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We study the effects of the finite size of baryons on the equation of state of homogeneous hadronic matter.
The finite extension of hadrons is introduced in order to improve the performance of field theoretical models
at very high densities. We simulate the in-medium averaged baryon-baryon strong repulsion at very short
distances by introducing a van der Waals–like normalization of the fields. This is done in the framework of the
quark meson coupling model that allows to take care of the quark structure of baryons. Since within this model
the confinement volume evolves with the fields configuration, the treatment is not equivalent to a simple
hard-core potential. We investigate the phase transition to quark matter and the structure of neutron stars. We
have found significant corrections at high densities.
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I. INTRODUCTION

Investigation of hadronic matter at extreme conditions of
density and temperature is a current issue of research, since
the study of its properties will eventually shed some light
over the recovering of QCD symmetries [1,2]. The phase
diagram of hadronic matter is expected to be very complex,
exhibiting exotic phases such as superfluidity, meson con-
densates, dibaryon condensate, etc. The gradual emergence
of quark droplets would finally lead to a transition to decon-
fined quark matter. Each of these phenomena affect the equa-
tion of state (EOS) and could have macroscopic manifesta-
tions, for example, in the structure of stars.

In most hadronic matter studies baryons are assumed to
be pointlike. This can be justified because at densities below
the nuclear matter saturation density the finite volume effects
are expected to be small. However, the spatial extension of
baryons was recognized as an essential point in the study of
the collective phenomena at very high densities [3].

It is worth mentioning that there are only a few field the-
oretical models which consistently include the baryonic spa-
tial extension. The most commonly used are the Skyrme and
baglike models. In the first case the inclusion of finite baryon
density effects is not straightforward due to the topological
character of its solutions [4]. On the other hand, further re-
finements of the original MIT bag model allow one to deal
with medium effects on the hadron structure [5–9]. Within
this scheme there were recent efforts to include the repulsion
between overlapping bags, by means of effective short-
ranged quark-quark correlations [7].

The authors attempted to take into account finite volume
correction previously, using a van der Waals–like method to
study nuclear matter with L hyperons [10]. The total volume
appearing in the thermodynamical quantities was replaced by
the available volume, in accordance with related investiga-
tions [11–15].

In the present work we generalize this approach to study
the properties of hadronic matter including the octet of low
lying baryons, and to check out their influence on the transi-
tion to quark matter. The resulting EOS is applied to study

the composition of neutron stars. Following our previous
study [10], we introduce these corrections at the level of
normalization of the baryon fields in the quark meson cou-
pling (QMC) model [5,6]. The motivation for such a proce-
dure is to parametrize in compact form the strong baryon-
baryon repulsion at very short distances. We focus on the
high density regime, thus it is justified to consider the statis-
tical average of the interaction instead of looking at its de-
tails.

In the QMC model the size of the confining volume has
its own dynamical evolution, which takes into account the
baryonic density and the fields configuration, and it is ob-
tained in a self-consistent calculation. Thus it can somehow
be regarded as an effective degree of freedom. The bag ra-
dius changes smoothly with the medium properties, and in
this sense the finite volume corrections introduced here can-
not be considered as a hard-core interaction.

In the following section we give a resume of the QMC
model and we introduce the excluded volume correlations. In
Sec. III we describe neutron star matter and the phase tran-
sition to quark matter. Numerical results and discussions are
given in Sec. IV, and conclusions are drawn in Sec. V.

II. THE QUARK MESON COUPLING MODEL

Relativistic hadron field theories provide a good descrip-
tion of nuclear matter near the saturation density, and of
finite nuclei, too. For this purpose only a small number of
free parameters is required. Mean field approximation (MFA)
is suited to the aim of these theories, since the treatment of
matter at medium and high densities do not require the de-
tailed structure of the interactions. Within this framework the
QMC model [5,6] can be viewed as an extension of the
quantum hadro-dynamics (QHD) models [16,17].

In the QMC model baryons are represented as non-
overlapping spherical bags containing three valence quarks;
the bag radius changes dynamically with the medium den-
sity. Baryons interact by the exchange of s, v and r mesons
coupled directly to the confined quarks. It has been found
that these extra degrees of freedom, provided by the internal
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structure of the baryon, lead to quite acceptable values of the
nuclear matter compressibility at saturation. Despite the ex-
plicit quark fields in the QMC model, hadronic thermody-
namical properties are evaluated in such a way that baryons
are handled as point-like particles with an effective mass MB

*

which depends on the s field.
In the MFA the Dirac equation for a quark of flavor q sq

=u, d, sd, current mass mq, and third isospin component I3
q is

given by

sigm]m − gv
q g0v0 − gr

qI3
qg0b0 − mq

*dCq = 0. s2.1d

In this equation all meson fields have been replaced by
their mean field values. Mesons couple linearly only to
nonstrange quarks, i.e., gs

s =gv
s =gr

s =0. Therefore the pa-
rameters mq

* are given by

mu,d
* = mu,d − gs

u,ds ,

ms
* = ms. s2.2d

For a spherically symmetric bag of radius Rb representing
a baryon of class b, the normalized quark wave function
Cb

qsr, td is given by

Cb
qsr, td = Nb

−1/2e−i«qbt

Î4p
S j0sxqbr/Rbd

ibqbsW · r̂ j1sxqb r/Rbd Dxq, s2.3d

where xq is the quark spinor and

«qb =
Vqb

Rb
+ gv

q v0 + gr
qI3

qb0, s2.4d

Nb = Rb
3f2VqbsVqb − 1d + Rbmq

*g
j0
2sxqbd
xqb

2 , s2.5d

bqb = FVqb − Rbmq
*

Vqb + Rbmq
*G1/2

, s2.6d

with Vqb= fxqb
2 + sRbmq

*d2g1/2. The eigenvalue xqb is solution
of the equation

j0sxqbd = bqj1sxqbd , s2.7d

which arises from the boundary condition at the bag sur-
face.

In this model the ground state bag energy is identified
with the baryon mass Mb

*,

Mb
* =

o
q

nq
bVqb − z0b

Rb
+

4
3

pBRb
3, s2.8d

where nq
b is the number of quarks of flavor q inside the

bag. The bag constant B represents the difference of en-
ergy per unit volume between the vacuum with and with-
out broken QCD symmetry. It is numerically adjusted to
get definite values for the proton bag radius. The zero-
point motion parameters z0b are fixed to reproduce the
baryon spectrum at zero density.

Equation (2.8) shows that the baryon effective mass is a
function of the bag radius Rb. In the original MIT bag calcu-
lations Rb is a constant fixed at zero baryonic density, but in
the QMC it is a variable dynamically adjusted to reach the
equilibrium of the bag in the dense hadronic medium. We use
the equilibrium condition proposed in Ref. [10], which re-
sults by imposing a vanishing net flux of the energy-
momentum tensor through the surface of the bag immersed
in the dense hadronic medium. This gives

−
1

4pRb
2S ] Mb

*

] Rb
D

s,xqb

=
1

3p2jo
b8
E

0

kb8 dkk4

ÎMb8
*2 + k2

, s2.9d

where j=1. The interested reader can find the detailed
derivation of this relation in Ref. f10g.

This result reflects the balance of the internal pressure of
the bag with the baryonic contribution to the total external
pressure, represented by the left-hand and right-hand sides of
Equation (2.9), respectively.

The factor j will be redefined below when excluded vol-
ume effects will be considered.

It must be noted that Eq. (2.9) differs from the standard
QMC condition [6], i.e.,

S ] Mb
*

] Rb
D

s

= 0.

Both prescriptions coincide only in the case of vanishing
density. Equation s2.9d could be more appropriate in deal-
ing with finite density calculations, nevertheless there re-
mains to elucidate the problem of overlapping bags as the
density grows. Therefore it becomes necessary to intro-
duce some further considerations into the formalism to
handle this feature.

Once Mb
* has been defined microscopically, the hadronic

thermodynamics in the QMC model resembles that of the
quantum hadrodynamics. In the MFA for homogeneous infi-
nite static matter all meson fields are replaced by their aver-
aged values, i.e.,

s = s0 = −
1

ms
2o

b

dMb
*

ds
ns

b, s2.10d

vm = v0dm0 =
1

mv
2 o

B
gv

b nbdm0, s2.11d

bm
a = b0dm0da3 =

1
mr

2o
b

gr
bI3

bnbdm0da3, s2.12d

where a=1, 2, 3 runs over all isospin directions and I3
b is

the third isospin component of baryon b. In our calcula-
tions we have used the values ms=550 MeV, mv

=783 MeV, and mr=770 MeV for the meson masses.
The dispersion relation for the b baryon is
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k0
b = ÎMb

*2 + kW2 ± gv
b v0 ± gr

bI3
bb0, s2.13d

for particle s+d and antiparticle s−d solutions. Within the
MFA at zero temperature only the particle solutions con-
tribute.

The scalar sns
bd and baryonic snbd densities are defined

with respect to the ground state of the hadronic matter ug.s.l
composed of baryons filling the Fermi sea up to the state
with momentum kb:

ns
b = kg.s.uCb Cbug.s.l = q

1
p2 Mb

*E
0

kb
dk

k2

ÎMb
*2 + k2

,

s2.14d

nb = kg.s.uC†bCbug.s.l = q
kb

3

3p2 . s2.15d

In Eqs. s2.14d and s2.15d the factor q is included for fu-
ture use and it takes the value q=1 for pointlike baryons.

In the following section we describe hadronic matter in b
equilibrium as electrically neutral, therefore we also consider
leptons treated as free Dirac particles. The leptonic density nl
is related to the Fermi momentum kl by

nl = kg.s.uC†lClug.s.l =
kl

3

3p2 . s2.16d

Given a distribution of baryonic species, we can calculate
the total energy density eH and pressure P0 of hadronic
matter for pointlike baryons,

eH = 1
2ms

2 s0
2 + 1

2mv
2 v0

2 + 1
2mr

2 b0
2 +

q

p2o
b
E

0

kb
dkk2ÎMb

*2 + k2

+
1

p2o
l
E

0

kl
dkk2Îml

2 + k2, s2.17d

P0 = o
b

m0
bnb + o

l
mlnl − eH, s2.18d

where m0
b=k0

bskbd fsee Eq. s2.13dg and ml are the chemical
potentials for point-like baryons and leptons, respectively.

The QMC model has been widely used to describe the
dense hadronic matter; it is based to a great extent on the
assumption of nonoverlapping bags. Therefore the break-
down of this hypothesis signals the limit of applicability of
the model. Using this criterion an upper density limit around
three times the saturation density of symmetric nuclear mat-
ter has been found [7]. For densities beyond this value the
quark-quark interactions through the confinement region
should be introduced, so the naive bag picture is not suffi-
cient to describe the physical situation in this case. This fact
is taken into account in the literature using different ap-
proaches. For example in Ref. [7] the quark-quark correla-
tions between bags are introduced in the overlapping region.
A different approach is given in Ref. [8], where the effects of
quark-quark correlations are assumed to be represented by
the exponential dependence of the bag constant B on the s
meson.

We propose an alternative viewpoint that preserves the
scheme of nonoverlapping bags, and that intends to take care
of the strong repulsive component of the baryon-baryon in-
teraction that appears as a consequence of the internal struc-
ture of the particles. This short-range repulsion can be treated
in a simplified model where baryons are described using a
dynamics of extended objects. Therefore the fraction of
available space is reduced as compared to the case of point-
like particles. A similar approach has been applied to study
the phase transition of nuclear matter to the quark-gluon
plasma [11,12] and in heavy-ion collisions [13,14].

Since finite size baryons are assumed as nonoverlapping,
their motion must be restricted to the available space V8 de-
fined as [11,12]

V8 = V − o
b

Nbvb, s2.19d

with Nb the total number of baryons of class b inside the
volume V and vb the effective volume per baryon of this
class. Hence we conjecture that one can renormalize the
particle santiparticled wave function replacing V with V8,
and thus the effective baryon fields C can be written as

Cbsxd = sV8d−1/2o
kW,s

fabskW, sdubskW, sde−ikmxm

+ bb†skW, sdvbskW, sde ikmxmg s2.20d

in terms of the Fock space operators a and b for particle
and antiparticle, respectively. In this way the finite size of
the baryons is automatically accounted for into the field
dynamics.

Equation (2.20) reinforces the fact that, within this model,
the inner and outer regions of the bag must be regarded as
complementary in order to avoid inconsistencies. On the
contrary, if these regions can overlap, the validity of the lin-
ear [Eq. (2.7)] and nonlinear [Eq. (2.9)] boundary conditions
should be revised and additional degrees of freedom, such as
exotic multiquark states, should be included. Therefore our
assumption extends to higher densities the quasiparticle pic-
ture and it generates further nonlinear baryonic couplings.

For the moment the volumes vb are parameters associated
with the trial quantum state of the whole system, and will be
determined using a variational principle, as is explained later.

It is interesting to note that for a mixture of different
baryons the excluded volume is not exactly the same for all
the species [18]. To simplify the discussions, in this paper we
neglect these small differences.

The effective volume per baryon vb is proportional to the
actual baryon volume, i.e., for spherical volumes of radius
Rb,

vb = a
4p

3
Rb

3, s2.21d

and for sharp rigid spheres a is a real number ranging
from 4, in the low density limit, to 3Î2/p, which corre-
sponds to the maximum density allowed for nonoverlap-
ping spheres, in a face centered cubic arrangement. Since
we wish to study the high density regime of homogeneous
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isotropic matter, we shall adopt a=3Î2/p in all our calcu-
lations. Thus vb=4Î2Rb

3, and the limit of validity of the
calculations would correspond to densities nmax such that
the center of mass of baryons are at a distance greater than
2R apart. This gives nmax=Î2/s8Rmax

3 d, where Rmax denotes
the biggest radius among all present baryonic classes. As
we shall see below, with the implementation of the proce-
dure outlined in Eq. s2.20d this limit is never reached in
the range of densities explored in the present calculations.

In order to see how excluded volume corrections appear
in our approach, we shall use the renormalized field of Eq.
(2.20) to calculate the relationship among the baryonic den-
sities and the Fermi momenta kb,

nb = V−1E
V

dx3kg.s.uC†bCbug.s.l = S1 − o
b8

nb8vb8D kb
3

3p2 ,

s2.22d

where okW →V8/s2p3dedk3 has been used.
This result is equivalent to Eq. (2.15) if the factor q takes

the value

q = 1 − o
b

nbvb s2.23d

for finite baryonic effective volumes vb. In the limit vb
→0 one recovers the pointlike expressions.

Equation (2.22) shows that these kinds of short-range cor-
relations couple nonlinearly the baryons among themselves,
in a density dependent way. Thus baryons are considered in
this scheme as quasiparticles dressed with these corrections.

The density nb for a given baryonic species appears on
both sides of Eq. (2.22), and it is possible to solve it exactly
for nb in terms of all the Fermi momenta, namely,

nb =
1

S1 + o
b8

kb8
3

3p2vb8D
kb

3

3p2 . s2.24d

Since q depends explicitly on the baryonic densities, the
chemical potentials get an extra term, i.e.,

mb = S ] eH

] nb
D nb8

b8Þb

= m0
b + Dmb, s2.25d

Dmb =
vb

3p2o
b8
E

0

kb8 dkk4

ÎMb8
*2 + k2

, s2.26d

where the energy density eH is given by Eq. s2.17d with q
defined as in Eq. s2.23d.

The total pressure acquires an additional term DP as com-
pared to the pressure of pointlike baryons P0 in Eq. (2.18),

PH = P0 + DP = P0 + o
b

nbDmb. s2.27d

We proceed to give a physical interpretation of the vol-
umes vb of the baryons, or equivalently their radii Rb. They

are considered within this approach as variational parameters
of the trial quantum state of the system. Their equilibrium
values, at zero temperature, must be determined by minimiz-
ing the total energy of the whole system, in agreement with
Refs. [11,12]. This procedure defines unambiguously the
equilibrium radii of the bags, which depend on the baryonic
density.

The new equilibrium condition for the bag consistent with
the excluded volume corrections introduced in Eq. (2.20) has
the same form as that given in Eq. (2.9), but now j
=ns

b/sanbd.
We shall see in the following sections that as the density

grows a state of deconfined quarks becomes more favorable
than a system of quarks confined within baryons. Because of
this, the concept of excluded volume is meaningless when
the baryonic phase has dissappeared completely.

In our approach only the baryonic states receive an ex-
plicit correction due to short-range correlations, by the nor-
malization of the fields Cb. It must be stressed that the me-
son mean field values are completely determined from the
baryonic sources that already include finite size corrections
in q. Leptons do not couple to strong interactions, and in this
sense they are taken as pointlike particles.

To summarize, in the QMC model extended to high den-
sities the hadronic matter properties are determined applying
the set of equations (2.7) to Eq. (2.17), together with Eqs.
(2.25)–(2.27), for a fixed total baryonic density n, using the
value of q given in Eq. (2.23).

III. QUARK MATTER PHASE TRANSITION
AND THE STRUCTURE OF NEUTRON STARS

Neutron star matter is electrically neutral and it has
reached equilibrium against b decay. The relative abundance
of the different baryonic species are determined by these
conditions. The structure of neutron stars with hyperon con-
tributions has been widely studied, for recent investigations
see, for example, Refs. [8,19], and references therein. In par-
ticular, in Ref. [8] an extension of the QMC model is used,
which takes into account the density dependence of the bag
constant B and includes strange mesons.

In the present work we consider the nucleon duplet sn, pd,
the L hyperon, the S triplet, the J duplet, and two lepton
species, electron and muon.

In hadronic matter at chemical equilibrium the following
relationships are fulfilled for the baryonic and leptonic
chemical potentials

mb = mn + Qbme sif baryon class b is presentd , s3.1d

me = mm sif muons are presentd , s3.2d

with Qb the electric charge in units of the positron charge
for the class b of baryons, mb given by Eq. s2.25d, and
ml=k0

l skld=Îml
2+kl

2.
Mean field equations are solved for fixed total baryonic

density n and zero total electric charge density,

n = o
b

nb, s3.3d
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0 = o
b

Qbnb − o
l

nl, s3.4d

where the sums run over the baryonic octet and over the
two lepton species, respectively.

Once Eqs. (2.7)–(2.9) have been solved, from Eqs.
(2.10)–(2.12) we determine the meson fields ss0, v0, b0d and
together with Eqs. (2.15) and (3.1)–(3.4) we get the baryonic
and leptonic densities snb, nld, all the Fermi momenta skb, kld,
and chemical potentials smb, mld.

As the baryonic density increases a phase transition from
hadronic to quark matter, made up with deconfined quarks,
can be reached. Therefore the previous set of equations must
be modified to satisfy the new conditions of b equilibrium in
the transition region. Since the baryonic number and the
electric charge neutrality are always conserved, a smooth
crossover between hadronic and quark matter must be ex-
pected because there are two conserved charges. In fact, in
this coexistence region of mixed hadron and quark phases
the total baryonic density and the total (zero) electric charge
are shared between these two phases.

To determine the composition of the transition region we
suppose that quarks can exist either in the confined phase
(inside baryons) or as deconfined particles. As a first ap-
proximation we suppose that the deconfined phase contains
free quarks and leptons, and nonperturbative gluon effects
are represented by the bag constant B.

Under equilibrium conditions, the net flux of quarks
through the bag surface is zero, and hence the two phases
coexist with the only constraint of globally conserved elec-
tric and baryonic charges.

We adopt the treatment of Ref. [20] as it is appropriate to
describe phase transitions with more than one conserved
charge. Thus, in the coexistence phase, the conservation
equations (3.3) and (3.4) are generalized to [20]

n = s1 − xdnH + xnQ,

0 = s1 − xdo
b

Qbnb + xo
q

Qqnq − o
l

nl, s3.5d

where nH= ob nb, nQ= oq nq/3 are, respectively, the hadron
and quark contribution to the baryon number density; nq

=Nckq
3/s3p2d is the number density of quarks for Nc=3

colors, kq is the Fermi momentum, and Qq is the electric
charge in units of the positron charge for quarks of flavor
q. The quantity x is the volume fraction corresponding to
the quark matter phase s0øxø1d. The b-equilibrium con-
dition for quarks in the deconfined phase reads md=ms
=mu+me, with mq=Îmq

2+kq
2. In the mixed phase these re-

lations must be supplemented with mn=3md−me and the
mechanical equilibrium condition PH= PQ, where PH,Q are
the pressures in each phase. It must be noted that the case
x=0s1d in Eq. s3.5d corresponds to the pure hadronic
squarkd matter phase instance, the mixed phase is in be-
tween.

The energy density in the mixed phase can be similarly
expressed as e=s1−xdeH+xeQ. The quantities eQ and PQ are,
respectively, the energy density and pressure for the decon-
fined phase which contains free quarks and leptons [20],

eQ = B +
Nc

p2o
q
E

0

kq
dkk2Îmq

2 + k2 +
1

p2o
l
E

0

kl
dkk2Îml

2 + k2,

s3.6d

PQ = o
q

mqnq + o
l

mlnl − eQ. s3.7d

Nonperturbative effects in eQ arising from the gluons are
represented by the bag constant B [20].

Of course, when the pure quark matter phase is reached
sx=1d, the conditions of chemical equilibrium apply among
deconfined quarks, since this means that baryons have solved
completely.

The EOS emerging from this calculation can be used to
evaluate the properties of neutron stars. The stellar radius R
and mass M are obtained by solving the Tolman-
Oppenheimer-Volkoff relativistic equations for a spherically
symmetric (nonrotating) neutron star:

dP
dr

= − sG/c2d
fesrd + Psrdgfmsrd + 4pr3Psrd/c2g

r2f1 − 2sG/c2dmsrd/rg
,

msrd = E
0

r

4pr82fesr8d/c2gdr8. s3.8d

Starting from a given value ec for the central energy den-
sity, these equations are integrated outward until a radius
Rsecd is reached for which the pressure P is zero, and M
=msRd is defined.

To determine more accurately the radius of the star, it
becomes necessary to use an appropriate EOS for low den-
sities. We have selected the EOS given in Ref. [21] for bary-
onic densities below 0.1n0. It is worth mentioning that an-
other possibility is to choose the EOS given in Ref. [22],
which proves to be very similar to the former [21].

The moment of inertia I for a slowly rotating star can be
obtained using [21,23]

I =
8p

3 E
0

R

r4 e−nsrd/2 fesrd + Psrdg/c2

Î1 − 2sG/c2dmsrd/r
vsrd

V
dr , s3.9d

where V is the uniform angular velocity of the star as seen
by a distant inertial observer, V! sc/RdÎsG/c2dM/R. The
radial function nsrd is solution of the differential equation

dn

dr
= 2sG/c2d

fmsrd + 4pr3Psrd/c2g
r2f1 − 2sG/c2dmsrd/rg

, s3.10d

with the boundary condition nsRd=−lnf1−2sG/c2dM/Rg.
The relative angular velocity vsrd measured with respect
to the local dragged inertial frame is the solution of

d
drFr4jsrd

dvsrd
dr G + 4r3vsrd

dj
dr

= 0, s3.11d

with jsrd=Î1−2sG/c2dmsrd/r expf−nsrd/2g inside the star.
Since jsrd=1 for rùR, vsrd has the form vsrd=Vf1
−2sG/c2dI/r3g outside.
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A useful quantity in astronomical observations is the sur-
face redshift z given by

z = f1 − 2sG/c2dM/Rg−1/2 − 1. s3.12d

Numerical values obtained in our approach can be found
in Table II.

IV. NUMERICAL RESULTS

Within the present model the quark masses take the cur-
rent values mu=md=5 MeV and ms=150 MeV. The param-
eter B is the same for all the baryon bags, and we avoid any
speculation about its density dependence. For a given value
of B the set of parameters z0b are adjusted to obtain the
experimental baryon masses at zero density.

Since mesons interact directly with quarks, the corre-
sponding meson-baryon couplings are related to the quark-
meson couplings gf

q sf=s, v, r, q=u, dd in a simple way [6].
Denoting as gf

b the coupling of the f meson to b baryon,

gs
b = Nns

b gs
u ,

gv
b = Nns

b gv
u , s4.1d

gr
b = gr

u,

where Nns
b is the nonstrange quark number inside the

baryon b. Thus, for given gs
u , gv

u , and gr
u, the full set of

baryon-meson couplings can be determined. Their numeri-
cal values are obtained by reproducing the symmetric
nuclear matter properties at saturation, i.e., baryonic den-
sity, binding energy, and symmetry energy,

n0 = 0.15 fm−3,

Eb = se/nd0 − Mc2 = − 16 MeV,

as =
1
2S ]2se/nd

] t2 D
t=0

= 35 MeV, s4.2d

where t= snn−npd/n and M =938.92 MeV/c2 is the averaged
free nucleon rest mass.

As expected, the values of the couplings are sensitive to
either the inclusion or not of the excluded volume correc-
tions. Both instances are considered in Table I.

For practical applications, we have chosen the values
B1/4=169.93, 187.83, and 210.85 MeV that will be denoted,
respectively, as (a), (b), and (c) in the following. They yield
a proton bag radius Rp=0.8, 0.7, and 0.6 fm, respectively
(see Table I). The cases with the excluded volume correc-
tions (CC) have been compared with calculations without
them (NC). We remark that in the cases labeled NC we take
j=q=1, and Dmb=0 for all baryons.

The same B is used consistently in the QMC and decon-
fined quark descriptions.

In all cases we start in the hadronic phase increasing the
baryonic density until the coexistence conditions with quark
matter are satisfied. The exception here is the case (c)-NC
that stays always in the hadronic phase, at least within the
range of validity of the nonoverlapping bag assumption.

This phase transition occurs at critical densities ncl which
are shown in Table I; it can be seen that ncl increases with B.
The lowest value ncl.n0 corresponds to B1/4=169.93 MeV,
and therefore we interpret that it is not suitable for a true
physical consideration and has been kept only for illustrative
purposes.

For the bag parameters B considered here, the nonover-
lapping bag hypothesis breaks down in the NC approach at
limiting densities nmax, before the pure quark plasma state
has taken place. These upper limits are displayed in the last
column of Table I. Thus, stars with a pure quark core could
not be described within this framework.

On the other hand, in the CC instance the upper density
threshold ncu for the mixed phase is enlarged as B increases.
No bag overlapping is produced in the calculations using the
CC option for densities n,ncu, and for n.ncu excluded vol-
ume effects are meaningless because only quark matter with-
out hadrons can be found.

In Fig. 1 we plot the contribution of the hadronic phase
snHd and the free quark phase snQd to the total baryonic den-
sity in the mixed phase, see upper equation of Eqs. (3.5). For
the sake of completeness we draw a dotted line correspond-
ing to matter in a pure (either hadronic or quark) phase, all
curves above (below) this line represent the contributions
nQ snHd. The case (c)-NC stays in the pure hadronic phase for
all ranges of densities studied, and therefore it coincides with
the dotted line in this plot. It can be seen that nH lies always
below 5.6n0, which corresponds to the topmost case [(c)-CC]
considered here.

TABLE I. The quark-meson couplings gs,v,r
u,d for each of the three values of the bag constant B used in our

calculations, and for each of the approaches with excluded volume correction (CC) and without it (NC). The
following two columns show the lower sncld and upper sncud densities of the mixed hadron-quark phase, and
in the last column the limiting density nmax for the NC cases is displayed.

B1/4 sMeVd Rp sfmd Case gs
u,d gv

u,d gr
u,d ncl/n0 ncu/n0 nmax/n0

169.93 0.8 NC 5.747 2.756 8.668 1.20 3.40
CC 4.678 1.701 7.600 1.06 3.98

187.83 0.7 NC 5.858 2.872 8.582 2.10 6.40
CC 5.311 2.372 7.948 1.87 6.58

210.85 0.6 NC 5.993 3.007 8.523 6.20
CC 5.702 2.747 8.151 3.91 10.17
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In Fig. 2 we show the meson mean field values in the
hadronic and mixed phases. Differences between the CC and
NC treatments become appreciable for n.n0. As can be
seen, the r meson amplitude has a sudden change of slope at
the phase transition due to the change in the isospin compo-
sition of the hadronic sector in the neighborhood of ncl. In
the same figure the factor q containing the excluded volume
correction is displayed as a function of the baryonic density.
This factor seems to become almost constant at sufficiently
high densities.

The proton bag radius Rp and its effective mass Mp
* can be

examined in Fig. 3. A faster radius decrease is observed in
the CC instance, as compared with the respective NC calcu-
lation. This fact explains the absence of overlap and the con-
sequent lengthening of the validity range of the CC ap-
proach. A dropping of about 15–20 % in Rp is predicted
before the hadronic matter completely disappears; this strong
compression of the baryon bags helps the deconfinement
mechanism in the CC case. This can be understood because
at a given density the pressure and the chemical potential of
baryons are slightly greater when the excluded volume cor-
relations are included than in the NC results. Bearing in mind
that at the transition point there is a crossing of the curves
representing the pressure in terms of the chemical potential

for the hadronic and quark phases, this crossing occurs at
lower densities for the CC than for the NC case. On the other
side, due to the slow decrease of the bag radius in the NC
approach, the overlapping of bags can happen before the
phase transition to pure quark matter takes place.

The effective mass Mp
* exhibits a monotonous decrease as

a function of the baryonic density, the rate of variation at low
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FIG. 1. Hadronic snHd and quark snQd contributions to the total
baryonic density in the mixed phase. The results with (without)
excluded volume correction are represented with solid (dashed)
lines. The different bag constant values B1/4=169.9, 187.8 and
210.8 MeV are distinguished with the labels (a), (b), and (c), re-
spectively. For comparison we have also drawn a curve correspond-
ing to a pure phase (dotted line). All curves above (below) this line
represent the contributions nQ snHd. The case (c) NC stays in the
pure hadronic phase for all ranges of densities studied, and there-
fore coincides with the dotted line in this graph. The CC curves are
plotted up to the upper density threshold ncu. Numerical values for
the density threshold ncl and ncu can be seen in Table I.
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densities is attenuated by both decreasing B and/or including
volume corrections.

The composition of star matter is depicted in Fig. 4 for
cases (b) and (c). The onset of the quark phase in the NC
instance suppresses the hyperons that could be present if this
transition had not happened. Otherwise in the CC approach
new hyperon species appear even in the mixed phase. The
pronounced decrease of the lepton abundance in the mixed
phase must be noted.

The equation of state for (b) and (c) is represented in Fig.
5. The energy density e in the mixed phase varies in the
range 0.3–1.1 GeV fm−3 for (b)-CC, whereas it ranges be-
tween 0.6–2.0 GeV fm−3 for the set (c)-CC. In the CC treat-
ment the pressure shows sudden changes of slope at the ex-
treme points of the mixed phase, which are absent in the NC
case.

The results for neutron star masses and radii based on
these equations of state are displayed in Fig. 6. They are
given in units of the solar mass M(=1.988931030 kg.

The masses M, radii R, and moments of inertia I for the
maximum mass star are listed in Table II. We have found that
1.51øM/M(ø1.88, a result which is above the experimen-
tal lower limit M/M(=1.44 accepted for binary pulsars.

For these particular cases we have obtained that the radii
R are rather insensitive to the star internal structure, ranging
between 12 km&R&13 km, being slightly bigger when ex-

cluded volume corrections are included. Figure 6 also shows
that the maxima are reached in a plateau, and they are en-
hanced in the CC cases studied here with respect to the NC
ones (Table II). One can also appreciate what happens when
excluded volume effects are not considered. In fact, the NC
EOS (dashed lines) predicts that for stars approaching the
maximum stable mass M the baryonic bags at the center are
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close to overlap. This is indicated by vertical double bars on
the corresponding curves. In particular for the case (b)-NC
the bags are overlapping at the center of M, see Tables I
snmaxd and II sncmaxd. On the other hand, when CC corrections
are included no overlap is present and this is one of the
points in favor of the inclusion of the excluded volume cor-
relations.

At this point we can compare our predictions with previ-
ous works, for example, Ref. [8] where the QMC model is
used to study hyperonic matter and neutron star properties.
There the bag constant depends on the scalar mesons fields,
and the increase of the radius with density leads to an early
overlap of the bags. This feature contrasts with the monoto-
nous decrease of the bag radii we have found. We can also
examine the EOS, although the transition to quark matter is
not considered in Ref. [8]. The model named QMCI in this
reference and the set (b)-NC predict a similar EOS, and for
the option (b)-CC we find a slightly stiffer behavior in the
pure hadronic matter region due to excluded volume correc-
tions. At higher densities the appearance of the mixed phase
softens significantly the EOS, as is shown in Fig. 5. With
respect to the maximum neutron star mass and size, the case
(b)-NC (Table II) compares fairly well with those given by
the model QMCI [8].

The structure of the star, in terms of shells of either pure
quark, mixed quark-hadron, or pure hadron matter, depends
on the selected value of the bag parameter B. This can be
seen in Fig. 7 for the CC (b) and (c) cases, where we plot the
mass msrd (left panel) and moment of inertia Isrd (right
panel) enclosed within a given r, for the maximum star
masses (Table II). The mass msrd is given in Eq. (3.8), and
Isrd corresponds to the definition given in Eq. (3.9) with the
replacement R→r in the upper integration limit. As indicated
in this figure, the case (b), CC, predicts that a mixed phase of
deconfined quarks and hadrons can be found in a central core
with a radius of about 7.48 km, which contains 45% of M
and contributes 18% to the moment of inertia I of the star.
Meanwhile in the (c)-CC case the hadron-quark mixed phase
extends up to 4.31 km and it encloses only 12% of M; its
contribution to I is small, around 1.5%.

For the sake of completeness, we mention that the option
(a)-CC, although not physically reliable, predicts for the star
with the maximum mass a structure which includes a pure
quark core of 6.55 km. This core is surrounded by a crust of
mixed phase located between 6.55 km and 8.04 km, and the

outer shell contains only hadronic matter. The mass of this
star is 1.42M( with a radius of 9.28 km.

V. CONCLUSIONS

We have studied the high density regime of matter in a
schematic model of quarks confined into bags, the so called
QMC model. One of the main hypotheses of this model is
that bags do not overlap, but this situation is reached at rela-
tively low densities of around three times the nuclear matter
saturation density in the fixed B treatment. Two different
approaches have been given to solve this problem by relax-
ing the requirement of nonoverlapping bags [7,8]. However
these procedures could give rise to formal inconsistencies
such as the nonvalidity of the boundary conditions at the bag
surface. This point should be clarified before practical appli-
cations at extreme densities can be done.

In the present work we intend to retain all the formal
aspects of the original QMC, including at the same time the
dynamical effects arising at very high densities. We do this
by modifying the standard QMC treatment in two aspects, in
the first place we consider an alternative condition for the
equilibrium of a bag immersed in a dense medium. In the
second place we introduce in-medium averaged short-range

TABLE II. Neutron star properties for each of the bag constants used in our calculations and for each of
the approaches: with excluded volume correction (CC) and without it (NC). The star mass M relative to the
sun mass, the star radius R, the central baryonic density snc maxd, the surface redshift z, and the moment of
inertia I (for a slowly rotating star), all corresponding to the star with maximum mass.

B1/4 sMeVd Case M/M( R skmd nc max/n0 z Is1030 kg km2d

187.83 NC 1.506 11.70 6.886 0.2701 137.8
CC 1.592 13.02 5.148 0.2513 184.1

210.85 NC 1.672 12.38 5.800 0.2897 181.5
CC 1.879 12.69 5.507 0.3330 227.1
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FIG. 7. The star mass (moment of inertia) enclosed within the
spherical region of radius r [see Eqs. (3.8) and (3.9)] is shown in the
left (right) panel for the sets (b) (solid line) and (c) (dashed line)
within the CC treatment. These results correspond to the maximum
star mass M, as listed in Table II. The mixed phase threshold is
marked with a vertical arrow.
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correlations among baryons by using an excluded volume
treatment. Thus we obtain a quasiparticle picture of baryons
dressed by these strong correlations, which remains valid in
all ranges of the present calculations.

We studied the equation of state of hadronic matter and
the transition to a deconfined quark phase. Our approach
links coherently the nonperturbative QCD effects represented
by the bag constant B, for both phases of confined and de-
confined quarks. The excluded volume correction becomes
effective at intermediate densities, contributing to the onset
of a quark matter phase. The nonoverlapping bag hypothesis
is verified over all ranges of densities for which hadrons are
the relevant degrees of freedom.

We have found that for star matter a mixed hadron-quark
phase precedes the pure quark matter, in agreement with pre-
vious studies. Also found are sudden changes in the com-
pressibility at the extreme points of this mixed phase, as well
as abrupt changes in the density rate of growth of the vector
isovector meson and in the lepton concentration.

The effects of the finite baryon volume correlations on the
neutron star structure have been examined, we have found
that the maximum star mass is enhanced by both increasing

B and introducing excluded volume corrections. The CC ap-
proach leads to a small increase of the star radius at the
maximum mass, as compared to the respective NC case.

We have demonstrated that the CC treatment enlarges the
range of applicability of the QMC model, which can be ex-
tended to reach the pure quark matter phase. In effect, in our
approach this transition takes place at baryonic densities
where excluded volume corrections are significative, and
they should be included to describe properly the structure of
massive systems, such as neutron stars.

Our results are based on a schematic model, however it
seems to include the main ingredients for a reliable qualita-
tive description of the high density regime of matter. Further
refinements can be introduced to give more elaborate predic-
tions, such as improved treatment of the quark matter phase
and the consideration of exotic multiquark states, which will
be the object of future studies.

ACKNOWLEDGMENT

This work was partially supported by CONICET, Argen-
tina.

[1] H. Hatsuda and T. Kunihiro, Phys. Rep. 247, 221 (1994).
[2] G. E. Brown and M. Rho, Phys. Rep. 269, 333 (1996).
[3] J. Kapusta, Phys. Rev. D 23, 2444 (1981).
[4] A. Rakhimov, M. M. Musakhanov, F. C. Khanna, and U.

Yakhshiev, Phys. Rev. C 58, 1738 (1998).
[5] P. A. M. Guichon, Phys. Lett. B 200, 235 (1988).
[6] K. Saito and A. W. Thomas, Phys. Lett. B 327, 9 (1994); Phys.

Rev. C 51, 2757 (1995); K. Tsushima, K. Saito, and A. W.
Thomas, Phys. Lett. B 411, 9 (1997); K. Tsushima, K. Saito, J.
Haidenbauer, and A. W. Thomas, Nucl. Phys. A630, 691
(1998).

[7] K. Saito, K. Tsushima, and A. W. Thomas, nucl-th/9901084.
[8] S. Pal, M. Hanauske, I. Zakout, H. Stöcker, and W. Greiner,

Phys. Rev. C 60, 015802 (1999).
[9] P. K. Panda, R. Sahu, and C. Das, Phys. Rev. C 60, 038801

(1999).
[10] R. Aguirre and A. L. De Paoli, nucl-th/9907087.
[11] S. Kagiyama, A. Nakamura, and T. Omodaka, Z. Phys. C 53,

163 (1992); 56, 557 (1992).
[12] S. Kagiyama, A. Minaka, and A. Nakamura, Prog. Theor.

Phys. 89, 1227 (1993).
[13] D. H. Rischke, M. I. Gorenstein, H. Stöcker, and W. Greiner,

Z. Phys. C 51, 485 (1991).
[14] J. Cleymans and H. Satz, Z. Phys. C 57, 135 (1993); J. Cley-

mans, M. I. Gorenstein, J. Stålnacke, and E. Suhonen, Phys.
Scr. 48, 277 (1993); H. Kouno, K. Koide, T. Mitsumori, N.

Noda, A. Hasegawa, and M. Nakano, Prog. Theor. Phys. 96,
191 (1996); G. D. Yen, M. I. Gorenstein, W. Greiner, and S. N.
Yang, Phys. Rev. C 56, 2210 (1997); M. I. Gorenstein, H.
Stöcker, G. D. Yen, S. N. Yang, W. Greiner, J. Phys. G 24,
1777 (1998).

[15] C. P. Singh, B. K. Patra, and K. K. Singh, Phys. Lett. B 387,
680 (1996).

[16] J. D. Walecka, Ann Phys. 83, 491 (1974); J. Cleymans, Phys.
Lett. 59B, 109 (1975).

[17] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986);
Int. J. Mod. Phys. E 6, 515 (1997).

[18] M. I. Gorenstein, A. P. Kostyuk, and Ya. D. Krivenko, J. Phys.
G 25, L75 (1999).

[19] R. Knorren, M. Prakash, and P. J. Ellis, Phys. Rev. C 52, 3470
(1995); J. Schaffner and I. N. Mishustin, ibid. 53, 1416
(1996); K. Schertler, C. Greiner, J. Schaffner-Bielich, and M.
H. Thoma, Nucl. Phys. A677, 463 (2000); N. K. Glendenning,
Phys. Rep. 342, 393 (2001); J. Schaffner-Bielich, M. Ha-
nauske, H. Stöcker, and W. Greiner, Phys. Rev. Lett. 89,
171101 (2002).

[20] N. K. Glendenning, Phys. Rev. D 46, 1274 (1992).
[21] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170,

299 (1971).
[22] J. W. Negele and D. Vautherin, Nucl. Phys. A207, 298 (1973).
[23] J. B. Hartle, Astrophys. J. 150, 1005 (1967); A. Akmal, V. R.

Pandharipande, and D. G. Ravenhall, Phys. Rev. C 58, 1804
(1998).

R. M. AGUIRRE AND A. L. DE PAOLI PHYSICAL REVIEW C 68, 055804 (2003)

055804-10


