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We investigate the problem of backscattering off a time-dependent impurity in a one-dimensional electron
gas. By combining the Schwinger-Keldysh method with an adiabatic approximation in order to deal with the
corresponding out of equilibrium Dirac equation, we compute the total energy density sTEDd of the system. We
show how the free fermion TED is distorted by the backscattering amplitude and the geometry of the impurity.
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The physics of tunneling through static barriers is a topic
of great importance in the subject of correlated quasi-one-
dimensional electron transport. A considerable number of
well-established results derived over the last few years con-
stitute by now the standard knowledge in the field.1 Relevant
applications of the theoretical findings comprise the behavior
of strongly anisotropic physical systems such as organic
conductors,2 charge transfer salts,3 quantum wires,4 carbon
nanotubes5 and quantum Hall junctions.6

More recently, some attention has been paid to the prob-
lem of electron transport through time-dependent localized
perturbations in one-dimensional correlated matter. The in-
terest has been to a large extent driven by the possibility of
pumping charge and spin into a conductor sor semiconduc-
tord by means of an induced effective time-dependent
potential.7 Actually, it is not difficult to devise examples of
relevant experimental setups which would provide the real-
istic arena for time-dependent one-body interactions. A laser
beam applied to a carbon nanotube is likely to produce a
periodic deformation of the lattice structure, playing the role
of an effective time-dependent impurity; a similar effect
should be expected in the localization of optical phonons in
topological defects. It is worth noting, furthermore, that the
cleanest system for experimental investigation would be
given, probably, by a quantum Hall bar with a time-
dependent gate producing a harmonic backscattering be-
tween edge states.

Despite the possible technological advances that the con-
trol of charge and spin currents could bring up, we are faced
with the fundamental question of what we could learn about
electron correlations using time-dependent potentials as out-
of-equilibrium probes. To answer this question, at least par-
tially, more theoretical work is needed to understand the de-
tailed dynamics induced by this type of perturbation.

A potentially interesting observable that characterizes a
tunneling process is the energy resolved current jsvd. In Ref.
8, the relevance of this quantity in the upper region of the
spectrum si.e., above the Fermi energy, v.EFd was empha-

sized, if one is interested in information about correlations in
the leads. To leading order in the tunneling amplitude, the
energy resolved current jsvd is related to a simpler observ-
able, namely, the electron energy distribution function nsvd,
also referred to as the total energy density sTEDd in the
literature9 ffor a precise mathematical definition see Eq. s5d
belowg. In general grounds, nsvd gives information about the
perturbation of the ground state in the leads due to tunneling
processes. For a noncorrelated material, for instance, nsvd
should vanish above the Fermi surface. Any population of
the spectrum above the Fermi energy is originated from a
combined effect of correlations and multiparticle tunneling,
due, on its turn, to out of equilibrium processes.8 In Ref. 10,
nsvd was evaluated in a model of correlated one-dimensional
fermions with a time-dependent impurity coupled to the elec-
tron density through a forward-scattering coupling. In Ref.
11 this model was analyzed by means of functional
bosonization,12 focusing, in particular, on the transients pro-
duced by turning on the oscillatory impurity strength.

It is important to notice, however, that backscattering ef-
fects are expected to be relevant as a rule, in all but rather
exceptional experimental settings.13 Recently,14 effects of
backscattering in a time-dependent ultralocalized impurity
were studied perturbatively, suggesting a striking enhance-
ment of the total current for special values of the Luttinger
parameters. Although very interesting by itself, it is neces-
sary to take some care with perturbative calculations of tun-
neling processes, since multiple tunneling events may be
missed in the series expansions, especially when dealing
with finite barriers. The problem of backscattering by dy-
namical impurities is usually a very difficult one. Some mod-
els, like the spinless Luttinger model with a deltalike impu-
rity, can be solved exactly for the specific value of the
Luttinger parameter K=1/2.15 However, for general
strengths of the electron-electron interaction and finite-
ranged impurities, there are no available closed analytical
solutions seven in the free cased. Therefore, it is of funda-
mental importance to address nonperturbative strategies in
such a context.
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In this work we develop a nonperturbative calculation for
a somewhat simple model, chosen to illustrate our method.
We are interested in studying the effects that the backscatter-
ing off an extended dynamical impurity of width a, oscillat-
ing with frequency V, will have on the spectrum of a one-
dimensional fermion gas. For this purpose we have
implemented an adiabatic approximation which allows one
to compute the TED in a straightforward way. The time scale
of the barrier oscillations is given by 1/V, while on the other
hand the traversal time for tunneling is given by a / uvu,16

where v is the velocity of fermions inside the barrier. There-
fore, if the traversal time is much smaller than the oscillation
time sa / uvu!1/Vd, the tunneling can be considered as taking
place through an essentially static barrier. Thus, the adiabatic
approximation just consists in the calculation of the spectrum
or, in general, any correlation function, in the limit Va / uvu
→0, neglecting subleading corrections, of order sVa / uvud2.
Interestingly, the adiabatic regime was recognized as the rel-
evant one in the context of charge quantization in pumping
processes.17 It is correct to state that in the adiabatic limit it
is possible to evaluate in an exact way any fermionic corre-
lation function without relying neither on a perturbative ex-
pansion in the backscattering coupling constant nor on the
finite range of the dynamical barrier. This means, in prin-
ciple, that it is possible to capture multiple tunneling pro-
cesses and bound states, which are absent in the case of
ultralocal potentials sd-like potentialsd and small values of
the coupling constants. In the Appendix we have applied the
method to the exactly solvable case of pure forward scatter-
ing to explicitly show how the adiabatic approximation
works.

As the computational starting point, let us consider the
following Hamiltonian, which describes the interaction of
spinless fermions with an external effective time-dependent
potential Vsx , td, responsible for backscattering transitions
between right and left movers,

H = H0 + Himp, s1d

where

H0 = i"vFE dxscR
†]xcR − cL

†]xcLd s2d

and

Himp = gbE dxscR
†cL + cL

†cRdVsx,td . s3d

Above, gb is the coupling constant associated to the back-
ward scattering of electrons caused by the presence of a
time-dependent harmonic barrier. It is also possible to con-
sider a more general Hamiltonian with forward scattering
couplings in addition to the backward coupling considered
here, however, this does not lead to any additional interesting
physical effect. Our results can be in fact extended without
much difficulty to the case where a forward scattering cou-
pling is taken into account.

Although we have verified that both the method and the
general results are independent of the explicit details of
Vsx , td, we will use, just to fix ideas, a square potential
profile,

Vsx,td = fQsx + a/2d − Qsx − a/2dgcossVtd , s4d

where a is the width of the square potential and V is the
oscillation frequency.

We are particularly interested in obtaining the TED for the
above model. We recall that in the Wigner representation the
TED can be written in terms of the fermion correlation func-
tion as

nsv,R,Td = − iE
−`

`

dteivtG+−sr = 0,R,T,td , s5d

where we have introduced the closed time path formalism18

in which fermion propagators are time-ordered along the
usual Schwinger-Keldysh time contour C,

GC = SG++ G+−

G−+ G−−
D . s6d

The subscripts 1 and 2 refer to fields defined in the upper
and lower branches of C, respectively, corresponding to the
forward s1d and backward s2d time evolution. Above, r ,t
and R ,T are the spatial and temporal relative and center of
mass coordinates, respectively.

The static case, V=0, is exactly solvable. It corresponds
to take the limit in Eq. s5d such that,

nstaticsvd = lim
V→0

nsv,R = 0,Td , s7d

where we choose to calculate nstaticsvd at the center of the
barrier R=0.

Physically, the above limit means that the TED is as-
sumed to be probed in very short time scales, involving an
external process with a relaxation time T0!1/V. In this re-
gime, the TED behaves as effectively static and is given by
Eq. s7d.

On the other hand, if T0@1/V, the TED given by Eq. s5d
is a very rapid oscillating function of time and it is not the
relevant quantity to evaluate. An arbitary observable in this
regime should be computed by means of an averaging pro-
cedure. The meaningful physical observable in our case is,
therefore, the averaged TED,

n̄svd =
V

2p
E

0

2p/V

nsv,R = 0,TddT . s8d

It is important to notice that this averaged quantity is purely
dynamical and is in general disconnected from the “instanta-
neous” or static regime. Although we can take the limit V
→0 in Eq. s8d, this does not correspond to the static limit
since, the definition of the averaged TED implies that it
should be probed over an infinite time interval. Mathemati-
cally, it is simple to understand from Eqs. s7d and s8d that
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lim
V→0

n̄svd Þ nstaticsvd , s9d

once we cannot interchange the limit with the integral
operator.

Since we are interested in the dynamical aspects of the
problem we concentrate ourselves on the calculation of the
averaged TED given by Eq. s8d. For this purpose, we have
calculated the Green’s function and TED, Eq. s5d, in the
adiabatic approximation, which, for the potential given by
s4d amounts to substituting gb cossVtd→gb. Then, we have
restored the temporal dependence and evaluated the averaged
TED using Eq. s8d. The validity of this procedure fi.e., of
restoring the time dependence in nsvd after integrating the
Green’s functiong, relies in the extra condition v@V, which
allows a practical computation of the TED, and preserves
nontrivial physics, holding beyond perturbation theory. The
relaxation of this condition forces us to restore the time de-
pendence at the Green’s function level, turning the calcula-
tion considerably more difficult. Therefore, our results are
useful in the frequency range v@V@1/T0. The first in-
equality is imposed to simplify calculations, while the sec-
ond one is implicit in the definition of the averaged TED,
Eq. s8d.

Our main results are depicted in Figs. 1 and 2, where n̄svd
is shown for fixed gb, with variable a sFig. 1d, and for fixed
a, with variable gb sFig. 2d. Observe that at this level of
approximation the curves are independent of V. It is worth
noting, however, that the range of validity of our predictions
does depend on the external frequency due to the condition
v@V. Also, in both cases, in contrast to the situation in
which only forward scattering is taken into account,10,11 no
gain or loss of energy-quanta of nV takes place ssee the
Appendixd. This is in fact a consequence of the v@V re-
gime considered here. However, one may clearly observe
that backscattering breaks the uniformity of the Fermi sea,

characteristic of the free electron gas. The TED n̄svd has its
maximum peak for v,−ugbu. For v.−ugbu, the TED shows
a pronounced decay, if compared to the free case behavior.
When uagbu grows, the peak tends to be situated at v<
−ugbu, and the valley observed for v.−ugbu is drastically
lowered, indicating an important depletion in the population
near the Fermi surface sin this calculation we have tuned the
Fermi energy to v=0d. Concerning the main peak, it is in-
teresting to note that the maximum value of the averaged
TED obeys the power law maxfn̄svdg<Îuagbu, for uagbu suf-
ficiently large. Although the present model does not contain
correlations, it is clear from these results that the presence of
backscattering off the dynamical impurity will modify corre-
lations in a relevant way, mainly for large values of uagbu,
when the structure of the electronic density near the Fermi
surface is strongly affected. Let us emphasize again that the
peak structure we found sfor the region v@V@1/T0d is not
of static origin. Indeed, the static TED can be easily com-
puted fEq. s7dg and it presents an oscillating structure with
maxima of equal height.

We now sketch some technical details concerning the
adiabatic approximation. The main idea of this approxima-
tion, as stated above, is that in a regime of sufficiently slow
barrier oscillations, Va / uvu!1, the spectrum of the system
can be considered essentially static. In this case, we can
safely consider sformallyd gb cossVtd.gb. The Dirac equa-
tion corresponding to the Hamiltonian s1d can be written
down as

i]tC = sH0 + HimpdC . s10d

We seek, then, for stationary solutions of energy E. Solv-
ing the resulting pair of coupled differential equations for the
right and left components of C, we get for the right field sto
save notation we drop the index Rd,

FIG. 1. Averaged energy density n̄svd as a function of the fre-
quency v for fixed backscattering coupling gb and variable potential
range a. v and gb are measured in units of the Fermi energy EF

=vFkF while the potential range a is measured in units of the in-
verse of the Fermi momentum 1/kF.

FIG. 2. Averaged energy density n̄svd as a function of the fre-
quency v for fixed potential range a and variable backscattering
coupling gb.
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CEsxd =
1

Î2p

e−iasE+kd/2

gb

E + k
+ e−iak

Seikx +
gbe−ikx

E + k
D , s11d

in the region −a /2,x,a /2, where k2=E2−gb
2 sfrom now

on, we take "=1,vF=1d. We obtain a similar result for the
left moving fermion. Of course, outside the barrier, where
Vsx , td=0, one has just plane wave solutions for both chiral
components. Inside the barrier, due to the presence of back-
scattering, the solutions are plane waves or exponential de-
cays, depending on the sign of k2. This, in turn, determines

the energy regions in which one or the other kind of wave
function is defined.

In terms of the wave function obtained above, the right
moving component of the Green’s function reads

G+−sR,r,T,td = iE
−`

0

dECE
*sR − r/2,T − t/2d

3CEsR + r/2,T + t/2d . s12d

Substituting s11d into s12d, using Eq. s5d and explicitly evalu-
ating the integrals, we obtain for the TED at the center of the
barrier the following expression:

nsvd =
fQs− vd − Qs− v − ugbudgsgb + vd

coshsÎgb
2 − v2adgb + v

+
Qs− v − ugbudsgb + v + Îv2 − gb

2d2

sv + Îv2 − gb
2d2 + gb

2 + 2gbsv + Îv2 − gb
2dcoshsÎgb

2 − v2ad
+ OsVad2. s13d

The first term on the right-hand side of s13d comes from the
contribution of nonplane wave solutions suEu, ugbud, while
the second term comes from the energy region suEu. ugbud
where the spectrum is composed essentially by plane waves.
It is interesting to note that no perturbation theory in the
backscattering amplitude gb is able to capture the physics of
the first term, since perturbation theory only deals with small
perturbation on plane waves.

Finally, restoring the temporal dependence through the
formal substitution gb→gb cossVTd, and performing the av-
erage over a period fEq. s8dg, we obtain the plots shown in
Figs. 1 and 2, discussed above.

To summarize, we have studied the effects of backscatter-
ing in a one-dimensional fermion gas with an oscillatory
square barrier. We have calculated the TED in the adiabatic
approximation. This method allowed us to consider finite
barriers in a nonperturbative regime. In this way we were
able to obtain the dependence of TED with the coupling
constant gb and with the geometry of the barrier, given es-
sentially by its width a. We have found that the structure of
the Fermi sea may be strongly modified by the presence of
the dynamical barrier, producing a peak structure in the TED
at energies around the typical backscattering energy gb. Also,
the probability of finding electrons near the Fermi surfaces
may be drastically suppressed when the parameter agb be-
comes large enough. We also found an interesting power law
dependence of the maximum of the TED peak, given by
maxfn̄svdg<Îuagbu. This structure opens the interesting pos-
sibility of the experimental determination of microscopic
quantities like the backscattering strength gb and the effec-
tive width of the potential a. Of course, the spectrum modi-
fications are expected to affect the electron correlations in
the wire not trivially. We are currently analyzing the com-
bined effect of electron-electron interactions in the wire with
backscattering due to strong and extended dynamical
barriers.
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APPENDIX: FORWARD SCATTERING

In this section we consider an exactly solvable problem,
in order to iilustrate how the adiabatic approximation works.
Let us consider the Hamiltonian

H = H0 + Himp, sA1d

where

H0 = i"vFE dxscR
†]xcR − cL

†]xcLd sA2d

and

Himp = gf E dxscR
†cR + cL

†cLdVsx,td . sA3d

Above, gf is the coupling constant associated to the forward
scattering of electrons caused by the presence of a time-
dependent harmonic barrier.

In this case, the Dirac equation s10d is easily solved, since
the right and left components of the spinor decouple. Then,
the right mover component is given by an expression of the
type cR,eikx while the left one reads cL,e−ikx. Now, it is a
simple matter to calculate the Green’s function fEq. s12dg
and the averaged TED fEq. s8dg is given in the adiabatic
approximation by
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n̄svd = o
n=0

`

o
i=0

2n

s− 1di s2nd!
sn!d2s2n − id!i!

3Sgfa

4
D2n

Qf− v − Vsn − idg , sA4d

where we have chosen "=1 and vF=1.
However, in this case, it is not necessary to invoke any

type of approximation, since this problem is exactly
solvable.10–12 The reason behind this, is that this decoupling
property between right and left movers is present in the full
quantum problem and not merely in the static Dirac equa-

tion. The exact result for TED in the forward scattering case
is given by

n̄svd = o
n=0

`

o
i=0

2n

s− 1di s2nd!
sn!d2s2n − id!i!

3Sgf sinfVa/4g
V

D2n

Qf− v − Vsn − idg . sA5d

Comparing Eqs. sA4d and sA5d, we clearly verify that the
adiabatic approximation gives the correct result at leading
order in Va /vF!1 shere, we have recovered the original
unitsd.
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