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Factorization and entanglement in general XYZ spin arrays in nonuniform transverse fields
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We determine the conditions for the existence of a pair of degenerate parity breaking separable eigenstates
in general arrays of arbitrary spins connected through XYZ couplings of arbitrary range and placed in a
transverse field, not necessarily uniform. Sufficient conditions under which they are ground states are also
provided. It is then shown that in finite chains, the associated definite parity states, which represent the actual
ground state in the immediate vicinity of separability, can exhibit entanglement between any two spins regard-
less of the coupling range or separation, with the reduced state of any two subsystems equivalent to that of pair
of qubits in an entangled mixed state. The corresponding concurrences and negativities are exactly determined.
The same properties persist in the mixture of both definite parity states. These effects become specially relevant
in systems close to the XXZ limit. The possibility of field induced alternating separable solutions with con-
trollable entanglement side limits is also discussed. Illustrative numerical results for the negativity between the
first and the j™ spin in an open spin s chain for different values of s and j are as well provided.
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Quantum entanglement constitutes one of the most funda-
mental, complex and counterintuitive aspects of quantum
mechanics. It is an essential resource in quantum information
theory [1], playing a key role in quantum teleportation [2]
and computation [1,3,4]. Tt also provides a deeper under-
standing of quantum correlations in many-body systems [5].
In particular, a great effort has been devoted in recent years
to analyze entanglement and its connection with critical phe-
nomena in spin chains [5-8]. Studies of finite chains, of most
interest for quantum information applications, are presently
also motivated by the possibility of their controllable simu-
lation through quantum devices [9,10].

A remarkable feature of interacting spin chains is the pos-
sibility of exhibiting exactly separable ground states (GS)
for special values of the external magnetic field, first discov-
ered in [11,12] in a one-dimensional (1D) XYZ chain with
first neighbor coupling. It was recently investigated in more
general arrays under uniform fields [13—19], with a general
method for determining separability introduced in [18]. An-
other remarkable related aspect is the fact that in the imme-
diate vicinity of these separability points (SP) the entangle-
ment between two spins can reach infinite range [15,17]. In
[17], we have shown that the SP in finite cyclic spin 1/2
arrays in a transverse field corresponds actually to a GS tran-
sition between opposite parity states (the last level crossing
for increasing field), with the entanglement between any two
spins reaching there finite side limits irrespective of the cou-
pling range. In a small chain, this SP plays then the role of a
“quantum critical point.” In contrast, the entanglement range
remains typically finite and low at the conventional phase
transition [6].

The aim of this work is to generalize previous results to
XYZ arrays of arbitrary spins and geometry in a general
transverse field, not necessarily uniform. Moreover, we will
also determine the exact side limits of the entanglement be-
tween any two subsystems (including those for the block
entropy and those for any two spins or group of spins) at the
SP analytically, for any spin value. A nonuniform field will
be shown to allow exact separability with infinite entangle-
ment range in its vicinity in quite diverse systems (such as
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open or nonuniform chains), including the possibility of field
induced alternating separable solutions along separability
curves, with controllable entanglement side limits. Illustra-
tive results for the negativity between the first and j® spin in
an open spin s chain as a function of field and separation are
as well presented, for different spin values.

We consider 7 spins s; (which can be regarded as qudits of
dimension d;=2s;+1=2) not necessarily equal, interacting
through XYZ couplings of arbitrary range in the presence of
a transverse external field b’, not necessarily uniform. The
Hamiltonian reads

H=, bis' - %2 (vfcjsfs}‘ + vi’slysj + v?s,sj , (1)
i 1N
and commutes with the global S, parity or phase-flip P,
=explim2(si+s;)] for any values of b, UZ, or s;. Self-
energy terms (i=j), nontrivial for s;=1, are, for instance,
present in recent coupled cavity based simulations of arbi-
trary spin XXZ models [10] and will be allowed if s;=1.

We now seek the conditions for which such system will

possess a separable parity breaking eigenstate of the form

|®)=® exp[ifs!]]0;) (2)
i=1
n| 2 [l 0, .0
:g g) (kl)coszsi_kjsinkj%i) , (3)

where s9k;)=(k-s)|k) and ¢/%%]0,) is a rotated minimum
spin state (coherent state [20]). The choice of y as rota-
tion axis does not pose a loss of generality as any state
€'%i]0;) corresponds to a suitable complex 6; in Eq. (2) [21].
Replacing s* in Eq. (1) by e ifisleifsi, ie., s
— 57" cos 0,% 577 sin 6, 5] — 5], the equation H|®)=Eg|0),
ie, Hgl0)=Ep|0) with [0)=®",/0;) and Hg

. ¥ 5 .
=e 2% He™i%i | leads to the equations

ij_ i i .
vy =vy cos 6; cos 6; + v sin 6 sin 6;, 4)
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>(v cos 6, sin 6; — v sin 6, cos 6,),

isin 0, = E (
()

which determine, for instance, the values of Uii and b in
terms of v, v”, 5;, and 6,. The energy is then given by

. 1 1 G
_2 s,-|fﬂ cos 6;+ 5? (sj— E%)(vxj sin 6; sin 6;

+vY cos §; cos 0)) + — (v +0! +v”)] (6)

For a 1D spin s cyclic chain with first neighbor couplings
(v” v,0;j=1) in a uniform field (b'=b), we recover the
0r1g1nal GS separability conditions of Ref. [12] for both the
ferromagnetic (v, =0, 6,=6) and antiferromagnetic [v,

=0, 6,=(-1)"6] cases. Equations (4)—(6) are, however
completely general and actually hold also for complex values
of 6, v” and b': if satisfied Vi, j, H will have a separable
elgenstate (2) with eigenvalue (6). If sin 6;,# 0 for some i,
this eigenvalue is degenerate: |®) will break parity symme-
try and, therefore, the partner state

|-0)=P|0)=® exp[-i6;s]|0,), (7)
i=1

will be an exact eigenstate of H as well, with the same en-
ergy (6). The points in parameter space where the states
|- @) become exact eigenstates correspond necessarily to the
crossing of at least two opposite parity levels.

For real 6;, Eq. (5) is just the stationary condition for the
energy (6) at fixed b, v’}{ The state (2) can thus be regarded
as a mean field trial state, with Eq. (5) the associated self-
consistent equation. Equation (4), which is spin independent
(at fixed vZ), ensures that it becomes an exact eigenstate by
canceling the residual one- and two-site matrix elements
connecting |®) with the remaining states. Moreover, if 6,
e (0,7)Viand

Vij, (8)

o] =

we can ensure that |+ @) will be ground states of H: in the
standard basis formed by the states {®'_,|k;)}, the terms in H
depending on {s3} are diagonal, whereas the rest lead to real

nonpositive off-diagonal matrix elements, as 2., yv’l’Ls,“s;‘
vil=vl

_E,,_+v”(s s;"+s7s7), where s —sj‘+tsy and v’i—T>0
by Eq. (8). Hence, (H) can be minimized by a state with all
coefficients real and of the same sign in this basis (different
signs will not decrease (H)), which then cannot be orthogo-
nal to |®) [Eq. (3)]. With suitable phases for 6, |=®) can
also be GS in other cases: a 7 rotation around the z axis at
site i leads to 6;——6; and v¥ —-v ’} for i # .

Definite parity eigenstates of H in the subspace generated
by the states |=0) can be constructed as

.19 =|-0)
@7 :/=’ 9
1©07) NTETN 9)
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Op = (- 0|0) =[] cos™i 6, (10)

i=1

0*)=*+|0%), (0*|0”)Y=5"". Here, we
have set 6; real Vz since by local rotations around the z axis
we can always choose y; in the direction of ¢; (and, hence, 6,
real) in the final state
=m/2 (and, hence, Og=0) since a local rotation of 7
around the x axis leads to 6;— a—6,. The overlap (10) will
play an important role in the following.

When the degeneracy at the SP is indeed 2, the states (9)
[rather than Eq. (2)] are the actual side limits at the SP of the
corresponding nondegenerate (and, hence, definite parity)
exact eigenstates of H. For small variations &b’, the degen-
eracy will be broken if Og # 0, with an energy gap given by
AE~X,8b'AM;, where

2s; sin® 6,04
(@silon = ————
cos 6;(1 — Og)

(In contrast, (= 0|s3|=@)=—s; cos 6;). When |@~) are GS, a
GS parity transition |@~)— |®@*), characterized by a magne-
tization step AM=X,AM,, will then take place at the SP if all
or some of the fields are increased across the factorizing
values (5). If AE or AM can be resolved or measured, the
realization of the states (9) is then ensured. Their magnitude
is governed by the overlap (10), appreciable in small systems
(if 6,# m/2), as well as in finite systems with small angles
67~ 8:/n, such that Og =~ ¢™>#%"_ This implies [Eq. (4)] sys-
tems close to the XXZ limit (v” —v”) In this limit (6,—0),
AM — 1, with |®*)—|0) and |®~ )MZ As;0/1,) (weighted
W-type state) where [1,)=®7_,[(5;)

Entanglement of definite parity states. In contrast with
|=@), the states (9) are entangled. If sin 6,0V i the

Schmidt number for any global bipartition (A,A) is 2 and the
Schmidt decomposition is

10%) = \pLlONIO) + \pLlODOD), (1)

. (1+v0,.)(1 £ v0Oy)
Par=""5(1 % 0g)

AM; = (07s]07) -

, Op= (- A|®A>’ (12)

where [0}),

parity statei for+the subsystems A, A, with v==, 0,03
=0¢ and p,.+p, =1. Hence,
sidered as two-qubit states with respect to any bipartition
(A,A), with |©),
each qubit. Accordingly, the reduced density matrix p;f of
subsystem A in the state |@~) is

;) representing the orthogonal states of

+

Pa = A+|® ><® |+pA |.A><.A| (13)

The entanglement between A and its complement A can be
measured through the global concurrence (square root of the
tangle [22]) Cyi=v2(1—tr pA) which for a rank 2 density is
just an increasing function of the entanglement entropy E,;
=—tr py logy ps, with C47=E4;z=0 (1) for a separable (Bell)
state. In the states (11), we then obtain
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. \1-0)(1-0)

Ci= = 0g . (14)

These values represent the side limits of C,; at the SP. For
0g>0, C,:>C -, with C ;=1 if 0,=0;. Note that |0*)

are simultaneous Bell states for (A,A) only if 0,=0;=0
[Greenberger-Horne-Zeilinger (GHZ) limit of |®~)]. In-
creasing overlaps will in general decrease the global en-
tanglement.

At the SP, the entanglement entropy of a block of L spins
in a 1D first neighbor spin 1/2 XY chain in a constant field
was found in [23] to be S;,=-trp,Inp,=In2 (i.e., C,]
=FE;;=1) in the thermodynamic limit, in agreement with Eq.
(14) for vanishing overlaps. Equation (14) extends this result
to general finite chains, leading to a slightly smaller value:
for small O, Oz C,;=~1-3(0,=05)% and S;~In2

-3(0, = 0p)* [with O, =(;)"? in the s=1/2 XY chain].

Pairwise and subsystem entanglement. On the other hand,
the entanglement of a subsystem is enabled by nonzero over-
laps. A remarkable feature of the states (9) is that any two
spins or disjoint subsystems B, C will also be entangled if the
complementary overlap Ogy¢ is nonzero and 0%; <l, 02C
< 1. Moreover, this entanglement can be characterized by the
concurrence

_V(1-05)(1- 08055

=+

BC= 1+ 0g , (15)
or equivalently, the negativity [24,25],
NBC=5[\/(‘DAI) +(CBC) /OB+C—PAI]a (16)

where A=B+ C. While the concurrence of an arbitrary mixed
state p4 (which can be defined through the convex roof ex-
tension of the pure state definition [26]) is not directly com-
putable in general (the exception being the case of two qubits
[27]), the negativity Nyc=3[Tr|p’f|~1], where p’# denotes
partial transpose [28], can always be calculated [29], being
just the absolute value of the sum of the negative eigenvalues
of p’f. Equation (16) represents then the side limits of Ny at
the SP.

Proof: for A=B+C, we first note that if 0;=0, Eq. (13)
becomes p;f:%(|A>(A|+|—®A><—®A|), i.e., py coincident
and separable (convex combination of product densities
[30]). Entanglement between B and C can then only arise if
Oz7z¢# 0. Next, using similar Schmidt decompositions (11)
of the states |®;), Eq. (13) can also be considered as an
effective two-qubit mixed state with respect to any bipartition
(B,C) of A: its support will lie in the subspace spanned by

the four states {|§>|®El), v,v' =%}, such that
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P;#]J,;@ 0 0 p}ragc
0 Pydpcr Pa-%c O
Pa = + + -

0 Pa-%c  Pa-4pc- 0

Pythc O 0 Pydpe

+ _ (1+v0p)(1£v0¢) + E +
whi:re dpcv="20%0,00 * “c=\dpcdpe- and  qpe.
+qg—=1. py will be entangled if its partial transpose has a

negative eigenvalue [28], a condition here equivalent to a
positive  mixed  state  concurrence  [27] = Cpe
=Max[Cf,Cf,0], where Cf=2[pfyagc—p§_ya%] represent
parallel (v=+) or antiparallel (r=-) concurrences, i.e.,
driven by |®}) or |®7) in Eq. (13). This leads to Eq. (15),
with Cp (Cy) parallel (antiparallel). The ensuing negativ-
ity, given here by minus the negative eigenvalue of the par-
tial transpose (py)’2, is then given by Eq. (16).

For B=A, C=A(Oz7c— 1), Eq. (15) reduces to Eq. (14),
with N;f%CjX. For a pair of spins i #j, Og=cos>%i 6, O
=cos™/ §;, and the result of [17] is recovered from Eq. (15) if
s;=3 and 6;=0Vi. We finally note that if Oz=0¢, Nj
=Cpe/2, as in the case of a global partition. In general, how-
ever, there is no proportionality between N;C and C;C.

The concurrences (15) fulfill the monogamy inequalities
[31] C5 (,p=C3o+Cpp, for any three disjoint subsystems
B,C ,D.’We actually obtain here

(1-09)(1-03)

C129C+C§D=C§CD 1- 22
o 1-0:0;,

(17)

Let us also remark that subsystem entanglement persists,
though attenuated, in the uniform mixture

o= 210707 + |70

). (18)

which differs from 3(|®X®|+|-0)~8|) if Og# 0 and rep-
resents the T— 0" limit of the thermal state p e~ at the SP
when |+0) are GS (and the GS degeneracy there is 2). Re-
placing p, by 3(pt,+p,.) in Eq. (13), we find now antipar-
allel global and subsystem concurrences, given for any dis-
joint subsystems B, C by

| _
Cho= E(CBC — Co) = C3e00/(1 + 0g), (19)

i.e., half the parity splitting of Cg. Equation (19) remains
valid for a global bipartition (B=A, C=A). The ensuing
negativity can be similarly calculated.

The order of magnitude of subsystem concurrences is
governed by the complementary overlap Ogi¢. For small
subsystems (like a pair of spins) in a large system, C;:C will
be appreciable just for sufficiently small angles in the
complementary system, i.e., 6?1-2~ 8;/n, such that Ogye
~ ¢ %iea%%" remains finite. This leads again to systems with
small XY anisotropy.

Uniform Solution. Let us now examine the possibility of a
common angle ;= 6§V i. Equation (4) leads then to
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vij - vij = (vij - vij)cos2 0, (20)

implying a fixed ratio y= (v” v”)/ (Y- v”) cos? @ for all
pairs with vl #v?, and an 1sotr0p1c coupling v” =v" if v
—v” A subset of 1s0tr0plc couplings will not sp011 thls eigen-
state [32]. Equation (5) implies then b’ arbitrary if #=0 or 7
(XXZ case v”— ) or, otherwise,

) y , 1
b' = cos 02 (U;]—Ul,])(sj__d'j)' (21)
- < 2
J
The energy (6) becomes
1 L
Eg=- 52 sils; Y + v —vY) + 571 (22)

L]

A general field allows then a uniform separable eigenstate (a
global coherent state) in cyclic as well as open chains with
arbitrary spins s; in any dimension if Eq. (20) holds Vi, . For
instance, in an open 1D spin s chain with first neighbor cou-
plings  vV=v,5...;, Eq. (21) yields  b'=b,
=2s\(vy,~v,)(v,~v,) at inner sites but b1=b"=%bx at the
borders.

Equations (20)—(22) are actually valid for general com-
plex 6, but real fields imply cos 6 real (y=0). The case
cos? §>1 (imaginary 6) corresponds to a rotation around the
X axis but can be recast as a rotation around the y axis by a
global rotation around the z axis. Hence, we may set cos? 0
€[0,1]. |=0) will then be GS when Eq. (8) holds.

The concurrence (15) becomes, setting cos? f= Xo

V(L= xP9)(1 = 0 s
1) ’

where Sp=2,_ps; is the subsystem total spin and S=X;s; the
total spin. It is independent of separation and coupling range,
depending solely on y° and the ratios Sz/S, Sc/S. If y=1
—58/2S, with §>0 and finite, y’=~e 92 remains finite for
large S. Equation (23) leads then to O(I/xS) and O(1/S)
global and subsystems concurrences for small Sy, Sp, and S¢

* o SL5—\”1_6_5 24
AN g1z 29

. 5\'SSe
BC™ S 1+

Ce= (23)

(25)

On the other hand, for S,= 1S C_——l whereas C+—

—tanh 6. Thus, while for large & both C
1 as S, increases, for small § (XXZ 11m1t) th1s occurs just for

C,; and S, close to S/2 (here |®*)—10), but |®7) ap-
proaches the W-type state ==;\s; |l ).

Alternating solution and controllable entanglement at the
SP. Among other possibilities allowed by Egs. (4) and (5), let
us examine that of a field induced two-angle solution in a 1D
chain (cyclic or open) of spin s with first neighbor XY cou-
plings (v}=9;;+ v, with v.=0). We assume x=v,/v,
e[0,1]. A separable eigenstate with 6,,=6,, 02, (=6, is fea-
sible if there is an alternating field b*=b,, b*~'=b, in inner
sites satisfying [Eqgs. (4) and (5)]

; rapidly approach
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FIG. 1. (Color online) Negativities between the first and the j"
spin in an open spin s chain with first neighbor XY coupling, as a
function of the transverse field b, with border corrections (see text),
and three different values of s. We have set an anisotropy v,/v,
=1-6/(2sn), with 6=2.5 and n=8 spins. The factorizing field cor-
responds to the last parity transition, and is singled out as the field
where all negativities merge, approaching common nonzero distinct
side limits. The lowest curve in each panel (in red) depicts the
end-to-end negativity (N;_,).

bb,=(25)v,0,. (26)

This leads to a transverse separability curve. The ensuing
angles satisfy cos 6, cos 6,=v,/v, and are given by

2 2
cos’ O,= 4——= o=o,e, (27)

being field dependent. For b, bu, we recover the previous
uniform solution (b, 2S\va)) In an open chain, we should
]ust add, accordmg to Eq. (5), the border corrections b'

=1b,, b"=3b, . The states |+®) will then be GS setting
6,.>0 When v >0 and 6,>0, 6,<0 in the antiferromag-
netic case v, <0 (for even n if chain is cyclic, to avoid frus-
tration).

The definite parity states |@~) will again lead to infinite
entanglement range, but with three different field dependent
(and, hence, controllable) pairwise concurrences between
any two spins [Eq. (15) for B=i, C= Z'] even-even, odd-odd,
and even-odd, satisfying C =\C, C.., with C, >C,
>C, if |b ~ can be made larger than C,,
despite the absence of odd—odd direct coupling. For suffi-
ciently large b,, cos 6,~ 1 but cos ,= x: just odd-odd pairs
will be appreciably entangled in this limit at the SP.
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FIG. 2. (Color online) Same details as Fig. 1 for §=7.5 and s
=3/2. The inset depicts the behavior in the vicinity of the separa-
bility field.

Application. As illustration, we first depict in Fig. 1 full
exact results for the GS negativities N,; between spins 1 and
Jj in a small open chain of uniform spin s with first neighbor
XY couplings in a uniform transverse field bi=b for i
=2,...,n—1, with the border corrections b'= b”—lb For x
=v, / v,e(0,1) th1s chain will then exhibit an exact factoriz-
ing ﬁeld by=2sv .\ X where s _parable parity breaking states
with umform angle cos 6=y will become exact GS if v,
>0 (if v,<0, 6;=(-1)'0 instead in the GS). We have set y
=1-6/(2ns), such that the side limits of the negativity at b,
are roughly independent of s and n. It is first seen that the
ensuing behavior of the Ny; in terms of the scaled field b/b,
is quite similar for the three spin values considered (s=1/2,
1, and 3/2, the latter involving a diagonalization in a basis of
65 536 states for n=8). The GS exhibits ns parity transitions
as the field is increased from 0% to b,, with the last transition
at b,. As the latter is approached, it is verified that the pair-
wise entanglement range increases, with all negativities ap-
proaching the common side limits (16) distinct at each side,

given here by Ni= C+ e [Eq. (25)] and N

C: )2 o 57e » ) 2n(1+

s ~ ol An interval of full range pairwise en-
tanglement around b, is then originated, which involves on
the left side essentially the last state before the last transition
(roughly an W state). b, plays in this small chain the role of
a quantum critical field.

Figure 2 depicts results for a greater anisotropy 6=7.5. In
this case, just the last two parity transitions are visible in the
negativity. The common side limits of Niij are smaller and all
negativities exhibit a maximum to the right of the factorizing
field. The behavior is then more similar to that of larger XY
systems [15]. Nonetheless, there is still a clear interval of full
entanglement range around b,, with finite side limits at b,
when observed in detail (inset).

The side limits at separability can actually be modified in
this system by changing the even-odd field ratio »=b,/b,,
according to Eq. (26). Results for a fixed ratio 7=10 (with
pertinent border corrections) are shown in Fig. 3, in which
case separability is exactly attained at an odd field b,

PHYSICAL REVIEW A 80, 062325 (2009)

0 05 1.0 15
bo/bos

FIG. 3. (Color online) Same details as Fig. 1 for 6=7.5, s
=3/2 and an alternating field with fixed even/odd ratio b,/b,=10.
Red (blue) lines depict results for j even (odd).

=b,/\7n. We have again plotted just the negativities between
the first and the j spin, which now approach fwo common
side limits at each side, one for j even (Ni) and one for j
odd (N,). While the former become quite small, the latter
become clearly appreciable, the final effect for such large
ratios being essentially that just odd sites become uniformly
entangled in the vicinity of b,,. Even-even negativities N;,—;
(not shown) are of course also very small at b,,. Notice fi-
nally that N3 can become much larger than N, in the region
around b,,, despite the absence of second neighbor cou-
plings.

In summary, we have first determined the conditions for
the existence of separable parity breaking (and locally coher-
ent) eigenstates in general XYZ arrays of arbitrary spins in a
general transverse field, showing in particular the possibility
of exact separability in open as well as nonuniform chains
through nonuniform transverse fields. We have also deter-
mined the entanglement properties of the associated definite
parity states, through the evaluation of the concurrence and
negativity for any pair of spins or subsystems, for any spin
values. These states, which approach both GHZ and W states
in particular limits, exhibit full entanglement range when
nonorthogonal, and can be seen as effective two qubit en-
tangled states for any bipartition. Moreover, the same holds
for their uniform mixture as well as for the reduced density
of any subsystem. The finite entanglement limits at the SP
become relevant in finite arrays close to the XXZ limit, where
the separability field can be clearly identified with the last
GS parity transition, as verified in the numerical results pre-
sented, playing the role of a quantum critical field. The pos-
sibility of exact separability in an alternating field (b,
=nb,) for arbitrary even-odd ratios 7, leading to controllable
entanglement side limits, has also been disclosed. The
present results provide a deeper understanding of the behav-
ior of pairwise entanglement in finite XYZ spin arrays subject
to transverse fields.

The authors acknowledge support from CIC (R.R.) and
CONICET (N.C. and J.M.M.) of Argentina.

062325-5



ROSSIGNOLI, CANOSA, AND MATERA

[1]M. A. Nielsen and 1. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, Cam-
bridge, England, 2000).

[2] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres,
and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993); C. H.
Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smo-
lin, and W. K. Wootters, ibid. 76, 722 (1996).

[3] C. H. Bennett and D. P. DiVincenzo, Nature (London) 404,
247 (2000).

[4] R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188
(2001); R. Raussendorf, D. E. Browne, and H. J. Briegel, Phys.
Rev. A 68, 022312 (2003).

[5] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev. Mod.
Phys. 80, 517 (2008).

[6] T. J. Osborne and M. A. Nielsen, Phys. Rev. A 66, 032110
(2002).

[7] A. Osterloh et al., Nature (London) 416, 608 (2002).

[8] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett.
90, 227902 (2003).

[9] M. J. Hartmann, F. G. S. L. Branddo, and M. B. Plenio, Phys.
Rev. Lett. 99, 160501 (2007).

[10] J. Cho, D. G. Angelakis, and S. Bose, Phys. Rev. A 78, 062338
(2008).

[11]J. Kurmann, H. Thomas, and G. Miiller, Physica A 112, 235
(1982).

[12] G. Miiller and R. E. Shrock, Phys. Rev. B 32, 5845 (1985).
[13] T. Roscilde, P. Verrucchi, A. Fubini, S. Haas, and V. Tognetti,
Phys. Rev. Lett. 93, 167203 (2004); 94, 147208 (2005).

[14] S. Dusuel and J. Vidal, Phys. Rev. B 71, 224420 (2005).

[15] L. Amico, F. Baroni, A. Fubini, D. Patane, V. Tognetti, and P.
Verrucchi, Phys. Rev. A 74, 022322 (2006); F. Baroni e al., J.
Phys. A 40, 9845 (2007).

[16] S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301
(2007); S. M. Giampaolo, F. llluminati, P. Verrucchi, and S. De

PHYSICAL REVIEW A 80, 062325 (2009)

Siena, ibid. 77, 012319 (2008).

[17] R. Rossignoli, N. Canosa, and J. M. Matera, Phys. Rev. A 77,
052322 (2008).

[18] S. M. Giampaolo, G. Adesso, and F. Illuminati, Phys. Rev.
Lett. 100, 197201 (2008); Phys. Rev. B 79, 224434 (2009);
e-print arXiv:0906.4451

[19] G. L. Giorgi, Phys. Rev. B 79, 060405(R) (2009); 80,
019901(E) (2009).

[20] F. T. Arecchi, E. Courtens, R. Gilmore, H. Thomas, Phys. Rev.
A 6, 2211 (1972).

[21] In terms of Euler angles, ¢/ ¢/ ¢i7"|0)=ce®’|0), with tang
=el® tan‘g and c=e""‘("‘+7)(%)zs [Eq. (3)]. ¢ can obviously
be restricted to the x,y plane.

[22] P. Rungta and C. M. Caves, Phys. Rev. A 67, 012307 (2003).

[23] F. Franchini et al., J. Phys. A 40, 8467 (2007).

[24] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).

[25] K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein,
Phys. Rev. A 58, 883 (1998); K. Zyczkowski, ibid. 60, 3496
(1999).

[26] A. Datta, S. T. Flammia, A. Shaji, and C. M. Caves, Phys. Rev.
A 175, 062117 (2007).

[27] S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997);
W. K. Wootters, ibid. 80, 2245 (1998).

[28] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).

[29] R. Rossignoli and N. Canosa, Phys. Rev. A 72, 012335 (2005);
N. Canosa and R. Rossignoli, ibid. 73, 022347 (2006).

[30] R. F. Werner, Phys. Rev. A 40, 4277 (1989).

[31] V. Coffman, J. Kundu, and W. K. Wootters, Phys. Rev. A 61,
052306 (2000); T. J. Osborne and F. Verstraete, Phys. Rev.
Lett. 96, 220503 (2006).

[32] For a full isotropic coupling %Z,-’jv"js,--sj, 6 remains arbitrary
while Eq. (5) leads to b'=0 if sin §#0: At zero field, any
global coherent state is here an exact eigenstate.

062325-6



