and the traced Polyakov loop Φ = [2 cos(φ3/T) + 1]/3 [30,45]. The parameter T0 denotes the critical
temperature of the deconfinement phase transition. The effective potential is key to describe the phase
transition from the color confined state (T < T0, with the minimum of the effective potential at Φ = 1)
to the color deconfined state (T > T0, with the minima of the effective potential at Φ = 0). T0 is the
only free parameter of the Polyakov loop once the effective potential has been chosen. In this work
we will set T0 = 195.0 MeV [46]. The scalar coupling constant, Gs, the ’t Hooft coupling constant, H,
the quark masses, and the three-momentum ultraviolet cutoff, Λ, are model parameters. The respective
values of these quantities are mu = md = 5.5 MeV, ms = 140.7 MeV, Λ = 602.3 MeV, GsΛ2 = 3.67
and HΛ5 = −12.36 [47]. The grand canonical thermodynamic potential Ωv due to vector interactions
among quarks is given by

Ωv = −Gv ∑
f

n2
f , (40)

where the number density of a quark of flavor f in the mean field approximation is given by

n f =
Nc

3π2 [(µ f − 2Gvn f )
2 −M2

f ]
3/2 . (41)

As already mentioned in Section 4, the vector coupling constant Gv is treated as a free parameter
and is generally expressed in terms of the strong coupling constant Gs, that is, ξv ≡ Gv/Gs.

The minimization of the thermodynamic potential with respect to the quark condensates and the
Polyakov-loop color field φ3 leads to a system of coupled, non-linear equations that are to be solved
numerically together with the conditions of electric charge neutrality, baryon number conservation,
and chemical equilibrium, similar to the ones discussed in Section 3 for hadronic matter. Once
the thermodynamic potential has been computed, the system’s pressure, P = −Ω, and the quark
number density, nq = ∑ f n f , can readily be determined. The EoS of quark matter then follows as
ε(P, T, n f ) = −P + TS + ∑ f µ f n f , where S = ∂P

∂T and n f =
∂P
∂µ f

.
To construct the hadron-quark phase transition we, as described in Section 5, the Gibbs condition

GH(P, T, {φH}) = GQ(P, T, {φQ}), where GH respectively GQ denote the Gibbs free energy per baryon
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of the hadronic (H) and the quark (Q) phase at a given pressure and transition temperature. The Gibbs
energy of each phase (i = H, Q) is given by

Gi(P, T) = ∑
j

nj

n
µj , (42)

where the sum over j is over all the particles present in each phase. Figure 7 shows the Gibbs energy of
hadronic matter and quark matter as a function of pressure. A sharp (Maxwell-like) first-order phase
transition is assumed. Values of ξv = 0 and 0.1 have been chosen for the ratio of the vector-to-scalar
quark coupling constant to demonstrate the dependence of the Gibbs energy on the repulsion among
quarks. The points where the curves cross each other mark the location of phase equilibrium between
hadronic and quark matter.

Figure 7. Gibbs energy as a function of pressure. The black and green curves refer to the Gibbs
energy of hadronic matter computed for parameter sets DD2 and GM1L, respectively. Quark matter is
treated with the PNJL model. The ’t Hooft quark flavor mixing term is included (absent) in the solid
(dashed) quark matter curves. The (left) panel is for matter at T = 0 MeV, the (right) panel for matter
at T = 25 MeV.

Figure 8 shows the composition of cold quark matter in chemical equilibrium computed for
ξv = 0 and 0.1.
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Figure 8. Impact of the vector interactions among quarks on the composition of cold quark matter.
The results shown in the top panel account for the ’t Hooft term.

It turns out that the ’t Hooft term responsible for quark flavor mixing alters the quark population
significantly, which, in turn, severely changes the populations of leptons and muons.

In Figure 9, we show the hadron quark composition of hot neutron star matter. Neutrinos
are included. This composition, therefore, corresponds to matter that may exist in the cores of
proto-neutron stars. The shaded areas indicate a sharp (Maxwell) hadron-quark phase transition,
computed for the DD2 nuclear parametrization. Three-flavor quark matter is described by the local
PNJL model described above.

Figure 9. Particle population of proto-neutron star matter at a temperature of T = 25 MeV,
with (vertical orange lines) and without (hatched magenta lines) quark flavor mixing.
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As can be seen, quark flavor mixing shifts the hadron-quark phase transition toward a smaller
baron number density. This trend is to be expected from the results for the particle densities shown in
Figure 8, which shows that flavor mixing shifts the presence of quarks to lower densities.

8. Summary and Future Prospects

The purpose of this paper is to provide a short overview of the role of quark matter for neutron
star matter at different temperatures. As shown, the hadron-quark composition of such matter depends
critically on temperature. For proto-neutron star matter neutrinos are to be included in the treatment
too, which also impacts the various particle fractions present at a given temperature and density.
If hadron-quark matter exists in cold neutron star, it may form a Coulomb lattice. As demonstrated here
(for a non-local version of the NJL model), this lattice would be made almost entirely of spherical quark
blobs. The size of the lattice depends on the central density of a neutron star, which, most interestingly,
links the size of the lattice to the spin-frequency of a neutron star. We find that the lattice could be
produced during spin-down of massive pulsars, once their spin frequency has dropped below around
300 Hz (∼25% of the Kepler frequency). The study of quark matter with a local PNJL shows that the ’t
Hooft quark flavor mixing term leads to non-negligible changes in the particle composition of (proto-)
neutron stars made of hadron-quark matter.

We have analyzed the role of the ’t Hooft mixing term, associated with the axial U(1) symmetry
anomaly of QCD, for quark matter that is locally electrically charge neutral, color neutral, and in
chemical equilibrium (i.e., matter under neutron star matter conditions). This symmetry is expected to
be restored (not necessarily together with chiral symmetry) at high temperature, which implies that
the mixing coupling constant H → 0. For high-density matter as existing in the cores of neutron stars,
the mixing (six-point interaction) term is less relevant than the four-point scalar and vector interaction
terms (see Equations (20) and (21)). At the mean-field level, the axial U(1) symmetry anomaly of QCD
does not change the thermodynamics of the quarks [48].

Our results show that the inclusion of the mixing term lowers the pressure at which the
quark-hadro phase transition occurs. It will be interesting to explore how the mixing term modifies the
possible formation of a pasta phase in the hadron-quark mixed phase if color super-conductivity is
taken into account, since the mixing term can destabilize a color superconductor by preventing the
formation of diquark condensates [49].

The existence of a solid hadron-quark pasta phase in the core of a neutron star may be linked to
sudden pulsar spin-ups (glitches) and the subsequent healing of the pulsar period. A very prominent
example of a pulsar that displays regular glitch activity is PSR J0537–6910. The glitch rate of this pulsar
is 3.2 yr−1 [50]. A link between pulsar glitches and solid neutron-matter cores inside of neutron stars
has been pointed out may years ago already [51–53]. This suggests that one should investigate the
connection between a solid hadron-quark pasta phase and the pulsar glitch phenomenon. In particular,
it needs to be studied whether or not the sudden release of elastic energy stored in a solid hadron-quark
pasta phase could explain macro-glitches (which are related to sudden changes in the rotational
frequency of a pulsar on the order of ∆Ω/Ω∼10−6) at the rate (months to years) at which pulsar
glitches are typically observed. Another issue that needs to be investigated concerns the role of
neutron superfluidity. Since neutron stars with and without hadron-quark matter cores contain nuclear
crusts with identical compositions (but varying thickness), both types of stars possess nuclear crusts
containing 1S0 neutron superfluids. The situation is less clear for the neutrons in the cores of both
types of stars. It needs to be studied if both types of stars may possess 3S1 neutrons superfluids in their
cores, or whether this phase is restricted to neutron stars without quark matter cores.

Gravitational-wave detectors such as LIGO and VIRGO have opened up a new observational
window on the inner workings of neutron stars. This is particularly the case for the neutron stars in the
elliptic galaxy NGC 4993 that produced the gravitational-wave event GW170817 observed with LIGO
and VIRGO in 2017. The detection of the gravitational and electromagnetic waves produced by the
coalescence of these neutron stars has offered an unprecedented opportunity for imposing constraints
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on the quark-hadro composition of neutron stars and the equation of state associated with such objects
(see Refs. [54–56], and references therein).
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