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Abstract: In wastewater treatment, ammonium removal is a key step which can be done
biologically. One method is by coupling a partial nitritation with the Anammox process. The
partial nitritation goal is to convert half of the ammonium into nitrite, so ammonium and
nitrite can be later converted into dinitrogen gas by Anammox bacteria. To obtain a stable
partial nitritation, ammonium oxidizing bacteria (AOB) have to prevail over nitrite oxidizing
bacteria (NOB) so as to avoid further conversion of nitrite into nitrate. Two control objectives
can be identified for partial nitritation: the repression of NOB and the regulation of the effluent
to obtain the required nitrite to ammonium ratio. In this work, the equilibrium points of the
partial nitrification process are analyzed to find operating conditions for AOB prevalence over
NOB. Based on this analysis, a feeding strategy is proposed to regulate the effluent nitrite
to ammonium ratio at the value required by Anammox. The study is based on the process
dynamical model in a reactor with biomass retention.
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1. INTRODUCTION

Ammonia removal in wastewater via anaerobic ammonium
oxidation (Anammox) is one of the current alternatives
to conventional nitrification-denitrification methods. Some
of its main advantages are the reduced costs in aereation
and lack of requirement of external carbon sources, since
the process is fully autotrophic (Ali and Okabe, 2015).
Anammox bacteria can convert ammonium into dinitrogen
gas with nitrite as electron donor under anoxic conditions
(Guo et al., 2013). The required nitrite can be obtained
from partial nitritation (van Dongen et al., 2001; van
Loosdrecht and Salem, 2006; Wu et al., 2016).

Nitrification is a two step reaction in which ammonium is
converted intro nitrite (nitritation) by ammonium oxidiz-
ing bacteria (AOB), which is later converted into nitrate
(nitratation) by nitrite oxidizing bacteria (NOB). Partial
nitritation consists in only oxidating the ammonium while
the oxidation of nitrite is prevented (van Dongen et al.,
2001; Volcke, 2006; Isanta et al., 2015). As nitratation is
unwanted and reduces the process efficiency, AOB must
prevail over NOB in the interspecies competition. The
unwanted bacterial group must be repressed through the
selection of adequate operation parameters.

Studying the stability of the equilibrium points of the
process aids to obtain analytically such operation pa-
rameters. For instance, which flow rates or ammonium
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concentrations make stable an equilibrium in which NOB
goes to zero. The first studies of the equilibrium points
of nitrification processes were presented in Volcke et al.
(2007, 2010). These results are extended here to processes
with biomass retention, as it is commonly encountered in
practice. Biomass retention involves different dilution rates
for bacteria and dissolved substances.

A second objective of this work is to obtain an appro-
priate effluent composition to avoid leaving unconverted
ammonium or nitrite after Anammox (Guo et al., 2013;
van Dongen et al., 2001; van Loosdrecht and Salem, 2006).
This objective can also be approached by studing the equi-
librium concentrations to choose appropriate operating
parameters.

In this work the different equilibrium points of the ni-
trification process with biomass retention are studied to
obtain restrictions on the operating parameters. These
restrictions are later used to ensure the survival of AOB
over NOB. Having assured NOB repression, flow rates and
influent concentrations are defined to obtain the desired
effluent composition in views to coupling with Anammox.

2. PROCESS MODEL

We will assume that the nitritation and nitratation pro-
cesses take place in a reactor operated in continuous mode
with biomass retention mechanism. The biomass retention
allows setting the bacteria retention time (inverse of dilu-
tion rate) different to the hydraulic retention time. Then,
the process dynamical model is (Volcke et al., 2007):
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ẊAOB = (µ1 −DA)XAOB (1a)

ẊNOB = (µ2 −DN )XNOB (1b)
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= D(Sf

NH3
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(1c)

ṠNO2
= D(Sf

NO2
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) + k21µ1XAOB − k22µ2XNOB

(1d)

where XAOB and XNOB are AOB and NOB concentra-
tions, SNH3

and SNO2
are ammonium and nitrite concen-

trations in the reactor, and S
f
NH3

and S
f
NO2

are the concen-

trations in the influent stream. D is the (liquid) dilution
rate defined as the influent flow rate (F ) over the reactor
volume (V ), and DA and DN are the dilution rates of AOB
and NOB, defined as the inverses of the biomass retention
times. Although normally AOB and NOB have the same
dilution rate, to make this study more general, they are
consider different. If there is no retention mechanism, all
the dilution rates are the same: D = DA = DN. The kij
are yield coefficients.

Parameters µ1 and µ2 are the specific growth rates for
AOB and NOB, respectively, modeled by Monod kinetics:

µ1(SNH3
) =

µm
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kNH3
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(2a)

µ2(SNO2
) =







µm
2 SNO2

kNO2
+ SNO2

if SNH3
�= 0

0 if SNH3
= 0.

(2b)

Parameters µm
1 and µm

2 are the maximum growth rates,
and kNH3

and kNO2
are affinity constants.

3. EQUILIBRIUM POINTS

To obtain restrictions on the operating parameters we
analyze the feasibility and stability of each equilibrium
point of the process. The goal is to find the operating
conditions that make the only stable equilibrium points
those where NOB’s concentration is zero.

The equilibrium points are obtained by setting all the
derivatives to zero in (1) and solving the resulting algebraic
system, which gives place to four solutions. For each of
these equilibria to be realistic, ammonium, nitrite, AOB
and NOB concentrations must be non-negative. Moreover,
as ammonium is only consumed, its concentration must
be lower than the influent one. It is not the case of nitrite
which is produced by AOB. To verify that an equilibrium
point is feasible the equilibrium concentrations must fulfill:

[Seq
NH3

;Seq
NO2

;Xeq
AOB;X

eq
NOB] ∈ ℜ4

+ (3a)

S
eq
NH3

≤ S
f
NH3

. (3b)

In the following subsections, each of the possible equilib-
rium points and its feasibility are analyzed.

3.1 Wash-out equilibrium point

The wash-out equilibrium point is that in which all
biomass is lost and ammonium and nitrite concentrations
go to the input ones:
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This point is always feasible, no matter the dilution rates
or influent concentrations. Hence, care must be taken not
to fall into it.

3.2 Only AOB survival equilibrium point

The AOB survival equilibrium point is that in which
NOB does not survive while AOB does. This is the
desired equilibrium point of the process. The equilibrium
concentrations are:

Pa =
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(5)

where S∗

NH3
is defined as

S∗

NH3
=

DAkNH3

µm
1 −DA

(6)

for ease of notation.

It is found that the following restriction guarantees the
feasibility (3) of the AOB survival equilibrium:

S
f
NH3

> S∗

NH3
(7)

which is equivalent to

DA < µ1(S
f
NH3

). (8)

That is, for the feasibility of AOB survival over NOB, the
influent ammonium being greater than the equilibrium
concentration suffices. In terms of dilutions, the limit to
AOB’s dilution rate is the maximum achievable growth
rate, which is obtained with the highest possible ammo-
nium.

3.3 Only NOB survival equilibrium point

Although unlikely to happen in practice, an equilibrium
where NOB prevails over AOB is possible. The equilibrium
concentrations are:

Pn =
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(9)

where S∗

NO2
is defined as

S∗

NO2
=

DNkNO2

µm
2 −DN

(10)

for ease of notation.

The following restriction guarantees the feasibility (3) of
the AOB survival equilibrium:

S
f
NO2

> S∗

NO2
(11a)

S
f
NO2

< S∗

NO2
+

k22

k12
S
f
NH3

(11b)

which are equivalent to

DN < µ2(S
f
NO2

) (12a)

DN > µ2(S
f
NO2

−
k12

k22
S
f
NH3

) (12b)

That is, for the feasibility of NOB survival over AOB,
the influent nitrite needs to be inside an interval which
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depends on the current influent ammonium. In terms of
dilutions, there is an interval defined by the NOB dilution
rate and the influent ammonium and nitrite.

3.4 AOB and NOB survival equilibrium point

The last equilibrium is that where both bacterial groups
survive. The equilibrium concentrations are

Px =
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(13)

The feasibility of this equilibrium point is given by a set
of bounds on ammonium and nitrite:

S
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) (14a)

S
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k21
(Sf
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) (14b)

S
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NO2
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NO2
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k11
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NH3
) (14c)

S
f
NO2

< S∗

NO2
+

k22

k12
(Sf
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− S∗
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) (14d)

which are equivalent to

DA < µ1(S
f
NH3

− k12

k22
(Sf

NO2
− S∗

NO2
)) (15a)

DA < µ1(S
f
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+ k11
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(Sf

NO2
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NO2
)) (15b)

DN > µ2(S
f
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− k22
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− S∗

NH3
)) (15c)

DN < µ2(S
f
NO2

+ k21

k11
(Sf

NH3
− S∗

NH3
)). (15d)

This is, influent ammonium is lower bounded by some
ammonium value greater than the influent concentration,
and nitrite has to be between two values that depend on
the influent and reactor ammonium and nitrite concen-
trations. The situation is similar for dilutions: there is an
upper bound for AOB dilution rate, lower than the one
required in the AOB survival point, and there is an interval
for NOB dilution rate.

4. STABILITY OF THE EQUILIBRIUM POINTS

Having analyzed the feasibility of each equilibrium point,
the next step is to inspect their stability. Local asymptotic
stability (Khalil, 2002) is analyzed by determining the
location of the eigenvalues of the system linearized at each
equilibrium point. This analysis gives place to additional
restrictions to complement those for feasibility.

4.1 Wash-out equilibrium point

The eigenvalues of (1) linearized at the wash-out equilib-
rium point PW are:

λ1,2
w = −D (16a)

λ3
w = µ1(S

f
NH3

)−DA (16b)

λ4
w = µ2(S

f
NO2

)−DN. (16c)

Clearly the first two eigenvalues are negative for any pos-
itive dilution rate. The other two eigenvalues are negative
if the following restrictions hold:

DA > µ1(S
f
NH3

) (17a)

DN > µ2(S
f
NO2

) (17b)

which are equivalent to

S
f
NH3

< S∗

NH3
(18a)

S
f
NO2

< S∗

NO2
. (18b)

It can be observed that the restrictions for stability of
the wash-out (17) and (18) oppose to the restrictions for
feasibility of the only AOB survival point (7) and (8), and
only NOB survival point (11) and (12). Hence, even if the
wash-out is always feasible, it will not be stable if the
restrictions for the feasibility of any of those two equilibria
hold.

Note also that for the wash-out equilibrium stability, a
higher bound is imposed over ammonium (18a). This
restriction is incompatible with the feasibility conditions of
the AOB and NOB survival equilibrium (14a) and (14b),
which together set a lower bound for ammonium at a
value greater than the one imposed by (18a). Therefore,
the wash-out and the AOB and NOB survival equilibrium
cannot be stable for the same operating conditions.

4.2 AOB survival equilibrium point

The eigenvalues of (1) linearized at the AOB survival
equilibrium point Pa are:

λ1
a = −D (19a)

λ2
a = µ2(S

eq
NO2

)−DN (19b)
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(19c)

where µ′

1(S
∗

NH3
) is the partial derivative of µ1 with respect

to XAOB evaluated at S∗

NH3
:

µ′
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SNH
3
=S∗
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3
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(20)
The first eigenvalue is negative for any positive dilution
rate. The second eigenvalue is negative if

DN > µ2(S
f
NO2

+ k21

k11
(Sf

NH3
− S∗

NH3
)) (21)

which is equivalent to

S
f
NH3

< S∗

NH3
−

k11

k21
(Sf

NO2
− S∗

NO2
) (22a)

S
f
NO2

< S∗

NO2
−

k21

k11
(Sf

NH3
− S∗

NH3
). (22b)

The last two eigenvalues have negative real part as long
as the equilibrium point is feasible, that is (7) or (8).
This is concluded after comparing the first term with the
one with the square root. Moreover, it can be shown that
the eigenvalues are real by analyzing the radicand of the
second term. For that, it must be accounted that the
bacteria dilution rate cannot be greater than the liquid
dilution DA ≤ D.
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depends on the current influent ammonium. In terms of
dilutions, there is an interval defined by the NOB dilution
rate and the influent ammonium and nitrite.

3.4 AOB and NOB survival equilibrium point

The last equilibrium is that where both bacterial groups
survive. The equilibrium concentrations are
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The feasibility of this equilibrium point is given by a set
of bounds on ammonium and nitrite:
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This is, influent ammonium is lower bounded by some
ammonium value greater than the influent concentration,
and nitrite has to be between two values that depend on
the influent and reactor ammonium and nitrite concen-
trations. The situation is similar for dilutions: there is an
upper bound for AOB dilution rate, lower than the one
required in the AOB survival point, and there is an interval
for NOB dilution rate.

4. STABILITY OF THE EQUILIBRIUM POINTS

Having analyzed the feasibility of each equilibrium point,
the next step is to inspect their stability. Local asymptotic
stability (Khalil, 2002) is analyzed by determining the
location of the eigenvalues of the system linearized at each
equilibrium point. This analysis gives place to additional
restrictions to complement those for feasibility.

4.1 Wash-out equilibrium point

The eigenvalues of (1) linearized at the wash-out equilib-
rium point PW are:

λ1,2
w = −D (16a)

λ3
w = µ1(S
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NH3

)−DA (16b)

λ4
w = µ2(S
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NO2

)−DN. (16c)

Clearly the first two eigenvalues are negative for any pos-
itive dilution rate. The other two eigenvalues are negative
if the following restrictions hold:

DA > µ1(S
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which are equivalent to
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It can be observed that the restrictions for stability of
the wash-out (17) and (18) oppose to the restrictions for
feasibility of the only AOB survival point (7) and (8), and
only NOB survival point (11) and (12). Hence, even if the
wash-out is always feasible, it will not be stable if the
restrictions for the feasibility of any of those two equilibria
hold.

Note also that for the wash-out equilibrium stability, a
higher bound is imposed over ammonium (18a). This
restriction is incompatible with the feasibility conditions of
the AOB and NOB survival equilibrium (14a) and (14b),
which together set a lower bound for ammonium at a
value greater than the one imposed by (18a). Therefore,
the wash-out and the AOB and NOB survival equilibrium
cannot be stable for the same operating conditions.

4.2 AOB survival equilibrium point

The eigenvalues of (1) linearized at the AOB survival
equilibrium point Pa are:

λ1
a = −D (19a)
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The first eigenvalue is negative for any positive dilution
rate. The second eigenvalue is negative if
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The last two eigenvalues have negative real part as long
as the equilibrium point is feasible, that is (7) or (8).
This is concluded after comparing the first term with the
one with the square root. Moreover, it can be shown that
the eigenvalues are real by analyzing the radicand of the
second term. For that, it must be accounted that the
bacteria dilution rate cannot be greater than the liquid
dilution DA ≤ D.
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Note at this point that the restrictions (21) and (22) for
the stability of this equilibrium point oppose to the ones
for the feasibility of the AOB and NOB survival point Px:
(14b), (14c) and (15d). Hence, if the process is operated to
make the AOB survival point feasible and stable, the AOB
and NOB survival point is unfeasible, and conversely.

Moreover, the stability restriction (21) for AOB survival
stability is incompatible with the feasibility restriction (12)

for NOB survival. For this, recall that S∗

NH3
< S

f
NH3

in
the AOB survival equilibrium. Thus, these two equilibria
cannot happen under the same operating conditions.

At this point, we can see that the desired equilibrium, AOB
survival, can be guaranteed if its feasibility and stability
restrictions are met.

4.3 NOB survival equilibrium point

The eigenvalues of (1) linearized at the NOB survival
equilibrium point Pn are:

λ1
n = −D (23a)
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n = µ1(S
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where µ′
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) is the partial derivative of µ2 with respect

to XNOB evaluated at S∗

NO2
:
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(24)
The algebraic structure of these eigenvalues is very similar
to the ones of the AOB survival equilibrium. So, the
analysis is omitted.

The restrictions for the stability of the NOB survival are
that the equilibrium point is feasible and

DA < µ1(S
f
NH3

−
k12

k22
(Sf

NO2
− S∗

NO2
)) (25)

which is equivalent to

S
f
NH3

> S∗

NH3
+

k12

k22
(Sf

NO2
− S∗

NO2
) (26a)

S
f
NO2

< S∗

NO2
+

k22

k12
(Sf

NH3
− S∗

NH3
). (26b)

Similarly to the AOB survival equilibrium, in this case the
stability conditions (25) and (26) oppose to the feasibility
conditions of the AOB and NOB survival equilibrium Px:
(14a), (14d) and (15c). Hence, if the process is operated
to make NOB survival feasible and stable, the AOB and
NOB survival is unfeasible, and conversely.

4.4 AOB and NOB survival equilibrium point

The eigenvalues at this equilibrium point are harder to
compute without numerical substitutions. Hence, an alter-
native approach has been taken. Due to its length, only an

outline of the proof is given here, but it can be examined
in detail in Appendix A.

After linearizing (1) at Px the Jacobian matrix is obtained.
The sign and trace of the Jacobian are the sum and
product of its eigenvalues, respectively. Based on their
signs it can be concluded that there are either one or
two pairs of eigenvalues with negative real part if the
equilibrium point is feasible. Later, the Routh-Hurwitz
theorem can be applied. Again, if the equilibrium point
is feasible, by noting that there are no sign changes in
the Routh tabulation we can conclude that there are no
eigenvalues with positive real part.

From this analysis it can be concluded that the same
restrictions that apply for this equilibrium point feasibility
also apply for its local asymptotic stability, that is, (14)
and (15).

5. PROCESS OPERATION FOR PARTIAL
NITRITATION

Throughout the previous section we have shown that the
restrictions for feasibility and stability of each equilibrium
point oppose to those of the other equilibria. Consequently,
only one equilibrium point can be feasible and stable
for a set of operating parameters. This is an important
result since our goal is to operate only in the AOB
survival equilibrium point, which will be possible if its
corresponding restrictions are followed. Unfortunately, it
is not possible to formally state that this equilibrium is
globally stable without proving that no limit cycles can
exist, which is not covered in this work.

The conditions for AOB survival and NOB repression are:

S
f
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NH3
(27a)
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) (27b)
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) (27c)

or equivalently

DA < µ1(S
f
NH3

) (28a)

DN > µ2(S
f
NO2

+ k21

k11
(Sf

NH3
− S∗

NH3
)). (28b)

A secondary objective is to obtain a given nitrite to
ammonium ratio in the process output

S
eq
NO2

S
eq
NH3

= δ (29)

where δ is a constant, typically δ = 1.

Furthermore, from (5) it can be shown that in the AOB
survival equilibrium point the effluent ratio is

S
eq
NO2

S
eq
NH3

=
(µm

1 −DA)(S
f
NO2

+ k21

k11
u1)−DAkNH3

k21

k11

DAkNH3

. (30)

Then, by combining (29) and (30), the AOB dilution rate
that makes the effluent ratio δ can be cleared:

Dδ
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µm
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k11S
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+k21S
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(31)
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Table 1. Parameters of the nitrification process
model.

Param. Description Value

k11 Yield coefficient 16molmol−1

k12 Yield coefficient 0.2molmol−1

k21 Yield coefficient 15.8molmol−1

k22 Yield coefficient 58.6molmol−1

µm
1 Max. AOB specific growth rate 2.1 d−1

µm
2 Max. NOB specific growth rate 1.05 d−1

kNH3
AOB affinity constant w.r.t. ammonium 4.73molm−3

kNO2
NOB affinity constant w.r.t. nitrite 0.4molm−3

Or equivalently, which is the influent ammonium concen-
tration that makes the effluent ratio δ:

Sδ
NH3

=

(

k11δ

k21
+ 1

)

S∗

NH3
− S

f
NO2

k11

k21
(32)

Then, depending on the available actuators, either (31)
or (32) can be used to calculate the input of the process
depending on the influent stream composition. This can
be used as an open loop control or a feed-forward action.

5.1 Simulation results

To illustrate these results, suppose that the stream flow
rate can be manipulated and that the bacteria are immo-
bilized in a support where there is a detachment rate α
such that DA = DN = αD where α < 1 as in Bernard
et al. (2001). Then, the dilution rate of the system can be
obtained as

D =
Dδ

A

α
. (33)

The maximum and minimum bounds for the bacteria
dilution rate (Dmin

A and Dmax
A ) are obtained from (28)

and solving (28b) for DA (recall that S∗

NH3
depends on

DA). Then, the bounds for dilution rate D are:

Dmin
A

α
< D <

Dmax
A

α
. (34)

The dilution rate obtained in (33) cannot be outside these
limits. If that happens, the closest dilution rate between
the limits is applied.

The proposed feeding strategy is simulated for process (1)
using the parameters in Table 1. The dilution rates are as
explained above with α = 0.5. The desired effluent ratio
is δ = 1. Multiple simulations were performed, each with
different influent ammonium and nitrite concentrations:
S
f
NH3

takes the values 10, 32, 55, 77.5 and 100 molm−3

and S
f
NO2

takes the values 1, 2, 3, 4 and 5 molm−3.

The simulation results are shown in Figure 1. The top
graph shows the AOB concentrations the middle graph
the NOB concentrations and the bottom graph the nitrite
to ammonium ratio.

Each group of curves corresponds to a different influent
ammonium concentration, and each curve in the groups
to different nitrite concentrations. Despite influent ammo-
nium concentration is different in each simulations, the
objectives are fulfilled in all cases: AOB survives, NOB
is repressed (goes to zero) and the effluent ratio goes to
the desired value. This also indicates that the dilution
rate (33) fulfills the restrictions (34). The major effect
of influent ammonium concentration can be noticed on

Fig. 1. Multiple simulations for the proposed control

strategy. Influent ammonium S
f
NH3

and nitrite S
f
NO2

are changed in each of them.

the steady state AOB concentration and the convergence
rate of the effluent ratio. In the simulations, for higher
influent ammonium concentrations, the equilibrium AOB
concentration is higher but convergence rate of the ratio
is lower.

The proposed feeding strategy is an open loop type, since
only on-line information of the input is used (influent
ammonium and nitrite concentrations). For that reason, it
is not expected to provide a strong disturbance rejection
capacity. Disturbances caused my model uncertainty will
cause a miscalculation of the optimal AOB dilution rate,
which would cause errors in the dilution rate. However,
this problem can be solved by the addition of a feedback
loop with the effluent ratio, while keeping the proposed
feeding strategy as a feed-forward action. Moreover, if
confidence intervals are available for the model param-
eters, the restrictions on the dilution rate (33) can be
calculated using the parameter values which make them
the most conservative. In this way, stability guarantees
are preserved.

6. CONCLUSIONS

Restrictions on the process operating parameters were
successfully found aimed at making AOB survive while
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Table 1. Parameters of the nitrification process
model.

Param. Description Value

k11 Yield coefficient 16molmol−1

k12 Yield coefficient 0.2molmol−1

k21 Yield coefficient 15.8molmol−1

k22 Yield coefficient 58.6molmol−1

µm
1 Max. AOB specific growth rate 2.1 d−1

µm
2 Max. NOB specific growth rate 1.05 d−1

kNH3
AOB affinity constant w.r.t. ammonium 4.73molm−3

kNO2
NOB affinity constant w.r.t. nitrite 0.4molm−3

Or equivalently, which is the influent ammonium concen-
tration that makes the effluent ratio δ:

Sδ
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+ 1

)
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− S
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k21
(32)

Then, depending on the available actuators, either (31)
or (32) can be used to calculate the input of the process
depending on the influent stream composition. This can
be used as an open loop control or a feed-forward action.

5.1 Simulation results

To illustrate these results, suppose that the stream flow
rate can be manipulated and that the bacteria are immo-
bilized in a support where there is a detachment rate α
such that DA = DN = αD where α < 1 as in Bernard
et al. (2001). Then, the dilution rate of the system can be
obtained as

D =
Dδ

A

α
. (33)

The maximum and minimum bounds for the bacteria
dilution rate (Dmin

A and Dmax
A ) are obtained from (28)

and solving (28b) for DA (recall that S∗

NH3
depends on

DA). Then, the bounds for dilution rate D are:

Dmin
A

α
< D <

Dmax
A

α
. (34)

The dilution rate obtained in (33) cannot be outside these
limits. If that happens, the closest dilution rate between
the limits is applied.

The proposed feeding strategy is simulated for process (1)
using the parameters in Table 1. The dilution rates are as
explained above with α = 0.5. The desired effluent ratio
is δ = 1. Multiple simulations were performed, each with
different influent ammonium and nitrite concentrations:
S
f
NH3

takes the values 10, 32, 55, 77.5 and 100 molm−3

and S
f
NO2

takes the values 1, 2, 3, 4 and 5 molm−3.

The simulation results are shown in Figure 1. The top
graph shows the AOB concentrations the middle graph
the NOB concentrations and the bottom graph the nitrite
to ammonium ratio.

Each group of curves corresponds to a different influent
ammonium concentration, and each curve in the groups
to different nitrite concentrations. Despite influent ammo-
nium concentration is different in each simulations, the
objectives are fulfilled in all cases: AOB survives, NOB
is repressed (goes to zero) and the effluent ratio goes to
the desired value. This also indicates that the dilution
rate (33) fulfills the restrictions (34). The major effect
of influent ammonium concentration can be noticed on

Fig. 1. Multiple simulations for the proposed control

strategy. Influent ammonium S
f
NH3

and nitrite S
f
NO2

are changed in each of them.

the steady state AOB concentration and the convergence
rate of the effluent ratio. In the simulations, for higher
influent ammonium concentrations, the equilibrium AOB
concentration is higher but convergence rate of the ratio
is lower.

The proposed feeding strategy is an open loop type, since
only on-line information of the input is used (influent
ammonium and nitrite concentrations). For that reason, it
is not expected to provide a strong disturbance rejection
capacity. Disturbances caused my model uncertainty will
cause a miscalculation of the optimal AOB dilution rate,
which would cause errors in the dilution rate. However,
this problem can be solved by the addition of a feedback
loop with the effluent ratio, while keeping the proposed
feeding strategy as a feed-forward action. Moreover, if
confidence intervals are available for the model param-
eters, the restrictions on the dilution rate (33) can be
calculated using the parameter values which make them
the most conservative. In this way, stability guarantees
are preserved.

6. CONCLUSIONS

Restrictions on the process operating parameters were
successfully found aimed at making AOB survive while
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repressing NOB. The results showed that only one equi-
librium point of the process can be feasible and stable for
a given set of parameters. Then, only the restrictions from
the desired operating point have to be taken into account.

From these results, values for the dilution rate of the
process and the influent ammonium can be defined in
order to get a given nitrite to ammonium ratio in the
effluent. These values along with the restrictions proved
to be useful to define an open loop feeding law to repress
NOB and achieve the desired effluent. The simulation
results successfully showed the validity of the control law in
multiple scenarios, making it a good candidate for further
development and testing.
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Appendix A. STABILITY OF THE AOB AND NOB
SURVIVAL EQUILIBRIUM POINT

The Jacobian matrix at equilibrium Px is:




−D − k11µ
′

1
(S∗

NH
3
)Xe

AOB
−k12µ

′

2
(S∗

NO
2
)Xe

NOB
−k11DA −k12DN

k21µ
′

1
(S∗

NH
3
)Xe

AOB
−D − k22µ

′

2
(S∗

NO
2
)Xe

NOB
k21DA −k22DN

µ′

1
(S∗

NH
3
)Xe

AOB
0 0 0

0 µ′

2
(S∗

NO
2
)Xe

NOB
0 0





The eigenvalues of that matrix are difficult to obtain
analytically. However, it is enough to show that the eigen-
values are located in the left hemiplane of the complex
plane. Assuming feasible equilibrium points, Xeq

AOB > 0
and X

eq
NOB > 0. Then, the trace and determinant of J are:

trace{J} = −2D− k11µ
′

1X
eq
AOB − k22µ

′

2X
eq
NOB < 0.

det{J} = µ′

1µ
′

2(k12k21 + k11k22)DADNX
eq
AOBX

eq
NOB > 0.

First, since the trace is the sum of all eigenvalues, that
means that there is at least one eigenvalue with negative
real part. Secondly, since the determinant is equivalent to
the product of all eigenvalues, it can be concluded that
there are either two or four eigenvalues with negative real
part. Finally, applying the Routh-Hurwitz theorem to the
characteristic polynomial of J :

∆s = a4s
4 + a3s

3 + a2s
2 + a1s+ a0

where

a4 = 1

a3 = γ1 + 2D

a2 = γ1D + γ2 + γ3 +D2

a1 = γ2(DA +DN) + γ3D

a0 = γ2DADN

and

γ1 = k11µ
′

1X
eq
AOB + k22µ

′

2X
eq
NOB > 0

γ2 = (k12k21 + k11k22)µ
′

1X
eq
AOBµ

′

2X
eq
NOB > 0

γ3 = k11µ
′

1X
eq
AOBDA + k22µ

′

2X
eq
NOBDN > 0.

The corresponding Routh-Hurwitz tabulation is:

s4

s3

s2

s1

s0

�

�

�

�

�

�

�

�

�

a4 a2 a0
a3 a1 0
α1 a0 0
β1 0 0
a0 0 0

�

�

�

�

�

�

�

�

�

where
α1 = (a3a2 − a4a1)/a3 = [γ

2

1
D + γ3D + 2D

3
+ γ1(γ2 + γ3 + 3D

2
)

+ γ2(2D − DA − DN)]/(γ1 + 2D)

β1 = (α1a1 − a3a0)/α1 = [γ
2

1
γ3D

2
+ γ3D

2
(2γ2 + γ3 + 2D

2
)

+ γ1(γ3D(γ3 + 3D
2
) + γ

2

2
(DA + DN) + γ2γ3(D + DA + DN))

+ γ
2

2
(2DDA + 2DDN − D

2

A
− D

2

N
− 2DADN)

+ γ
2

1
γ2(DDA + DDN − DADN) + γ1γ2(3D

2
DA + 3D

2
DN − 4DDADN)

+ γ2D
2
(2DDA + 2DDN − 4DADN)]/(γ1 + 2D).

It is easy to see that a4 > 0, a3 > 0, a0 > 0. To see that
α1 > 0 and β1 > 0 note thatD ≥ DA andD ≥ DN. Hence,
since there is no sign change in the coefficients in the first
column of the Routh tabulation, all the eigenvalues of J
evaluated in a feasible Px have negative real part.
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