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Charged vortex solutions for the noncommutative Maxwell-Higgs model in 3� 1 dimensions are
found. We show that the stability of these vortex solutions is lost for some, large enough, noncommu-
tativity parameters. A nontopological charge, however, is induced by noncommutative effects.
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I. INTRODUCTION

Lorentz and CPT symmetries are cornerstones in rela-
tivistic quantum field theory which are casting doubt in
connection with recent experiments in cosmic physics rays
[1], neutrino physics [2], and cosmological measurements
[3].

In order to explain these experimental results, some
authors have suggested conservative avenues; however,
explaining experiments like LNSD and some other astro-
physical observations apparently will require new and
radical ideas.

On the other hand, vortices are localized, classical, finite
energy solutions that appear in some quantum field theory
models [4,5]. Such solutions encode the collective behav-
ior of some systems at a nonperturbative level. Although
these kinds of solutions originally were found in condensed
matter physics [6], they also play an important role in
particle physics [7] and cosmology, in the language of
cosmic strings [8] and superstrings [9].

A particular model that exhibits this solution is the
Maxwell-Higgs model in 3� 1 dimensions. It has also
been shown [5] that properties of vortices are modified if
we add to the theory a Chern-Simons (CS) term. For
instance, they acquire a finite quantized charge and angular
momentum.

On the other hand, in previous papers [10,11], and from
a completely different point of view, we have reported that
a particular Lorentz invariance violation (LIV) induces a
CS term in Abelian and non-Abelian Maxwell theories.
Our approach to LIV contains two scales, infrared and
ultraviolet, and it is properly defined in the field space
rather than in spacetime.

Therefore, it is natural to ask if our approach admits
vortexlike solutions and, in this case, which are their
properties.

In this paper we discuss some new features arising when
an infrared cutoff is introduced into the Maxwell-Higgs
model in 3� 1 dimensions, describing the way the un-
charged vortex solutions for the standard Maxwell-Higgs
model are modified and considering the stability of these
solutions.

As discussed in [10–13] (see also [14]), an explicit
infrared cutoff appears in quantum field theory when the
canonical commutators of momenta are modified in anal-
ogy with the Landau problem in quantum mechanics. The
presence of this cutoff breaks Lorentz symmetry and in-
duces a kind of dimensional reduction which could provide
a new clue for many unsolved problems in quantum field
theory, cosmology, and astrophysics.

Let us start reviewing the main aspects of quantum
theory with noncommutative fields. Later, we will show
that a theory with noncommutative U(1) fields coupled to a
Higgs scalar has indeed vortex solutions.

In Refs. [10,11,13], an approach to a Lorentz invariance
violating quantum field theory has been proposed, inspired
by noncommutative geometry. The fields, instead of sat-
isfying the standard canonical commutators, obey

 ��i� ~x�; �j� ~y�� � i�ij�� ~xÿ ~y�; (1)

 ��i� ~x�; �j� ~y�� � iBij�� ~xÿ ~y�; (2)

 ��i� ~x�; �j� ~y�� � i�ij�� ~xÿ ~y�; (3)

where i; j; . . . � 1; 2; 3; . . . are internal indices and �ij and
Bij are scales with dimensions of �energy�ÿ1 and energy,
respectively. For small values of these scales, they corre-
spond to weak ultraviolet and infrared Lorentz invariance
violations, respectively.

At this point, it is worth noting that this approach does
not correspond to the noncommutative geometry in the
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usual sense, where one assumes the commutator

 �x; y� � �:

Rather, while the commutators (1) violate the microcau-
sality principle imposing an ultraviolet scale, (2) affects the
physics in the infrared sector of the quantum field theory
[15].

The noncommutative scalar electrodynamics is defined
in full analogy with the electrodynamics, but modifying
appropriately the canonical commutators.

The noncommutative scalar electrodynamics we will
consider in the present article is defined in full analogy
with the electrodynamics, but modifying appropriately the
canonical commutators. (For a model based on the non-
commutativity of coordinates and the Moyal product for
functions, see [16])

The Hamiltonian for this model becomes
 

H �
Z
d3xf12�E

2 � B2� ÿ A0� ~r � ~E� ~� � ~B�

� ��� � ieA0����ÿ ieA0��� ÿ e2A2
0�
��

� e����A0 � � ~D��� � � ~D�� � V����ÿ��0�0�g;

(4)

where V����ÿ �0� is a scalar potential—responsible for
the symmetry breaking—which can be written as

 V����ÿ��0�0� �
�
4
����ÿ��0�0�

2;

with � and �0 real and complex constants, respectively.
The modified commutators we adopt are

 

�Ei� ~x�; Ej� ~y�� � i�ijk�k�3� ~xÿ ~y�; (5a)

���� ~x�;�� ~y�� � ��3� ~xÿ ~y�; (5b)

where Ei is the electric field and � is the canonical
momentum associated to the charged field �. Note that
the Gauss law is modified as in (4), in order to keep gauge
invariance with the modified commutators (5a) and (5b).

II. EQUATION OF MOTION AND VORTEX
SOLUTION

In order to write explicitly the equations of motion
(e.o.m.) for this system, we will take a coordinate system
in which the third axis (z) is along the direction of the
(spacelike) vector ~�, that is, ~� � �0; 0; ��. Then, the
e.o.m. for the Hamiltonian (4) with Poisson brackets struc-
ture (5) become
 

@�F�� �
�
2
�3���F�� � J� ÿ ��0e����; (6a)

D�D���
@V
@�

�� i�D0� � 0; (6b)

where

 J� :� ÿie����D��� ÿ �D������

� ÿie���@��ÿ�@���� ÿ 2e2A����; (7)

and
 

D�� � @��ÿ ieA��; �D���
� � @��

� � ieA��
�;

with � :� ���.
Using the Coulomb gauge condition, ~r � ~A � @iAi � 0,

and considering static and z coordinate independent con-
figurations, one obtains the equations
 

ÿr2A0 � �B� � ÿe�2eA
0 ÿ�����; (8a)

ÿr2Ai ÿ ��ijF0j � Ji; i; j � 1; 2; (8b)

ÿ � ~D�2��
@V
@�

�ÿ eA0�eA0 ÿ��� � 0; (8c)

ÿr2A3 � ÿ2e2A3���; (8d)

which can be simplified by calling
 

~A0 � A0 ÿ
�

2e
(9a)

~�0 � ei�

������������������
�0 ÿ

�2

2�

s
(9b)

~��0 � eÿi�

������������������
�0 ÿ

�2

2�

s
(9c)

and redefining the scalar potential as

 

~V��� � V��ÿ �0� �
�2

4
�: (10)

In such a way, the set of equations for the static non-
commutative scalar electrodynamics turns out to be
 

ÿr2 ~A0 ÿ
�
2
�ijFij � ÿ2e2 ~A0�

��; (11a)

ÿr2Ai � ��ij@j ~A0 � Ji; (11b)

ÿ � ~D�2��
�
2
����ÿ ~��0 ~�0��ÿ �e ~A0�

2� � 0; (11c)

which are just the equations for the static Maxwell–Chern-
Simons–Higgs model [17].

But, contrary to the commutative electrodynamics case,
the linear charge density operator is here shifted according
to

 Q� �
Z
d2xJ0�x� � ~Q� ÿ e�

Z
d2x���; (12)

where

 

~Q� �
Z
d2x~J0

�
Z
d2xfÿie���@0�ÿ�@0��� ÿ 2e2 ~A0g:
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In order to analyze the asymptotic behavior of the fields
we choose cylindrical coordinates �r; ’; z� and follow
Ref. [5]. Thus, for r! 1 we have
 

�! ~�0ei��’� �O�eÿ�r� (13a)

Ai !
1

e
@i��’� �O�eÿr=r0� (13b)

~A0 !
1

e
@0��’� �O�eÿr=r0� � 0�O�eÿr=r0�; (13c)

with r0 a constant with appropriate dimensions. What is
important here is the exponential behavior of the correc-
tions in the limit we are considering.

On the other hand, the requirement of � to be single
valued implies that ��2�� � 2�n, with n an integer. A
suitable (smooth) gauge transformation allows one to
choose � � n’. Then, we conclude that the magnetic
flux is quantized,

 �� �
Z
d2xB� �

I
r!1

d~l � ~A �
1

e
���2�� ÿ ��0��

�
2�
e
n: (14)

But, as we will see later, the charge density is not propor-
tional to the flux as in the commutative case.

To solve the equations of motion, we adopt the usual
ansatz [7]
 

A’ �

���������������
2 ~��0 ~�0

q
u

�nÿ g�u��; (15a)

A0 �
���������������
2 ~��0 ~�0

q
h�u�; (15b)

A3 � Ar � 0; � �
������������
~��0 ~�0

q
f�u�ein’; (15c)

where u � r
�������������������
2e2 ~��0 ~�0

q
.

Equations of motion (11) now reduce to
 

h00 �
1

u
h0 ÿ f2h �

~�
u
g0 (16a)

g00 ÿ
1

u
g0 ÿ f2g � ~�uh0 (16b)

f00 �
1

u
f0 ÿ

g2

u2 fÿ
�

4e2 �f
2 ÿ 1�f � ÿh2f; (16c)

where the primes stand for derivatives with respect to u and
~� � �=

�������������������
2e2 ~��0 ~�0

q
.

Equations (16a)–(16c) coincide with those found in
Ref. [5] in the context of charged vortex solutions. The
energy per unit of length for this solution, given by
 

En � 2� ~��0 ~�0

Z 1
0
udu

�
1

u2

�
dg
du

�
2
�

1

2

�
df
du

�
2
�

�
dh
du

�
2

�
1

2

��
g
u

�
2
� h2

�
f2 �

�

16e2 �f
2�u� ÿ 1�2

�
; (17)

turn out to be finite, up to an additive constant, for a
suitable class of boundary conditions.

Remarkably, the modified potential (10) allows a direct
analysis of the conditions under which vortex solutions
exist in the presence of this kind of noncommutativity.
Indeed, we can rewrite (10) as

 

~V��� �
�
4

�
�ÿ

�
�0 ÿ

�2

2�

��
2
�

�2

4

�
�0 ÿ

�2

4�

�
; (18)

where the last term is a physically irrelevant constant and
the first one can be written as V��ÿ ~�0�. Clearly, if ~�0 :�

�0 ÿ
�2

2� � 0 then the system does not present the symme-
try breaking phenomenon and it is not possible to find
vortexlike solutions. Furthermore, for ~�0 � 0 one can see
that the energy is zero.

Hence, one can expect that, in order to find finite linear
energy density vortexlike solutions, the condition ��0�0 >
�2

2� should be satisfied.
Concerning the linear charge density, given in (12), we

get from (15)

 Q� �
2��
e
nÿ

��

e

Z
duuf2�u�: (19)

The last term is independent of ~�0 and, since we know
from [5] that, for large u,

 f�u� ! 1ÿ eÿau; with a �

������������������������������
��=2�2 ÿ e2 ~�0

p
ÿ ��=2��������������

2e2 ~�0

p ;

(20)

we can argue that the divergent part of (19) is a contribu-
tion from the nontrivial vacuum with no physical conse-
quences. Indeed, the difference �nmQ :� Qn ÿQm is
finite (notice that the function f does not depend on n)
for any n and m, including n or m equal to zero.

III. FINAL REMARKS AND CONCLUSION

Let us summarize and comment our results. We have
found that there exist charged vortex solutions in non-
commutative scalar electrodynamics which have similar
properties to those found in [5] for the commutative case.
But in the present case, these solutions depend on the
noncommutativity parameters that deform the scalar and
vectorial momenta commutators.

As remarkable differences with respect to the commu-
tative case, we can point out that the charge of these
vortices has not a topological character and that, even for
a nonzero vacuum value of the Higgs fields, there are no
vortex solutions except that j�0j

2 be larger than a bound
proportional to �2, where � is the noncommutativity
parameter of the Higgs field.

The point of view advocated in this paper is intimating
related to the Kostelecký et al. approach [15], however a
more precise connection and, in particular, the possible
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connection with the vortex solutions found here is under
research.
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