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Abstract

We apply the functional bosonization procedure to a massive Dirac
field defined on a 2 + 1 dimensional spacetime which has a non-trivial
boundary. We find the form of the bosonized current both for the bulk
and boundary modes, showing that the gauge field in the bosonized
theory contains a perfect-conductor boundary condition on the world-
sheet spanned by the boundary. We find the bononized action for the
corresponding boundary modes.

1 Introduction

A seemingly obvious yet fruitful property of quantum field theory systems
is that they must be susceptible of being described in terms of different sets
of fields. This finds an extreme realization in the bosonization procedure,
whereby a model can be defined in terms of either fermionic or bosonic
quantum fields, the equivalence between those two formulations is made
explicit by the existence of so called ‘bosonization rules’. Besides mapping
one set of fields into the other, they yield the dynamics the new variables
are subjected to, in order to correspond to the same physical model.
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In 1+1 spacetime dimensions, bosonization is a very powerful tool which
allows one to understand, and in some cases even to solve, some non-trivial
Quantum Field Theory models (see [I] for a complete list of references). It is
interesting to note that there is no fundamental theoretical stumbling block
to the extension of this path-integral approach to higher dimensions. Indeed,
there has been some progress in the application, although in an approximated
form, of a path integral bosonization procedure to theories in more than two
spacetime dimensions, dealing with both the Abelian and the non-Abelian
cases.

We are concerned here with 2 4 1 spacetime dimensions, where the path
integral bosonization framework yields the exact form of the bosonized form
of the current, while an inverse mass expansion can been used to determine
the corresponding local terms in the dual bosonic action. Locality plus gauge
invariance strongly constraint the form of the possible terms. Indeed, the
leading term in the dual action becomes a Chern-Simons term, while the
next-to-leading one corresponds, in the Abelian or non Abelian cases, to
a (local) Maxwell B]-B] or Yang-Mills term [, respectively. When the
fermions are massless, the above procedure becomes more involved, since
the even parity part of the dual action becomes non local, involving the
squared root of the Laplacian [3]. Note, however, that the bosonization rule
for the current is still the same as in the massive case, and that the dual
action still contains a Chern-Simons term. The need for the latter has been
shown explicitly, as a consequence of an eta function regularization required
to have a consistent gauge invariant theory [G.

Let us finally point out that the path integral bosonization approach can
be also employed in higher dimensions, and to situations where the fermionic
theory has more than one conserved currents. For example, bosonization
rules for fermionic currents in 3 + 1 space-time dimensions have been found
in terms of Kalb-Rammond fields [@].

In this paper, we are concerned with massive (mass = m) fermions on a
2 4 1 dimensional spacetime with a non-trivial boundary We are concerned
here with massive adapting those path-integral bosonization results in three
space-time dimensions to a situation where there is a non-trivial boundary.
Besides dealing with the necessary changes one has to implement to cope
with it (a non-trivial boundary calls for a non-trivial boundary condition),
we also include an auxiliary source for the fermionic current, localized on the
boundary of the spacetime manifold. This last step will allow us, as we shall
see, to express the current corresponding to the boundary modes in terms of
the (bulk) bosonized current.

This paper is organized as follows: in Sect. Blwe present the derivation of



the bosonized version of the model, within the context of the path integral
formulation. Then, in Sect.Bl we study the properties of the resulting bosonic
theory, and present our conclusions.

2 Generating functional

To begin with, let us introduce Sy(¢, ), the Euclidean action for a (free)
massive Dirac field in 2 + 1 dimensions:

Si0.0) = [ dad(@+my, )
where, for Dirac’s y-matrices, we have adopted the conventions:
’YL = Yu > {’Ym’YV} = 25;w . (2)

Letters from the middle of the Greek alphabet are assumed to run over the
values 0, 1, 2. The Euclidean metric has been assumed to be the identity
matrix d,,. We shall sometimes raise of lower a spacetime index for nota-
tional convenience, although, for this metric tensor, there is no difference
between them.

To proceed, we need to deal with the fermionic current, J,, = Qﬁyuzﬁ. A
first step will be to introduce an auxiliary source s,, which will allow us to
generate correlation functions involving that operator, in the same way as
when bosonization is constructed in the no-boundary case. This will amount
to adding to the fermionic action an extra term Sy(s,J), where

Sy(s,J) = i/dga;su(x)JM(x). (3)

The current appears also as part of a constraint, namely, that its normal
component, J,, vanishes on M = 9U, the boundary of U, the spacetime
region the field is confined to. The vanishing of the normal component of
the current ensures that the fermions are indeed confined to U. Let us now
introduce an explicit form for that constraint. To that end, we assume that
a parametrization has been introduced for M:

o = (00,01) — yulo), p=0,1,2, (4)

with the two parameters ¢, @ = 0, 1. In terms of the parametrization, the
unit normal 7, may be written as follows:

NM(U)

W M) = e and0d0), 6)

ﬁu(”) =



where we have introduced the tangent vectors eh (o) = g%(a).

Thus, the constraint can be conveniently introduced in terms of a func-
tional Fourier representation, at the expense of using an auxiliary scalar field,
&(o), living on M:

San(J) = / De e SMED)

Sm&J) =i [ do\/g(o) (o) fu(0)Tu(y(0)) (6)

with g(o) = det[gap(0)], gap(0) = ea(o)ej(o) denoting the induced metric
on M.

Therefore, putting together the previous elements, we see that a gener-
ating functional of current correlation functions, Z(s), for a massive Dirac
field in 2 + 1 Euclidean dimensions, in the presence of a boundary M, may
be written as follows:

Z(s) = / D DY Spq( ) e S@¥5) | (7)

with B B
S, v;s) = Sp(h, ) + Sy(s,J). (8)
Equivalently, recalling the representation ({l),

Z(s) = /DzﬁDi/_)D{ e—SWss) = Sm(é,J) (9)

The functional Spq, introduced in (@) is explicitly reparametrization in-
variant. Besides, since \/N2(0) = /g(c), we see that it may be rendered
also as follows:

Spl&, ) = i / @0 £(0) Ny (0)J(y(0)) | (10)

or, more conveniently from the point of view of the next steps in our deriva-
tion, also as:

Swed) = i [ e i), (11)
with:
() = / @0 £(0) Nu(o) 8l — y(0)] (12)

Then, the generating functional may be written as follows:

Z(s) = / DE D Dip ¢~ Srbtiste) (13)
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with

Sib.is) = [ @ao(p+ifrm. (14)
We then perform the change of variables:
Y(@) = ¢ Opa) , Pla) - e Py(a) (15)

and integrate over «, to obtain (discarding immaterial factors)
Z(s) = / Do DE DY D ¢St bistetda) (16)
Finally, we make the substitution 9, — b,

Z(s) = / Db 5[f,,(b)] DE Dip Dijp ¢ Sr(Pistett) (17)

where the condition fu(b) = €,u20yby = 0, which implies that b, is a pure
gradient [ has been introduced in the measure.
Introducing yet another auxiliary field, A, to implement that condition:

SIu0) = [ DA E A0, (13)
we get:
Z(s) = / DA Db DE Dy D e~ St Gbsstetb)=i [ d*aAufu®) (19)
Finally, we make the shift b — b — ¢ — s, to obtain:
Z(s,t) = / DA Db Dt WO [ E2AulluO-Fu@=Fu)]  (90)
where W (b) is the effective action for the b, field due to the fermion loop,

namely,
VO — det(P+i f+m) . (21)

The next step is to integrate out the auxiliary fields; to that end, we first
rearrange the integrals as follows:

2(s)= [DacS et

" / Dt ¢t ] Paeufu(d) ( / b e—W(b)—z’dexbufu(m) @)

"We assume that U is a simply connected manifold.



The integral over the b,-field requires the knowledge of the fermionic
determinant. Assuming that the large-mass expansion is applicable, we have,
keeping the leading term []:

W(b) ~ iﬁ 43 €,,7b0,b . (23)

Thus, the integral over b, yields, in this approximation:

/Db WO =i [ d¥abufu(A) _ d [ dProm e Aud Ay (24)
Performing the rescaling A, — \/%_WAH, and defining
i
JH — —eu,,,\&,AA = jﬂ’ (25)

V2r

which is the expression for the bosonized current, as seen by taking the
functional derivative with respect to s,, we get:

2= [oactsns
X /Dg efdgl‘cujﬂ + % deSU EM,,XAuayA)\ . (26)

Or,
Z(s,t) = /DAéM(Jn)efd%sujﬂi5fdgf‘fEMW“HE’“AA . (27)

Which is our final expression for the bosonized version of the system. Note
that the original constraint has been converted into the vanishing of 7,, = i
the normal component of the bosonized current, J,,, on M.

Now, regarding A,, as an Abelian gauge field, one can show, after some
algebra, that the vanishing of the normal component of the bosonized current
amounts to perfect conductor boundary conditions for that field. Indeed, the
condition:

N¥(o) Tuly(o)) = 0 (28)

becomes, in terms of Ay(0) = A,(y(o))eq(o), the components of A, (z)
projected to M,
OaAg(o) —0gAa(0) = 0, (29)

which are perfect-conductor boundary conditions: since the boundary is two-
dimensional, just the vanishing of the parallel component of the electric field.



A related observation is that one can verify that

) 7
V2T V2T

where the rhs depends on the projected components of the gauge field. Now
one can reinterpret the reasoning leading to the perfect-conductor boundary
conditions as follows: the term (B0), the only place where the auxiliary field &
appears, is invariant under constant shifts of &: (o) — £(0)+c¢. This global
continuous transformation implies, via Noether’s theorem, the existence of
a conserved current which is concentrated on the boundary:

/ Bacpe mndy Ay = / Po (o) e? 93 As(0)  (30)
M

Ouj®(@) = 0, j%0) = —*® Ag(0) . (31)

3 Discussion

Let us now consider the evaluation of the constrained path integral ([27). The
gauge field satisfies perfect-conductor boundary conditions on the boundary
M, and the exponent contains a Chern-Simons term, plus terms where the
gauge field couples linearly to sources. We will proceed to split A, in the
measure into a classical part Aff, satisfying the proper boundary conditions,
plus a fluctuating field af}, with trivial (Dirichlet) boundary conditions:

Au(z) = A(2) + au(2) (32)

such that a,(x) vanishes on M.
Using the definitions: Scs = F5 fdga; A0, Ay and wy, = s, +1,,
the classical equation of motion have the form:

55cs(A) = o / Brw,d,), 0.0A5(0) — 956 Aa(c) = 0. (33)

where the last equation follows from the constraint.
The equations above will admit as a solution a sum:

cl 0 1
Al(z) = AD(2) + AP (2), (34)
where A,(?) is the general solution to the homogeneous system:
0Scs(A) = 0, 0,0A5(0) —0gdAs(c) = 0. (35)

and A,(})(a:) a particular solution to the inhomogeneous equation (i.e., in-
cluding wy,).



Let us then consider the equations for A,(P). We see that, because of the
non-trivial boundary, the homogeneous equations are:

/d3xeuy>\(5Au8,,A>\ - %/ 2o P Ay (0)6Ag(a) = 0., (36)
M

plus the second equation in (B3)).

The vanishing of the second term above leaves room for many different
conditions which can be imposed on A, to make that happen. Recalling
the conservation of the boundary current j%(o) on the boundary, if we want
to keep the possibility of having non-vanishing values for that current, we
cannot use trivial conditions for A, since those fields are proportional to
components of the current. In what follows, we assume the border to be
static, namely, to have the form M = C x R, where C denotes a static closed
curve: the spatial boundary. Then, for assuming for the current j¢ the form:

3°(0) = plo) . j'(o) = plo)v (37)

where v is a constant with dimensions of velocity, we see that the assumption
above implies, from the continuity equation for the current:

./40 —vA = 0. (38)

The second term in ([B0]) then vanishes; indeed, one first deduces that 6.4, =
Oaw, and then one uses the continuity equation for the surface current.

Then, the rest of the construction is rather standard [?] using general
coordinates (rather than Cartesian ones) x; and g, such that the curve C
may be regarded as the coordinate curve xo = 0, there are new coordinates
xy = To, ¥y = x1 + vy and z, = 9, such that [BF) becomes:

Ay =0, (39)

where Aj is the gauge field component in the new coordinates.

The other two components are pure gauges, and can be extended to pure
gauges over U, because of the equations following from the bulk part of the
variation: A; = 0;¢. Using the independence of the action on the metric,
and extending ([B9) to all the spacetime region, as Aj(z’') = 0, we see that
the action evaluated on this configuration yields:

Acs(AD) = i% / &' e ALy Al = i% / P20 000]d  (40)



or, recalling that the boundary is at z/, = 0, the action adopts the Floreanini-
Jackiw [[@ form:

Acsg(AQ) = i%/dmodﬂrﬁ [Q0d1p — v(D19)?] (41)

where p(z9,21) = ¢(xg, 21,0).

Thus, the classical gauge field configurations contain the ¢ modes, con-
centrated on the boundary, which have to be integrated alongside the fluc-
tuating part a, which has trivial boundary conditions.

The inhomogeneous equation can then be solved by imposing trivial
boundary conditions on Af})
equations and their solutions do not involve the boundary modes. Finally,
the fluctuating part a, appears quadratically and does not involve the source
sy, so we can discard it.

Let us end this work by noting that in the last three years there has been
much interest in the application of dualities to analyze condensed matter
systems like topological insulators, superconductors, and fractional quan-
tum Hall effect systems [B],[II]-[I2]. In these studies bosonization in 2 + 1
dimensions play a relevant role [[3]-[I4] and, in this context, the case of
manifolds with boundary like those we discussed here would be of interest.
We expect to discuss this issue in a future publication.

. It is straightforward to see that the resulting
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