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ABSTRACT 
The role of splicing factors in pathological processes is increasingly documented. This is 
particularly evident in the pathologies affecting the nervous system where either the mis-
folding or aggregation of RNA binding proteins is a key event in triggering the 
neurodegeneration. The aggregation of TDP-43 is the major distinguishing feature of most 
cases of Amyotrophic Lateral Sclerosis (ALS). There is still a significant uncertainty in regards 
to many aspects concerning the nature of the aggregates and their functional consequences. 
The biochemical and genetic aspects of TDP-43 aggregation need further definition, as new 
therapies could be directed towards them. A better understanding of TDP-43 structure and 
interactions is needed, from what we currently know it has been possible to construct cellular 
and animal models of TDP- 43 ALS like aggregation. Using these models drugs that can revert 
aggregation and recover function have been identified. Finally, ALS is a disease that occurs 
mostly during the fifth to the seventh decade of life. In this respect, it has been observed that 
the onset of the locomotion defect in an ALS fly model coincides with an age-related 4-fold 
drop in TBPH levels (the Drosophila TDP43 orthologous), similar TDP 43 reduction with age 
was observed in mice brain. Thus, understanding the relationship between aging and TDP-43 
production and mis-folding in cell culture, animal models, and human tissues might provide 
further clues to explain the time of disease onset. 
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Introduction 
In this brief review I would like to describe how the research on basic molecular mechanisms 
of gene expression ends up making an impact on an apparently unrelated field such as 
neurobiology and ends up in translational work searching for effective therapeutic drugs to be 
used in neurodegenerative disease. To evidence these points as clear as possible I will spend a 
good part of the manuscript in describing the impact that the discovery of the RNA splicing 
process has had in molecular and developmental biology and enter in the role of splicing factors 
in neuro-degeneration.  
RNA splicing, a fundamental and unexpected step in RNA metabolism, was observed for the 
first time in the late 70s.  At that time, a peculiar RNA processing phenomena was described 
in the adenovirus 5’UTR; three pieces of noncoding sequences were joined together and the 

sequences between them eliminated to form the viral mRNA [1, 2] 
This was soon followed by the observation that the recently cloned globin mRNA did not 
hybridize to a single band in a Southern blot but there clearly were other sequences, interrupting 
the coding sequences [3]. These genomic nucleotide fragments were even longer than the 
coding sequences. Finally, after the, at the time, laborious process of cloning higher eukaryotic 
genes, the sequencing of these clones showed that the presence of noncoding sequences that 
interrupted the coding sequences was the rule rather than the exception. The name of introns 
and exons was adopted for the intervening sequences and the coding sequences respectively 
and the prediction made that the protein coding content of genomes would comprise only a 
fraction of the total DNA [4]. The process of cutting the introns and joining the exons was 
called splicing. This discovery had immediate ramifications regarding biology, namely, how 
are the exons identified?  
The first gene sequences showed, surprisingly, poor sequence homology at the junctions of 
introns and exons. The only universally conserved nucleotides were the GU at the 5’ site of the 

intron and AG at its 3’site [5] obviously, these elements would be insufficient to direct the 
splicing process which is usually error free. In the following years other features were 
uncovered that increased the accuracy of exon/intron junction definition resulting in the so 
called consensus sequences around the exon/intron junctions (splice sites) and the intronic 
poly-pirimidine tract near the 3’ splice site [6].  
In the early 1980s it was discovered that there were variations in exon selection and that several 
mRNA isoforms could be produced from one pre-mRNA [7], this process was called 
alternative splicing and was followed by the discovery both in vitro and in vivo that auxiliary 
sequences overlapping with the coding sequences in the genomic context of an alternative 
spliced exon [8, 9]. Subsequently, specific cis-acting elements within these fragment were 
identified that according to their location and effect on splicing were called exon splicing 
enhancers or silencers (ESE and ESS respectively) and intron splicing enhancers and silencers 
(ISE and ISS respectively) whose effects are transduced through their interaction with RNA 
binding proteins (RBPs). In addition to the cis-acting element, other processes that influence 
splicing outcome exist. They include the effect on splicing of the RNA structure [10], the 
transcription rate [11], chromatin remodelling and epigenetic modifications [12].   
 
Alternative splicing in development and ageing 
All organisms during development and reaching a mature reproductive stage undergo slight 
changes and adjustments in the cellular and tissue molecular and physiological processes that 
taken to the extreme can be called an aging process. One metabolic area where these alterations 
can be clearly seen is in the RNA splicing process and in particular in the alternative splicing 
variations. This is because RNA splicing is a ubiquitous regulatory mechanism that the cell 
utilize to produce more than one mRNA transcript from a single gene. Alternatively spliced 
transcripts can be translated into different protein isoforms with diverse functions and/or 
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localizations, they can also occur in untranslated regions affecting mRNA stability, 
localization, or translation. Indeed, alternative splicing is not a rare event: in humans more than 
90% of the genes are estimated to undergo alternative splicing. From the ~20,000 human 
protein-coding genes, high-resolution mass spectrometry analyses have shown that ~37% of 
them generate multiple protein isoform [13] evidencing alternative splicing contribution to 
protein diversification. These alternative splicing events are in part directed by a series of trans 
acting factors that bind a variety of exonic and intronic sequences and in this way can heavily 
influence splice site choice and exon inclusion. Indeed, the physiological importance of 
alternative splicing is highlighted by the enormous number of human diseases caused by 
mutations in cis-acting RNA-sequence elements, trans-acting splicing factors or spliceosome 
components. Indeed alternative splicing is a main player in cell linage and tissue-identity 
acquisition and maintenance, cell differentiation, and tissue/organ development. Molecular 
understanding of developmental transitions has also revealed important bases of pathological 
mechanisms in diseases where normal networks are mis-regulated. Multiple mechanisms 
regulate splicing in nature, in particular during development [14]. 

 
The hnRNP TDP 43 
There is a myriad of splicing factors that can act positively or negatively on exon inclusion. 
Many of them belong to the RNA binding proteins family, the positive factors in splicing are 
often the Serine-Arginine (SR) proteins and the negative factors are Heterogeneous Nuclear 
Ribonucleoproteins (hnRNPs). These splicing factors are involved in several pathological 
processes among these neurodegeneration. 

The case of the hnRNP 
TDP 43 (TAR DNA 
Binding Protein) is a 
paradigm of these phe 
nomena. Our laboratory 
characterized TDP 43 
as an hnRNP with a role 
in splicing events 
leading to Cystic 
Fibrosis [15].  In fact it 
was known that a 
polymorphism in the 
3’splice site of CFTR 

exon 9 composed by a 
variable number of UG 
repeat and U runs was 
associated with milder 
clinical presentation of 
Cystic Fibrosis (Fig 1, 
middle panel). 

 
 

Figure 1: Schematic representation of the region of exon 8, 9 and 10 of the CFTR pre mRNA (Middle 
panel). Exon 9 is included in variable proportions in different individuals. If there is no interference of 
the TDP 43/A2 complex with the 3’ss U2AF complex is predominantly included (Upper panel). On the 
other hand if the U2AF-pre mRNA complex formation is hampered by the TDP43/A2 complex, exon 
9 is predominantly skipped (Lower panel). 
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The UGm and Un may exist in different combinations in normal individuals, the approximate 
range of UGm is from 5 to 13 while that of Un is from 3 to 9. They can exist in different 
combinations but not all of them are compatible with normal CFTR RNA processing and 
consequently function. For example UG9 U7 yields normal exon 9 splicing (Fig 1, upper 
panel), UG13 U5 results in higher proportion of exon 9 skipping but the residual exon 9 
inclusion prevents the development of classical CF and is associated with single defects such 
as vas deferens obstruction or bronchiectasis. Finally the polymorphism configuration UG13 
U3 produces total skipping of exon 9 (Fig 1, lower panel). Hence a non-functional CFTR 
protein and full blown CF [16]. Investigating the molecular basis of this phenomena we found 
that hnRNP TDP 43 bound to the UG sequence and interacted with other hnRNPS such as A2 
that in turn inhibited the recognition of the 3’ss by the U2AF complex (Fig 1).  
Subsequent studies showed that TDP 43 is involved in multiple processes in RNA metabolism 
ranging from splicing, micro RNA processing mRNA transport and stability Fig 2. In addition 
it shuttles between nucleus and cytoplasm and regulates its cellular levels by a novel 
mechanism involving an unusual splicing event in the 3’UTR of the pre mRNA. A decade ago 

TDP 43 has jumped to fame when it was identified as the main component of the protein 
inclusions seen in the brain of people affected by Amyotrophic Lateral Sclerosis (ALS) and 
Fronto Temporal Lobar Degeneration (FTLD) [17]. 

 

Figure 2: Functions of TDP 43 in the RNA metabolism, the best documented one is its role in pre 
mRNA splicing. The involvement in stress granules may be the path that leads to further aggregation 
and the formation of the large inclusions seen in the brain of ALS and FTLD patients. 

 
TDP 43 role in ALS 
Histological analysis of patient’s brain showed TDP 43 inclusions in many neurons some in 

the nucleus, some in the cytoplasm and even in their axons. TDP 43 is a mostly nuclear protein 
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seen diffusely in the nucleoplasm. However most of the cells containing inclusions have 
nucleus that were negative for TDP 43 staining. Two hypothesis were proposed for the 
pathogenesis of ALS: One that this was due to the toxicity of the inclusions and the other one 
that the lack of TDP 43 in the nucleus, due to the aggregation of the protein in the cytoplasm, 
provokes a loss of function in the multiple processes that this protein is involved in, such as 
RNA splicing, mRNA transport and stability, miRNA processing [18] (Fig 2) We have 
gathered a substantial body of evidence that shows that the latter hypothesis may be the correct 
one. In fact depletion of TDP 43 in tissue culture cells, obtained by siRNA treatment, produces 
a series of changes that affect the viability of the cells and splicing variations are clearly visible. 
Furthermore removing the gene in mice produces disorganization of the embryo and is an early 
lethal mutation. The fruit fly Drosophila has a homolog of TDP 43 called TBPH, deletion of 
the gene allows the development of the larva up to the pupa but the adult fly has serious 
locomotion defects that do not allow its exit from the pupa [19]. If the fly is removed manually 
its inability to move properly can be seen and they die within 1-2 days. This data pointed to a 
lack of function model of the disease. This is what should be expected if the aggregates 
sequester TDP 43 and prevent its functionality. We decided to model the aggregation process 
in tissue culture cells and in flies. 
 
Modelling ALS like TDP 43 aggregation 
Aside the animal models, several attempts were undertaken to mimic the TDP-43 aggregation 
in cells in culture. Such models are valuable to investigate the impact of aggregation on the 
cellular metabolism, as well as to evaluate new therapeutic strategies to overcome aggregation. 
It was observed early on that the TDP-43 C-terminal tail contains a Q/N rich region that is 
involved in the protein-protein interactions [20] Moreover, it was demonstrated that expression 
of C-terminal fragments of TDP-43 is sufficient to generate cytoplasmic aggregates [21]. The 
importance of the Q/N rich region within the C-terminal tail of TDP-43 in the self-aggregation 
process was also confirmed in separate experiments where this sequence was shown to be 
essential for polyQ induced aggregation [22]. In fact the importance of the C-terminal is also 
supported by the fact that the majority of the mutations that have been found in ALS patients 
are localized in the C-terminal tail and the aggregation tendency is enhanced by these ALS-
linked TDP-43 mutations [23]. In addition, the protein is cleaved, generating C-terminal 
fragments that are associated with cellular toxicity and/or increased TDP-43 mis-localization 
[24]. Based on these findings, and with the aim of looking for methodologies that could model 
the disease, our laboratory developed a cellular model of aggregation using a 30 amino acid 
TDP-43 C-terminal peptide to promote TDP-43 aggregation [23,25]. 
These models are based on tandem repeats of TDP-43 Q/N rich amino acid sequence 331-369 
(12xQ/N) linked to EGFP reporter is able to trigger the formation of predominantly 
cytoplasmic aggregates, capable of sequestering either exogenous or endogenous full-length 
TDP-43, recapitulating some of the features of the inclusions present in patients, such as 
ubiquitination and phosphorylation . 
However, there was no detectable splicing function deterioration in the presence of these TDP-
43 aggregates induced by EGFP-12xQ/N, suggesting that they were not efficient enough in 
trapping endogenous TDP-43 to cause a loss of function in the short interval measured in a cell 
system. In fact, it can be seen in that there is still TDP-43 present in the nuclei of EGFP-12xQ/N 
expressing cells. 
In order to generate a model that could accomplish the nuclear loss of function of TDP-43 that 
is characteristic of ALS, a new variant of the previous model was generated. This new model 
is based on the TDP-43 molecule itself linked to the tandem repeats 12xQ/N (TDP-12xQ/N). 
The TDP-12xQ/N model was shown to induce TDP-43 aggregation that was accompanied by 
TDP-43 nuclear depletion and consequent alteration of its splicing function [26]. 
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Our cell-based models of ALS are useful tools for the identification of active agents capable of 
reducing TDP-43 inclusions. In fact as a proof of principle we have tested a series of tricyclic 
anti depressive drugs that showed a reasonable activity in eliminating aggregates by stimulation 
of the cell clearing systems and restoring TDP 43 functionality. This model is now used in a 
wide new molecule screening for drugs and is showing optimal results. 
We have now also generated an animal model based on this 12xQ/N construct. We have used, 
in the first instance Drosophila melanogaster a powerful model to study human 
neurodegenerative diseases. Several characteristics make Drosophila the organism of choice. 
Among them, the short generation time (approximately 10 days) and short life span (around 60 
to 80 days). In particular these features make Drosophila amenable to study age-related 
disorders. In addition, approximately 75% of human genes known to be associated with disease 
have a Drosophila orthologue. In most neurodegenerative disease, specific neuronal regions 
begin to degenerate late in life. In order to study this, several methods are available to express 
genes in a spatially and temporally restricted manner. Moreover, synaptic activity can be 
measured using electrophysiological and imaging techniques from the neuromuscular junction 
and adult central nervous system, making Drosophila particularly amenable to study motor 
neuron diseases, such as ALS. 
The Drosophila 12xQ/N transgene showed that its locomotion was compromised with aging 
and its lifespan was shorter. The animals with the severe locomotion phenotype present a sharp 
atrophy and retraction of the Neuro-Muscular Junction. The onset of the locomotion phenotype 
around day 15 happens in mature flies, a similarity with the rather early onset of ALS in 
humans. The onset of the locomotion phenotype in Drosophila coincides with a four-fold 
reduction in the levels of brain TDP43 (TBPH in flies) relative to the one day old fly [27]. 
 
The decrease in TDP 43 tissue levels is physiological and evolutionary conserved 
The investigation of tissue levels of TDP 43 and other RNA binding proteins in function of age 
was extended from Drosophila to zebrafish and mice. A similar decay was observed in these 
species. In particular the mice showed also a programmed fourfold reduction of TDP 43 in the 
brain between 10 and 90 day old animals, a compatible age range to the Drosophila equivalent. 
The mice studies revealed in addition that the decay was tissue specific and have different rate 
of progress in different tissues (Pacetti, De Conti et al, 2018, submitted). In fact while in liver 
the TDP 43 levels were maintained through age, in brain there is an age related decay similar 
to the one observed in Drosophila and in muscle there is an early sharp decrease of TDP 43 
levels. This reduction is seen in both TDP 43 protein and mRNA.  

The decrease of TDP 43 levels is due at least in part to a reduction of the transcription 
rate  
We are also investigating the mechanism(s) behind the reduction of TDP 43 levels that we 
found to be tissue specific. In liver TDP 43 levels are maintained through the lifetime of the 
animal, but there is a mild constant reduction in brain and a sharp reduction in muscle. The 
modulation of TDP 43 expression seems to occur through an increase of methylation in the 
promoter of the gene with age, observed specifically in those tissues where there is a decrease 
of protein levels. As expected there is an inverse correlation with the time and size of the 
reduction: With age TDP 43 levels are lower in muscle<brain<liver while the degree of 
methylation goes the opposite way muscle>brain>liver. 
In conclusion a possible pathogenic mechanism for the onset of ALS is schematically shown 
in Fig 3. TDP 43 participates in several RNA metabolism steps in the cell (Fig 2), thus keeping 
its cellular levels within a restricted range is extremely important and a self-regulation 
mechanism is in place [28], as both excess and lack of TDP 43 are harmful to the cell [28]. 
During the lifetime in long lived cells such as the neurons a stress may occur that results in 
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protein mis-folding and aggregation and consequent alterations in its proteostasis. The cell has 
mechanisms to clear these aggregates such autophagy and ubiquitin protease pathways, 
however it is possible that chronic stress and/or damage to the protein degradation mechanism 
results in an incomplete clearance of the aggregates which in turn start to sequester newly 
synthesized TDP 43.  

 
 
Figure 3: Schematic representation of a possible pathogenic mechanism leading to ALS/FTLD-U. It is 
based on observations made in cell in culture, Drosophila and Mice systems and should be considered 
as a model to be confirmed for the human pathology. 

The growth of the aggregates and their increased capacity of capturing the newly synthesized 
TDP 43 combined with the decrease of TDP 43 synthesis observed during aging may lead to a 
situation of total depletion of functional TDP 43 in the nucleus that results in damage to the 
cell in particular, in the case of a motor neuron, of the Neuro Muscular Junction (NMJ). It is 
possible that preventing or reverting the aggregation process we could recover TDP 43 
functionality.  
We have identified two potential therapeutic approaches for TDP 43 proteinopathies: The 
increase of TDP 43 protein levels or the clearance of the aggregates. The latter option is the 
more promising with the identification of compounds that in our cellular model are very 
efficient in aggregate clearance and restoration of TDP 43 functionality. It remains to be 
explored the potential of increasing the production of TDP 43 by interfering with the promoter 
methylation in the hope that the higher levels will overcome the loss of functionality. 
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