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Abstract

We analyze a recent treatment of the interaction of a magnetic quadrupole

moment with a radial electric field for a non-relativistic particle in a ro-

tating frame and show that the derivation of the equations in the paper is

anything but rigorous. The authors presented eigenvalues and eigenfunc-

tions for two sets of quantum numbers as if they belonged to the same

physical problem when they are solutions for two different models. In ad-

dition to it, the authors failed to comment on the possibility of multiple

solutions for every set of quantum numbers.

In a recent paper [1] the authors studied the interaction of a magnetic

quadrupole moment with a radial electric field for a non-relativistic particle

in a rotating frame. They solved the Schrödinger equation for a model potential

by means of a power-series method and obtained the lowest eigenvalues and

eigenfunctions. In this Comment we analyze the derivation of the main equa-

tions and discuss their solutions. We will not consider the validity of the model
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or its physical utility, for this reason we skip most of the steps followed by the

authors to derive their main equations and outline just those that are relevant

for the discussion of the results.

The authors stated that “In the geometric approach, the medium with a

disclination has the line element in cylindrical coordinates (in units such that

c = 1), given by

ds2 = −dt2 + dρ2 + α2ρ2dϕ2 + dz2, (1)

where −∞ < z < ∞, −∞ < t < ∞, ρ ≥ 0 and 0 ≤ ϕ ≤ 2π”. In this way they

were able to derive a differential operator that they called ~π that we do not

show here because it is not relevant for present purposes. In order to simplify

the differential equation for ~π2 the authors stated that “If we consider ∂ϕ = iℓ,

∂z = ik ...” It is not clear if the authors simply believe that those derivative

operators are just imaginary numbers and, besides, they did not indicate the

possible values of ℓ and k (at this point). Notice that they also failed to say

that h̄ = 1 in the chosen units.

The authors chose the “static scalar potential”

V (ρ) = a1ρ+ a2ρ
2 − a3

ρ
+
a4

ρ2
, (2)

and later stated that “The interaction is time-independent so that one can write

Ψ(t, r, ϕ, z) = e−i(εt−ℓϕ−kz)ψ(ρ).” It is worth pointing out that the differential

equation for ~π2 does not contain a time derivative so that the factor e−iεt is

unnecessary and the other two factors ei(ℓϕ+kz) are also unnecessary because

the authors had already removed the derivatives ∂ϕ and ∂z in the unorthodox

way indicated above.

In this way, and by means of a suitable change of variables, the authors

arrived at the eigenvalue equation
[

d2

dr2
+

1

r

d

dr
− V−2

r2
+
V−1

r
− V1r − r2 +W

]

ψ(r) = 0,

V−2 =
ℓ2

α2
+ 2ma4, V−1 =

2ma3√
η
, V1 =

2ma1
η3/2

, W =
κ2

η
, (3)

where the parameters ai, η and κ are given in the authors’ paper and will

not be shown here. In order to solve this equation the authors proposed the
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transformation

ψ(r) = e−
r2

2
−

Cr
2 r

ℓ2

α2
+Dh(r),

C =
2ma1
η3/2

, D = − ℓ2

α2
± α

√

ℓ2 + 2ma4α2, (4)

and stated that “the positive sign is physically acceptable”. One can easily

verify that the correct behaviour at origin is rs, where

s =
√

V−2 =
1

|α|
√

ℓ2 + 2ma4α2 6= ℓ2

α2
+D. (5)

This misprint is carried out throughout the paper.

The authors rewrote the resulting equation for h(r)

h′′(r) +

(

2
√

V−2 + 1

r
− 2r

)

h′(r) − V1h
′(r) +

2V−1 − V1
(

2
√

V−2 + 1
)

2r
h(r) +

(

V 2
1

4
− 2
√

V−2 − 2 +W

)

h(r) = 0, (6)

as the biconfluent Heun equation

H ′′(s) +

(

1 + a

s
− 2s− b

)

H ′(s) +

(

c− 2− a− b|a+ 1|+ d

2s

)

H(s) = 0, (7)

where the parameters a, b, c and d are given in the authors’ paper and here we

only show the correct expression for a

a = 2
√

V−2 =
2

|α|
√

ℓ2 + 2ma4α2. (8)

Since a > 0 then |a+1| = a+1 that greatly facilitates the calculation (it seems

that the authors did not realize this fact).

In order to solve the Heun equation the authors tried the power-series

H(s) =
∑

n=0

cns
n+p, (9)

and concluded that “from the coefficient of sp−2, we see that p = 0 or p = −a”.
This analysis is unnecessary after having discussed the behaviour of h(r) at

origin from which it follows that the physically acceptable solution is in fact

p = 0. However, the authors commented on this point: “For the sake of this
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paper, we shall consider only the solutions p = 0 from Eq. (27)”. It seems that

the authors believe that the other solution p = −a, already discarded previously,

is suitable. The coefficients cj satisfy the three-term recurrence relation

cj+2 = Ajcj+1 +Bjcj = 0, j = −1, 0, 1, . . . , c−1 = 0,

Aj =
2b(j + 1) + b(a+ 1) + d

2(j + 2)(j + 2 + a)
, Bj =

a− c+ 2j + 2

(j + 2)(j + 2 + a)
. (10)

In order to obtain polynomial solutions the authors chose the conditions c−a =

2 (n0 + 1) and cn0+1 = 0. From the former they obtained an expression for

the energy En0,ℓ and the latter tells us that not all the model parameters are

independent. For example, the authors decided to obtain a in terms of the other

parameters, n0 and ℓ; that is to say an0,ℓ. In this way the authors stated that

“a4 should be considered as a4n0,ℓ
”. Consequently, the potential (2) should be

written as Vn
0
,ℓ(ρ) because it changes with the quantum numbers through a4.

As a result each pair En0,ℓ, ψn0,ℓ(ρ) obtained from the authors’ procedure cor-

responds to some model potential Vn
0
,ℓ(ρ). Such quantum-mechanical models

are known as quasi-exactly solvable or conditionally solvable and some variants

of this model, even more general ones, have already been treated before in a

much more rigorous way [2, 3]. However, the authors presented their explicit

results E1,ℓ, ψ1,ℓ(ρ) and E2,ℓ, ψ2,ℓ(ρ) as if they were energies and states of the

same model and as if the problem was exactly solvable.

The fact that the model potential depends on the quantum numbers when we

force that kind of truncation condition is not the only feature of the approach

that they failed to mention. Another important point is that the condition

cn0+1 = 0 is a nonlinear equation that may have more than one solution. In

order to illustrate this point we substitute 2 (n0 + 1)+ a for c in cn0+1 = 0 and

solve for a. For example, when n0 = 1 we obtain

a±1,ℓ =
4− 2b2 − bd±

√
b4 − 8b2 − 8bd+ 16

b2
. (11)

Of course, we should choose a real, positive root. When n0 = 2, a is a root of a
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cubic polynomial

a3b3 + a2b
(

9b2 + 3bd− 32
)

+ a
(

23b3 + 18b2d+ 3b
(

d2 − 48
)

− 32d
)

+

+15b3 + 23b2d+ b
(

9d2 − 112
)

+ d
(

d2 − 48
)

= 0. (12)

If, for a given n0 there are more than one real positive root an0,ℓ then we would

have eigenvalues and eigenfunctions for more than one potential Vn0,ℓ for such

pair of quantum numbers.

The problem of multiple solutions emerging from a truncation condition was

also overlooked by Bakke [4] in his calculation of bound states for a Coulomb-

type potential induced by the interaction between a moving electric quadrupole

moment and a magnetic field.

Summarizing: we have clearly seen that the derivation of the equations in

the paper by Hassanabadi et al [1] is anything but rigorous. They presented

eigenvalues and eigenfunctions for two sets of quantum numbers as if they be-

longed to the same physical problem when they are solutions for two different

models. In addition to it, the authors failed to realize the possibility of multiple

solutions for every set of quantum numbers.

Addendum

In what follows we analyze the reply to present Comment. With respect to our

criticism about the wrong behaviour at origin the authors stated that “It is a

typo in one part of the article only and has no effect on the results”. However,

it is worth noticing that their wavefunctions (39) and (43) already exhibit the

wrong behaviour at origin (and we suppose that they are part of their results).

The authors appear to believe that the expressions ∂ϕ = iℓ and ∂z = ik are

correct.

The authors stated that they verified the correctness of their results with

other methods, such as “Quasi-Exactly-Solvable method and Ansatz method”;

unfortunately, they did not give any reference and we do not know what they
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exactly mean by such names. They seem to be something different from the

Frobenius method.

The main point is that the results given by the Frobenius method, followed

by a suitable truncation of the series, are not wrong by themselves. What is

wrong is the interpretation of such results. In the Comment we said (or, at least,

tried to) that the authors obtained eigenvalues for different model potentials

and presented them as if they were the spectrum of a single problem. In this

Addendum we expand on this issue and show revealing results.

For present discussion we rewrite the eigenvalue equation as

u′′(x) +
1

x
u(x)− γ2

x2
u(x)− a

x
u(x)− bxu(x)− x2u(x) +Wu(x) = 0, (13)

where γ, a and b are real model parameters that have nothing to do with the

parameters in the equations discussed in the paper and Comment. Only the

form of the equation is the same. This eigenvalue equation has square integrable

solutions
∫ ∞

0

|u(x)|2 x dx <∞, (14)

for all −∞ < a, b <∞ for an infinite number of discrete values ofW (a, b). Such

eigenvalues satisfy the Hellmann-Feynman theorem [6]

∂W

∂a
=

〈

1

x

〉

> 0,
∂W

∂b
= 〈x〉 > 0. (15)

In what follows we try to solve the eigenvalue equation (13) by means of the

Frobenius method and the ansatz

u(x) = xs exp

(

− b

2
x− x2

2

)

P (x), P (x) =

∞
∑

j=0

cjx
j , s = |γ| . (16)

The expansion coefficients cj satisfy the three-term recurrence relation

cj+2 = Ajcj+1 +Bjcj , j = −1, 0, 1, 2, . . . , c−1 = 0, c0 = 1,

Aj =
2a+ b (2j + 2s+ 3)

2 (j + 2) [j + 2 (s+ 1)]
, Bj =

4 (2j + 2s−W + 2)− b2

4 (j + 2) [j + 2 (s+ 1)]
. (17)

If the truncation condition cn+1 = cn+2 = 0, cn 6= 0, n = 0, 1, . . ., has physically

acceptable solutions for a, b andW then we obtain exact eigenfunctions because
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cj = 0 for all j > n. This truncation condition is equivalent to Bn = 0, cn+1 = 0

or

W (n)
s = 2 (n+ s+ 1)− b2

4
, cn+1(a, b) = 0, (18)

where the second condition determines a relationship between the parameters

a and b. On setting W =W
(n)
s the coefficient Bj takes a simpler form:

Bj =
2 (j − n)

(j + 2) [j + 2 (s+ 1)]
. (19)

Notice that the truncation condition does not provide all the solutions but only

those for which the parameters a and b exhibit certain relations. The reason is

that this problem is not exactly solvable, as the authors appear to believe, but

quasi-exactly solvable or conditionally solvable (see [7–10] and, in particular,

the remarkable review [11] and references therein for more details).

As an illustrative example we consider the eigenvalue equation (13) with

b = 1. In this case cn+1(a, 1) = 0 is a polynomial function of a of degree

n + 1 and it can be proved that all the roots a
(n,i)
s , i = 1, 2, . . . , n + 1, are

real [7, 8]. For convenience we arrange the roots so that a
(n,i)
s > a

(n,i+1)
s and

stress the point that all of them correspond to the same eigenvalue W
(n,i)
s =

W
(n)
s . It is important to realize that the eigenvalue W

(n)
s is common to a

set of different quantum-mechanical problems because the potential depends

on a. The origin of the authors’ misconception can be traced back to this

obvious fact. For example, the eigenvalues En0,l obtained by them correspond

to different quantum-mechanical problems and are, consequently, meaningless.

The polynomial solutions

u(n,i)s (x) = xs exp

(

−x
2

2

)

P (n,i)
s (x), P (n,i)

s (x) =

n
∑

j=0

c
(n,i)
j,s xj , s = |γ| , (20)

share the same eigenvalue W
(n)
s and also correspond to different quantum-

mechanical problems.

The actual eigenvalues Wν,s(a), ν = 0, 1, . . ., Wν,s < Wν+1,s, of equation

(13) (for a given value of b) are curves in the a − W plane. It follows from

the Hellmann-Feynman theorem (15) that
(

a
(n,i)
s ,W

(n)
s

)

is a point on the curve
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Wi−i,s(a). In order to verify this fact we need the actual eigenvalues Wν,s(a)

that we have to obtain by means of a suitable approximate method because

the eigenvalue equation (13) is not exactly solvable [8, 11]. Here, we resort to

the well known Rayleigh-Ritz variational method that is known to yield upper

bounds to all the eigenvalues [12] and, for simplicity, choose the non-orthogonal

basis set of Gaussian functions
{

ϕj,s(x) = xs+j exp
(

−x2

2

)

, j = 0, 1, . . .
}

.

In order to facilitate the variational calculations we choose s = 0 in what

follows. Figure 1 shows several eigenvalues W
(n)
0 given by the truncation con-

dition (red points) and the lowest actual eigenvalues Wν,0(a) obtained from

the variational method (blue lines). We see that there are solutions to the

eigenvalue equation (13) for all values of a, that each Wν,0(a) is a continuous

function of a that satisfies the Hellmann-Feynman theorem (15) and that each

pair
(

a
(n,i)
0 ,W

(n)
0

)

is a point on those curves as argued above. Any vertical

line starting from a given value of a will pass through no more that one red

point. It means that the truncation condition yields only one eigenvalue and

just for a particular model potential. We realize that the eigenvalues obtained

by Hassanabadi et al [1] have no physical meaning unless one connects the points
(

a
(n,i)
s ,W

(n)
s

)

properly.
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Figure 1: EigenvaluesW
(n)
0 (a, 1) from the truncation condition (red points) and

Wν,0(a) obtained by means of the variational method (blue lines)
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