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We investigate the problem of backscattering off a time-dependent and spatially extended barrier in a
one-dimensional noninteracting electron gas. By performing a perturbative expansion in the backscattering
amplitude, we compute the total energy density of the system. We show how the free fermion spectrum and the
conductance of the system are affected by the interplay between dynamical and geometrical properties of the
impurity.
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The physics of tunneling through time-dependent barriers
is a topic of great importance in the subject of correlated
quasi-one-dimensional electron transport. A considerable ef-
fort has been made over the last few years, focused on the
understanding of quantum transport, both experimentally1

and theoretically.2 Despite the possible technological ad-
vances that the control of charge and spin currents could
bring up, we are faced with the fundamental question of what
we could learn about electron correlations using time-
dependent potentials as out-of-equilibrium probes. To answer
this question, at least partially, more theoretical work is
needed to understand the detailed dynamics induced by this
type of perturbation.

An interesting observable that characterizes a tunneling
process is the energy resolved current jsvd. In Ref. 3, the
relevance of this quantity in the upper region of the spectrum
si.e., above the Fermi energy, v.EFd was emphasized, in
connection to correlations in the leads. To leading order in
the tunneling amplitude, the energy resolved current jsvd is
related to a simpler observable, namely, the electron energy
distribution function nsvd, also referred to as the total energy
density sTEDd in the literature4 ffor a precise mathematical
definition see Eq. s5d belowg. This quantity describes the
perturbation of the ground state in the leads due to tunneling
processes. For a noncorrelated material, for instance, nsvd
should vanish above the Fermi surface. Any population of
the spectrum above the Fermi energy is originated from a
combined effect of correlations and multiparticle tunneling,
due, on its turn, to out of equilibrium processes.3 In Ref. 5,
nsvd was evaluated in a model of correlated one-dimensional
fermions with a time-dependent impurity coupled to the elec-
tron density through a forward-scattering coupling. In Ref. 6
this model was analyzed by means of functional
bosonization,7 focusing, in particular, on the transients pro-
duced by turning on the oscillatory impurity strength.

It is important to notice, however, that backscattering ef-
fects are expected to be relevant as a rule, in all but rather
exceptional experimental settings.8 Possible experimental re-
alizations where backscattering will play a central role are
one-dimensional s1Dd wires in the presence of a time-
dependent gate voltage and a Hall bar with a constriction.9

The problem of backscattering by dynamical impurities is
usually a very difficult one. Some models, like the spinless

Luttinger model with a deltalike impurity, can be solved ex-
actly for the specific value of the Luttinger parameter K= 1

2 .10

However, for general strengths of the electron-electron inter-
action and finite-ranged impurities, there are no available
closed analytical solutions seven in the free cased. Therefore
it is of fundamental importance to develop different strate-
gies in such a context. Recently,11 effects of backscattering in
a Luttinger liquid due to a time-dependent ultralocalized im-
purity were studied perturbatively, finding a striking en-
hancement of the total current for special values of the Lut-
tinger parameters. An alternative, nonperturbative point of
view was adopted in Ref. 12, where an adiabatic approxima-
tion was invoked in order to get the distortion of the noncor-
related TED due to the backscattering amplitude and the ge-
ometry of the impurity, i.e., for noninteracting fermions in
the presence of an extended barrier. Since the main results of
Ref. 12 sa peak structure of the TEDd were obtained in a
strong coupling and low frequency regime suvu@Vd, it is
certainly desirable to have a quantitative knowledge of the
TED for the same problem snoninteracting fermions with a
time-dependent barrierd but in the weak coupling regime and
for all external frequencies. This is the main motivation for
the present work. We study the effects that the backscattering
off an extended dynamical impurity of width a and ampli-
tude gb, oscillating with frequency V, will have on the spec-
trum of a one-dimensional noninteracting fermion gas. Our
results, though obviously valid only for

gba

"vF
sufficiently

small, are not restricted to small values of the external fre-
quency. We then expect to capture the main features related
to the time-dependent nature of the perturbation. We com-
pute the TED up to second order in the backscattering pa-
rameter

gba

"vF
. We also evaluate the change in the conductance

DG produced by the time-dependent barrier. We show that,
in contrast to the result obtained in Ref. 11 for a Luttinger
system with an ultralocalized impurity swhen specializing
the result to the case of noninteracting electronsd, in a system
of noncorrelated electrons an extended geometry gives rise
to a nontrivial dependence of DG on the frequency of the
perturbation. In particular we find that the conductance of the
system remains unchanged for high frequencies s Va

vF
@1d. Let

us stress that we deal with noninteracting electrons through-
out this work. Although the more involved Luttinger liquid
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case is, of course, more important, the analytical results we
present here will be helpful as a limiting case of the interact-
ing problem.

As the computational starting point, let us consider the
following Hamiltonian, which describes the interaction of
spinless fermions with an external effective time-dependent
potential Vsx , td, responsible for backscattering transitions
between right and left movers:

H = H0 + Himp, s1d

where

H0 = i"vFE dxscR
†]xcR − cL

†]xcLd s2d

and

Himp = gbE dxscR
†cL + cL

†cRdVsx,td . s3d

Above, gb is the coupling constant associated to the back-
ward scattering of electrons caused by the presence of a
time-dependent harmonic barrier. Let us mention here that
the simultaneous presence of both forward and backward
scattering by the impurity does not bring about any new
effect, at least up to second order in the couplings. In fact, in
the absence of impurity-backscattering the TED has been
computed exactly in Refs. 5 and 6, showing a sideband struc-
ture that reflects the inelastic nature of time-dependent scat-
tering. Since up to second order in the couplings the crossed
term that would relate forward and backward contributions
vanishes, the combined effect will be a direct superposition
of the above-mentioned results and the ones we present here.

Although we have verified that our method works inde-
pendently of the explicit details of Vsx , td, in order to explore
the effect of finite range barriers, we consider a square po-
tential profile,

Vsx,td = fQsx + a/2d − Qsx − a/2dgcossVtd , s4d

where a is the width of the square potential and V the oscil-
lation frequency.

We are particularly interested in obtaining the TED for the
above model. We recall that in the Wigner representation the
TED can be written in terms of the fermion correlation func-
tion as

nsv,X,Td = − iE
−`

`

dteivtG+−sr = 0,X,t,Td , s5d

where we have introduced the closed time path formalism13

in which fermion propagators are time-ordered along the
usual Schwinger-Keldysh time contour:

G+−sx,x8d = ikC†sx8dCsxdl ,

G−+sx,x8d = − ikCsxdC†sx8dl ,

G++sx,x8d = − ikTCsxdC†sx8dl ,

G−−sx,x8d = − ikT̃CsxdC†sx8dl , s6d

where T and T̃ denote the time and antitime ordering opera-
tions, respectively. Above, r, t and X, T are the spatial and
temporal relative and center of mass coordinates, respec-
tively.

In realistic systems the frequency V is expected to be
quite high so that it is unlikely that the explicit time resolu-
tion of the TED would be experimentally accessible. Then, it
is natural to consider the time average, over the period of the
perturbation:

n̄sv,Xd =
V

2p
E

0

2p/V

dTnsv,X,Td . s7d

Let us stress that this averaged TED is a purely dynamical
quantity, i.e., in general it is not connected to the static case.
In particular, as explained in Ref. 12 the static limit V→0
cannot be reproduced from this expression ssee belowd.

At this point we calculate the average TED as an expan-
sion up to the first nontrivial order in the dimensionless pa-
rameter gba /"vF. As is usual in the context of 1D fermionic
models, we work in the chiral representation, introducing a
spinor C with components cL and cR. Computing the cor-
rections to the Green functions G+−

R and G+−
L due to the time-

dependent barrier, one readily verifies that the first order con-
tributions vanish. Considering then the second order
corrections, inserting the results in Eq. s5d, and finally using
the definition given in Eq. s7d, we obtain the following ex-
pressions for the average TEDs for both right and left com-
ponents fnRsv ,Xd=nLsv ,−Xd=Nsv ,Xdg:

Nsv,Xd =
1

vF
FQs− vd − fQsX + a/2d − QsX − a/2dgSQs− vd

gb
2a2

2"2vF
2 hFfs2v + Vda/vFg + Ffs2v − Vda/vFgj

− Qs− vd
gb

2sa/2 − Xd2

2"2vF
2 hFfs2v + Vdsa/2 − Xd/vFg + Ffs2v − Vdsa/2 − Xd/vFgj

− Qs− v − Vd
gb

2sa/2 + Xd2

2"2vF
2 Ffs2v + Vdsa/2 + Xd/vFg − Qs− v + Vd

gb
2sa/2 + Xd2

2"2vF
2 Ffs2v − Vdsa/2 + Xd/vFgD

− QsX − a/2d
gb

2a2

2"2vF
2 hfQs− vd − Qs− v − VdgFfs2v + Vda/vFg + fQs− vd − Qs− v + VdgFfs2v − Vda/vFgjG , s8d
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where Fszd= 1−cos z
z2 . Let us recall that this result is valid for

u
gba

"vF
u!1. Analyzing the above expression one sees that the

average TED is a superposition of free TEDs centered at the
origin of energies and at ±V. This feature is a direct conse-
quence of the perturbative order we are working on. Indeed,
we have verified that terms corresponding to larger shifts in
v will also contribute to Nsvd when next order corrections
are taken into account. In analogy to the behavior of the TED
when only forward scattering barriers are present,7 the coef-
ficients that weight the contributions of the various free
TEDs depend on V and the impurity geometry through the
width a. However, in contrast to that case, in which the av-
erage TED coincides with the static case fwhich is in turn
equal to the free value: Nsvd=Qs−vdg at every spatial point
when V→0, in the present case this limit cannot be obtained
inside the barrier. In fact, one gets one-half of the right
answer for the static limit in this perturbative order. On the
other hand, outside the barrier there is no problem and both
results for Nsvd coincide for V→0 fthese results are also
equal to the free case, see Eq. s8dg. This disagreement found
for TEDs evaluated inside the barrier is not surprising since
the limit V→0 in Eq. s7d is not well-defined.

In Figs. 1 and 2 we display the behavior of n̄svd=Nsvd at
the center of the barrier and for fixed values of gb and a. We
can identify two different regimes in the behavior of Nsvd,
according to the values of Va

vF
. For Va

vF
!2.67 splease see Fig.

1d, Nsvd has a maximum in − va
vF

<2.67; this corresponds to
the quasistatic region. Figure 2 shows an example of the
other regime, the high-frequency region, where Va

vF
@2.67.

Here we note the appearance of a depression in the spectrum

centered at v=−V /2, and a peak at v=V /2. The peculiar
value Va

vF
<2.67 has been determined numerically, searching

for the region of maximum superposition of both previous
effects. It is interesting to note that one peak centered around
this value also appears in the context of the adiabatic ap-
proximation, when considering the case gba=1 sFigs. 1 and 2
of Ref. 12d. However, we do not take the comparison further,
since the adiabatic approach of Ref. 12 focused on the strong
coupling region, whereas here we deal with the opposite re-
gime.

In contradistinction to the case of forward scattering bar-
riers, impurities of the backscattering type affect the trans-
port properties of the system. In order to obtain the conduc-
tance G for this system, we must analyze the linear response
of the current under the influence of an external bias V. The
effect of this voltage can be introduced, as usual, by modi-
fying the Hamiltonian density H given in Eq. s1d as H
→H+mLcL

†cL, where mL=−eV is the chemical potential
coupled to fermions of left chirality. The conductance is then
given by

G = limV→0
J

V
, s9d

with

J = − ievF
V

2p
E

0

2p/V

fG+−
R sx,t,x,td − G+−

L sx,t,x,tdgdt ,

s10d

where J is the dc component of the current. As is well-
known, in the absence of impurities, the conductance of a 1D
noncorrelated Fermi system is G=e2 /h, where h is Planck’s
constant. We have computed the second order correction to
G due to the presence of the time-dependent backscattering
barrier considered in this work. The result is

DG = −
e2

h
2

gb
2

"2

sin2fVa/2vFg
V2 . s11d

We then found that the conductance decreases for
Va /2vFÞnp. The magnitude of the effect depends on the
amplitude of the barrier, its width, and the frequency of the
oscillation. We see that in contrast to the result obtained for a
point impurity,11 where DG is independent of frequency, we
get a nontrivial oscillatory behavior of DG as a function of
the external frequency V. In particular, in the low frequency
regime we predict a maximum decrease of G, similar to the
behavior corresponding to static barriers, as expected. On the
other hand, for Va /2vF=np swith n an integer greater than
1d G is not affected by the barrier. The same phenomenon
takes place in the high frequency region.

To summarize, we have studied the effect of a back-
scattering time-dependent barrier on the spectrum and trans-
port properties of a noncorrelated 1D electronic system. We
focused our attention not only on the out of equilibrium
physics caused by a dynamical impurity but also on the role
played by its extended geometry. We performed a perturba-
tive computation of the total energy density of the system

FIG. 1. Averaged TED for gb=1/Î2, a=1, and V=0.1 s"=vF

=1d. The dashed line corresponds to the free case.

FIG. 2. Averaged TED for gb=1/Î2, a=1, and V=20 s"=vF

=1d.
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Nsvd. In the low frequency regime we found a maximum of
Nsvd in − va

vF
<2.67; this corresponds to the quasistatic re-

gion. In the high frequency regime Nsvd displays a depres-
sion in the spectrum centered at v=−V /2 and a peak at v
=V /2. Concerning the conductance of the system we
showed that, in contrast to the behavior predicted for an ul-
tralocalized barrier, for an extended impurity it changes as an

oscillatory function of Va /2vF fsee Eq. s11dg. This result,
together with the one obtained in Ref. 11 could be used to
experimentally characterize the spatial structure of constric-
tions through conductance measurements.
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