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We study the ground state properties of a quantum antiferromagnet on the kagomé lattice in the presence of
a magnetic field, paying particular attention to the stability of the plateau at magnetization 1/3 of saturation
and the nature of its ground state. We discuss fluctuations around classical ground states and argue that
quantum and classical calculations at the harmonic level do not lead to the same result in contrast to the
zero-field case. For spin S=1/2 we find a magnetic gap below which an exponential number of nonmagnetic
excitations are present. Moreover, such non-magnetic excitations also have a smuch smallerd gap above the
threefold degenerate ground state. We provide evidence that the ground state has long-range order of valence-
bond crystal type with nine spins in the unit cell.
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I. INTRODUCTION

The appearance of exotic quantum phases in systems de-
scribed by two-dimensional frustrated antiferromagnets is
presently the subject of intense research ssee, e.g., Refs. 1
and 2 for recent reviewsd. The Heisenberg antiferromagnet
on highly frustrated lattices such as the pyrochlore and
kagomé lattice has a huge degeneracy of the classical ground
state such that no magnetic order arises at any temperature
ssee, e.g., Ref. 3 for a recent reviewd. At the quantum level
one may then obtain different exotic phases without mag-
netic sNéeld order. One such phase is the so-called “valence-
bond crystal,” which is characterized by formation of local
singlets in a long-range ordered pattern. An even more exotic
phase, namely, one without any kind of long-range order, is
suspected to arise in the S=1/2 Heisenberg model on the
kagomé lattice.1,4–7 In the latter case, there is a small spin
gap and, although this is still under discussion,8,9 the ground
state is suspected to be disordered. In particular, a huge num-
ber of singlets sexponentially growing with the system sized
is found inside the spin gap, which is reminiscent of the
classical degeneracy.

The spin S=1/2 kagomé Heisenberg antiferromagnet
sKHAFMd is realized, e.g., in volborthite,10 although pre-
sumably in some distorted form. Another possible realization
is given by atomic quantum gases in optical lattices.11 In the
latter case, magnetization corresponds to particle number and
a magnetic field to chemical potential, opening the possibil-
ity to perform experiments for the behavior of the spin model
in a magnetic field.

The magnetization process of the KHAFM has been stud-
ied theoretically both for classical12–14 as well as quantum
spins.14–17 Numerical results for the magnetization curve of

the S=1/2 Heisenberg model exhibit, among others, a clear
plateau at 1 /3 of the saturation magnetization14–17 ssee also
Fig. 1d. For the classical KHAFM at one third of the satura-
tion field thermal fluctuations select collinear states, but there
appears to be no real order.12 For the S=1/2 KHAFM, we
will argue in this paper that the state with magnetization
kMl=1/3 exhibits order of the valence-bond crystal type sthe
spin-spin correlation functions are short ranged18d, although
it shares some similarities with the case kMl=0.

In the present paper we study the XXZ model in a mag-
netic field h, given by

H = Jo
ki,jl

ssi
xsj

x + si
ysj

y + Dsi
zsj

zd − ho
i

si
z, s1d

where ki , jl indicates nearest neighbors on the kagomé lattice
ssee inset of Fig. 1d, si

a are spin-half operators acting at site i
and D is the XXZ anisotropy.

II. EXACT DIAGONALIZATION FOR THE S=1/2
HEISENBERG MODEL

First we present numerical results that have been obtained
by Lanczos diagonalization of the Hamiltonian s1d using the
program package SPINPACK.19 All numerical computations
have been performed on lattices with N sites subject to peri-
odic boundary conditions.

The main panel of Fig. 1 shows the boundaries of the
fully polarized state swhich we normalize to kMl=1d and a
state with kMl=1/3 in the XXZ model s1d. Figure 2sad shows
the low-lying excitations above the kMl=1/3 ground state
computed by exact diagonalization for N=36 and D=1. The
dashed lines show the gap to states with Sz=5 and 7, which
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vanishes at the boundaries of the plateau. The maximum
magnetic gap occurs in the middle of the plateau where these
two lines intersect, and we will use this as a definition of the
magnetic gap. Horizontal straight lines denote states with
Sz=6 si.e., kMl=1/3d and correspond to nonmagnetic exci-
tations. The large number of nonmagnetic excitations below
the magnetic gap is reminiscent of the classical degeneracy.
The shape of the integrated density of nonmagnetic excita-
tions fsee Fig. 2sbdg is very similar to the corresponding in-
tegrated density of singlets at kMl=0 ssee Fig. 2 of Ref. 5d.
In combination with the disordered classical ground state,12

one might be tempted to take this as evidence that the ground
state of the S=1/2 KHAFM at kMl=1/3 is also disordered.

However, we will argue next that here classical and quantum
fluctuations are in fact not equivalent at the harmonic level,
and will then present evidence in favor of an ordered state
for S=1/2.

III. FLUCTUATIONS AROUND THE CLASSICAL
GROUND STATE

Classical sthermald fluctuations were studied in Refs. 12,
14, and 20 such that we make only a few comments valid for
nonzero magnetization and arbitrary anisotropy D. As was
shown explicitly for D=1 in Ref. 12, thermal fluctuations
select collinear “up-up-down” sUUDd configurations at kMl
=1/3 against the other noncollinear configurations that also
minimize the classical energy, but all UUD configurations
have the same spectra of harmonic fluctuations. Indeed, a
local change of variables shows that the covering-dependent
Hamiltonians of classical Gaussian fluctuations14 are equiva-
lent.

The role of quantum fluctuations is, however, radically
different. Now, quantum commutation relations have to be
preserved and the change of variables used for the classical
case is no longer possible. To analyze this in more detail, we
compute the zero-point contribution to the ground state en-
ergy at kMl=1/3 for two different coverings with q=0 and a
˛33˛3 structure, respectively sthe latter can be found, e.g.,
in Fig. 1 of Ref. 12d. By writing the spin operators on each
site in terms of bosonic creation and annihilation operators,
as

sWl = SS 1
˛2S

sal
† + ald,i

1
˛2S

sal
† − ald,1 −

al
†al

S D , s2d

we obtain the Hamiltonian

H = H0 +
S
2

fH2 + Os1/˛Sdg , s3d

where H2 is quadratic in creation and annihilation operators
and the Os1/˛Sd part contains higher orders. By Fourier
transforming, we obtain

H2 =
J
2o

kW
sa−kW

†i ,akW
i d · SM̃+ M̃−

M̃− M̃+
D

ij

· Sa−kW
j

akW
†j D , s4d

where M̃± are 333 and 939 matrices for the q=0 and the
˛33˛3 states since these coverings have three and nine sub-
lattices, respectively. No further change of variables is pos-
sible here since the commutation relations of the sus2d alge-
bra of the spins have to be preserved. At D=1 one finds for
the zero-point fluctuations 1

2okWvkW =JS /3 and <0.5643JS for
the q=0 and the ˛33˛3 state, respectively, demonstrating
the inequivalence of the different coverings at the quantum
level.

IV. EFFECTIVE MODEL FOR THE ISING LIMIT

Let us now return to the extreme quantum case S=1/2
and study the anisotropic XXZ limit. For D@1, we can adapt

FIG. 1. Boundaries of the kMl=1/3 plateau as a function of the
anisotropy D for different lattice sizes ssee legendd and the transi-
tion to saturation kMl=1 for the thermodynamic limit sthin full
lined. Inset: kagomé lattice with an ordered state of the valence-
bond crystal type at kMl=1/3: circles in certain hexagons indicate
local resonances between different Néel configurations on the hexa-
gons, arrows indicate spins which are aligned with the field.

FIG. 2. Low-lying excitations above the kMl=1/3 plateau for
the S=1/2 Heisenberg antiferromagnet on the N=36 kagomé lat-
tice. sad Full lines show all excitations with Sz=6 in the given en-
ergy range, bold dashed lines the lowest excitations with Sz=5 and
Sz=7 as a function of magnetic field h. sbd Excitation energy versus
number of states with Sz=6 below that energy. One observes a total
of 100 states below the magnetic gap in the middle of the kMl
=1/3 plateau scorresponding to the largest gap to magnetic
excitationsd.
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the analysis of Refs. 21 and 22 of the Ising model in a trans-
verse field to the XXZ model by replacing the expansion in
the transverse field with an expansion in powers of 1 /D.

In the Ising limit D=‘, the ground states are those states
in which around each triangle, two spins point up and one
down. This ground state space of the Ising model can then be
taken as configuration space for a perturbative treatment of
the XY part of the XXZ Hamiltonian.

For sufficiently large lattices, the lowest nontrivial order
is third order, flipping simultaneously pairwise antiparallel
spins around a hexagon. This is described by an effective
Hamiltonian21,22

Heff = l o
hexagon i

ssi,1
+ si,2

− si,3
+ si,4

− si,5
+ si,6

− + si,1
− si,2

+ si,3
− si,4

+ si,5
− si,6

+ d ,

s5d

where the spin operator si,j
a operates at the jth site

around hexagon i and l=3J / s2D2d. Note that in the Ising-
basis the effective Hamiltonian s5d has only off-diagonal ma-
trix elements of size l.

The configurations of the Ising model can be mapped to
dimer coverings of the dual lattice which in the case of the
kagomé lattice is the hexagonal lattice. Now one can use
known results for dimer coverings23,24 to write down the
asymptotic growth law for the number of Ising configura-
tions Nconf on an N-site kagomé lattice:

Nconf ~ s1.11372781 . . . dN. s6d

Exploiting results for the related quantum dimer model on
the hexagonal lattice,25 Moessner and Sondhi concluded22

that the ground state of the effective Hamiltonian s5d is of the
valence-bond crystal type. To be more precise, the case stud-
ied in Refs. 22 and 25 corresponds to l,0, whereas we have
l.0, but there exist unitary transformations which change
the sign of l.26 Hence, the spectra of the effective Hamil-
tonian s5d are invariant under l→−l. The three-fold degen-
erate ground-state wave functions are sketched in the inset of
Fig. 1. Circles in one third of the hexagons denote reso-
nances between the two different Néel states on the sur-
rounding hexagon; a background of the remaining third of all
spins points in the direction of the field. Note that these wave
functions were argued in22,25 to yield a qualitatively correct
description, but they should not be used for a quantitative
analysis. Furthermore, we emphasize that due to the reso-
nances, these wave functions are of a purely quantum nature
and have no counterparts as unique states of the classical
Heisenberg model.

According to the above, at large D the kMl=1/3 state of
the XXZ model on the kagomé lattice should be threefold
degenerate with a gap to the next nonmagnetic excitations.
To check this conclusion and compare it to Fig. 2, let us look
at the spectrum of the effective Hamiltonian s5d. This effec-
tive model has a substantially reduced Hilbert space se.g., for
N=36 there are only 120 statesd. We can therefore go to
larger lattice sizes than in the full model. Results for kagomé
lattices with up to N=144 sites are shown in Fig. 3. Addi-
tional short cycles wrap around the boundaries of the lattice
for Nł27 and lead to nongeneric ground states of Heff. Ac-

cordingly, systems with N,36 should not be considered and
are not included in Fig. 3.

Two features are apparent in Fig. 3, at least for the two
biggest system sizes sN=108 and 144d. Firstly, there are two
further levels above the ground state. The finite-size depen-
dence of the second excited state is shown by l=2 in the
inset of Fig. 3 and indicates that it is converging to dE→0,
which is consistent with the expected threefold degeneracy
of the ground state in the thermodynamic limit. Secondly,
there is a huge density of states emerging for dEø1.3l. The
finite-size behavior of the l=5 level in the inset of Fig. 3
indicates that a gap of the order ,1.2l to these higher ex-
cited states persists in the thermodynamic limit. For N=108
and 144 there are two further levels in between. It is difficult
to extrapolate their energies to N→‘, but the behavior of the
l=3 excited level in the inset of Fig. 3 at the largest values of
N suggests that they retain a finite gap in the thermodynamic
limit. Inspection of the wave-functions indicates that these
additional low-lying levels may arise from the three classical
˛33˛3 configurations.

V. FROM THE ISING LIMIT TO THE HEISENBERG
MODEL

Although the effective Hamiltonian leads to higher degen-
eracies of some excited states, the N=36 curves in Figs. 2
and 3 have a very similar shape, which can be taken as a first
indication that the same scenario as for D@1 also applies to
D=1. Comparison of the overall scales leads to an estimate
for the gap in the kMl=1/3 sector at D=1 of about 0.04J.
Furthermore, the total number of Ising configurations is very
close to the number of nonmagnetic excitations below the
magnetic gap for D=1 at a given system size ssee also Ref.
18d. Hence, the growth law s6d yields a good approximation
also to the number of nonmagnetic excitations in the Heisen-
berg model sD=1d.

It is instructive to compute the overlap of the wave func-
tion of the full XXZ model, ufull XXZl, with the ground state

FIG. 3. Main panel: Spectra of the effective Hamiltonian s5d for
D→‘ with N=36, 54, 81, 108, and 144. Inset: Scaling of the en-
ergy of the lth excited state with inverse system size 1/N for some
selected levels.

QUANTUM KAGOMÉ ANTIFERROMAGNET IN A… PHYSICAL REVIEW B 71, 144420 s2005d

144420-3



wave function, ueffectivel, of the effective Hamiltonian with
the same number of spins N. The analysis of the effective
Hamiltonian implies that one should study only sizes that are
multiples of nine, and that N=36 is the smallest size which is
representative of the general case. However, N=36 is the
biggest system in which we have been able to study the full
XXZ model and hence is the only case we can discuss. Re-
sults for the overlap ukeffectiveufull XXZlu are shown by the
full line in Fig. 4. We observe that this overlap tends to 1 for
large values of D, as expected. Furthermore, the overlap re-
mains appreciable even close to the Heisenberg model
sukeffective u full XXZlu<0.22 for D=1d, in particular if one
considers that the dimension of the symmetry subspace un-
der consideration is of the order 107. Note further that an
analogous computation of the overlap of the ground state of
the Ising and the full XXZ model at kMl=1/3 on the trian-
gular lattice leads to a sharp drop at D<0.76 for a fixed N
ssee dotted curve in Fig. 4 for N=36d, signaling an instability
of the plateau state.17 No such sharp drop is observed on the
kagomé lattice sfull line in Fig. 4d, which we take as a sign of
absence of phase transitions between D=‘ and <0 in the
XXZ model on the kagomé lattice at kMl=1/3. In particular,
D=1 and ‘ should belong to the same phase.

VI. DISCUSSION AND CONCLUSIONS

To conclude, we have analyzed the low-energy spectrum
of the kagomé XXZ S=1/2 model at magnetization kMl

=1/3. While the existence of a magnetization plateau is
clear, the nature of the nonmagnetic excitations over the
ground state is more difficult to clarify. We have argued by
different techniques that the ground state has an order of the
valence-bond crystal type; i.e., the ground state is threefold
degenerate and there is a small gap to all higher excitations.
While in the case D@1 this scenario is derived from a map-
ping to an effective Hamiltonian,21,22,25 our numerical data
indicate that it persists down to the isotropic limit D=1.

One of the key differences between the present case and
kMl=0 lies in the unrenormalized classical thermal and
quantum fluctuations. In the absence of a magnetic field, they
are equivalent regarding the lifting of degeneracy of configu-
rations with soft modes splanar configurationsd. However, for
kMl=1/3, classical thermal fluctuations select the collinear
UUD configurations and the weight in the free energy of any
UUD covering is equivalent at the harmonic level. Because
of commutation relations that have to be preserved at the
quantum level, the zero-point corrections over the UUD con-
figurations are no longer equal. This is the first indication
that a spin liquid phase is less likely to appear than for the
kMl=0 case.

For S=1/2 and D=1 we find, for kMl=1/3, an exponen-
tial number of nonmagnetic excitations below the magnetic
gap that are reminiscent of the classical degeneracy; just as
for kMl=0.1,5,6 In the latter case the macroscopic number of
nonmagnetic excitations has been taken as evidence for a
completely disordered ground state. Here, however, we find
evidence for a further small gap, separating the continuum of
states from a ground state, which has long-range order of
valence-bond crystal type. We remark that the N=36
spectrum5 suggests that candidates for valence-bond ordered
states for kMl=0 would have a larger unit cell than the state
above. Hence, we believe that the issue of order at very low
energies in the S=1/2 KHAFM at kMl=0 remains a chal-
lenging problem.
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