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We determine the conditions for the existence of a pair of degenerate parity breaking separable eigenstates
in general arrays of arbitrary spins connected through XYZ couplings of arbitrary range and placed in a
transverse field, not necessarily uniform. Sufficient conditions under which they are ground states are also
provided. It is then shown that in finite chains, the associated definite parity states, which represent the actual
ground state in the immediate vicinity of separability, can exhibit entanglement between any two spins regard-
less of the coupling range or separation, with the reduced state of any two subsystems equivalent to that of pair
of qubits in an entangled mixed state. The corresponding concurrences and negativities are exactly determined.
The same properties persist in the mixture of both definite parity states. These effects become specially relevant
in systems close to the XXZ limit. The possibility of field induced alternating separable solutions with con-
trollable entanglement side limits is also discussed. Illustrative numerical results for the negativity between the
first and the jth spin in an open spin s chain for different values of s and j are as well provided.
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Quantum entanglement constitutes one of the most funda-
mental, complex and counterintuitive aspects of quantum
mechanics. It is an essential resource in quantum information
theory f1g, playing a key role in quantum teleportation f2g
and computation f1,3,4g. It also provides a deeper under-
standing of quantum correlations in many-body systems f5g.
In particular, a great effort has been devoted in recent years
to analyze entanglement and its connection with critical phe-
nomena in spin chains f5–8g. Studies of finite chains, of most
interest for quantum information applications, are presently
also motivated by the possibility of their controllable simu-
lation through quantum devices f9,10g.

A remarkable feature of interacting spin chains is the pos-
sibility of exhibiting exactly separable ground states sGSd
for special values of the external magnetic field, first discov-
ered in f11,12g in a one-dimensional s1Dd XYZ chain with
first neighbor coupling. It was recently investigated in more
general arrays under uniform fields f13–19g, with a general
method for determining separability introduced in f18g. An-
other remarkable related aspect is the fact that in the imme-
diate vicinity of these separability points sSPd the entangle-
ment between two spins can reach infinite range f15,17g. In
f17g, we have shown that the SP in finite cyclic spin 1/2
arrays in a transverse field corresponds actually to a GS tran-
sition between opposite parity states sthe last level crossing
for increasing fieldd, with the entanglement between any two
spins reaching there finite side limits irrespective of the cou-
pling range. In a small chain, this SP plays then the role of a
“quantum critical point.” In contrast, the entanglement range
remains typically finite and low at the conventional phase
transition f6g.

The aim of this work is to generalize previous results to
XYZ arrays of arbitrary spins and geometry in a general
transverse field, not necessarily uniform. Moreover, we will
also determine the exact side limits of the entanglement be-
tween any two subsystems sincluding those for the block
entropy and those for any two spins or group of spinsd at the
SP analytically, for any spin value. A nonuniform field will
be shown to allow exact separability with infinite entangle-
ment range in its vicinity in quite diverse systems ssuch as

open or nonuniform chainsd, including the possibility of field
induced alternating separable solutions along separability
curves, with controllable entanglement side limits. Illustra-
tive results for the negativity between the first and jth spin in
an open spin s chain as a function of field and separation are
as well presented, for different spin values.

We consider n spins si swhich can be regarded as qudits of
dimension di=2si+1$2d not necessarily equal, interacting
through XYZ couplings of arbitrary range in the presence of
a transverse external field bi, not necessarily uniform. The
Hamiltonian reads

H = o
i

bisi
z −

1

2o
i,j

svx
ijsi

xsj
x + vy

ijsi
ysj

y + vz
ijsi

zsj
zd , s1d

and commutes with the global Sz parity or phase-flip Pz
=expfipoi=1

n ssi
z+sidg for any values of bi, vm

ij, or si. Self-
energy terms si= jd, nontrivial for si$1, are, for instance,
present in recent coupled cavity based simulations of arbi-
trary spin XXZ models f10g and will be allowed if si$1.

We now seek the conditions for which such system will
possess a separable parity breaking eigenstate of the form

uQl = ^
i=1

n

expfiuisi
ygu0il s2d

= ^
i=1

n Fo
k=0

2si ÎS2si

k
Dcos2si−kui

2
sinkui

2
ukilG , s3d

where si
zukil= sk−sidukil and eiuisi

y
u0il is a rotated minimum

spin state scoherent state f20gd. The choice of y as rota-
tion axis does not pose a loss of generality as any state
eifi·siu0il corresponds to a suitable complex ui in Eq. s2d f21g.
Replacing si

m in Eq. s1d by e−iuisi
y
si

meiuisi
y
, i.e., si

z,x

→si
z,x cos ui6si

x,z sin ui, si
y→si

y, the equation HuQl=EQuQl,
i.e., HQu0l=EQu0l with u0l= ^ i=1

n u0il and HQ

=e−ioiuisi
y
Heioiuisi

y
, leads to the equations

vy
ij = vx

ij cos ui cos u j + vz
ij sin ui sin u j , s4d
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bi sin ui = o
j
Ssj −

1

2
dijDsvx

ij cos ui sin u j − vz
ij sin ui cos u jd ,

s5d

which determine, for instance, the values of vy
ij and bi in

terms of vx
ij, vz

ij, si, and ui. The energy is then given by

EQ = − o
i

siFbi cos ui +
1

2o
j
Ssj −

1

2
dijDsvx

ij sin ui sin u j

+ vz
ij cos ui cos u jd +

1

4
svx

ii + vy
ii + vz

iidG . s6d

For a 1D spin s cyclic chain with first neighbor couplings
svm

ij =vmdi,j61d in a uniform field sbi=bd, we recover the
original GS separability conditions of Ref. f12g for both the
ferromagnetic svm$0, ui=ud and antiferromagnetic fvm

#0, ui= s−1diug cases. Equations s4d–s6d are, however,
completely general and actually hold also for complex values
of ui, vm

ij, and bi: if satisfied ∀i, j, H will have a separable
eigenstate s2d with eigenvalue s6d. If sin uiÞ0 for some i,
this eigenvalue is degenerate: uQl will break parity symme-
try and, therefore, the partner state

u− Ql = PzuQl = ^
i=1

n

expf− iuisi
ygu0il , s7d

will be an exact eigenstate of H as well, with the same en-
ergy s6d. The points in parameter space where the states
u6Ql become exact eigenstates correspond necessarily to the
crossing of at least two opposite parity levels.

For real ui, Eq. s5d is just the stationary condition for the
energy s6d at fixed bi, vm

ij. The state s2d can thus be regarded
as a mean field trial state, with Eq. s5d the associated self-
consistent equation. Equation s4d, which is spin independent
sat fixed vm

ijd, ensures that it becomes an exact eigenstate by
canceling the residual one- and two-site matrix elements
connecting uQl with the remaining states. Moreover, if ui
P s0,pd∀ i and

uvy
iju # vx

ij ∀ i, j , s8d

we can ensure that u6Ql will be ground states of H: in the
standard basis formed by the states h^ i=1

n ukilj, the terms in H
depending on hsi

zj are diagonal, whereas the rest lead to real
nonpositive off-diagonal matrix elements, as om=x,yvm

ijsi
msj

m

=on=6vn
ijssi

+sj
−n+si

−sj
nd, where sj

6=sj
x6 isj

y and v6
ij =

vx
ij6vy

ij

4 $0
by Eq. s8d. Hence, kHl can be minimized by a state with all
coefficients real and of the same sign in this basis sdifferent
signs will not decrease kHld, which then cannot be orthogo-
nal to uQl fEq. s3dg. With suitable phases for ui, u6Ql can
also be GS in other cases: a p rotation around the z axis at
site i leads to ui→−ui and vx,y

ij →−vx,y
ij for iÞ j.

Definite parity eigenstates of H in the subspace generated
by the states u6Ql can be constructed as

uQ6l =
uQl 6 u− Ql
Î2s1 6 OQd

, s9d

OQ ; k− QuQl = p
i=1

n

cos2si ui, s10d

which satisfy PzuQ6l= 6 uQ6l, kQn uQn8l=dnn8. Here, we
have set ui real ∀i, since by local rotations around the z axis
we can always choose yi in the direction of fi sand, hence, ui
reald in the final state uQl. Moreover, we may also set uuiu
#p /2 sand, hence, OQ$0d since a local rotation of p
around the x axis leads to ui→p−ui. The overlap s10d will
play an important role in the following.

When the degeneracy at the SP is indeed 2, the states s9d
frather than Eq. s2dg are the actual side limits at the SP of the
corresponding nondegenerate sand, hence, definite parityd
exact eigenstates of H. For small variations dbi, the degen-
eracy will be broken if OQÞ0, with an energy gap given by
DE<oidbiDMi, where

DMi ; kQ−usi
zuQ−l − kQ+usi

zuQ+l =
2si sin2 uiOQ

cos uis1 − OQ
2 d

.

sIn contrast, k6Qusi
zu6Ql=−si cos uid. When uQ6l are GS, a

GS parity transition uQ−l→ uQ+l, characterized by a magne-
tization step DM =oiDMi, will then take place at the SP if all
or some of the fields are increased across the factorizing
values s5d. If DE or DM can be resolved or measured, the
realization of the states s9d is then ensured. Their magnitude
is governed by the overlap s10d, appreciable in small systems
sif uiÞp /2d, as well as in finite systems with small angles
ui

2<di /n, such that OQ<e−oisidi/n. This implies fEq. s4dg sys-
tems close to the XXZ limit svy

ij =vx
ijd. In this limit sui→0d,

DM→1, with uQ+l→ u0l and uQ−l~oi
Îsiuiu1il sweighted

W-type stated, where u1il; ^ j=1
n usd jid jl.

Entanglement of definite parity states. In contrast with
u6Ql, the states s9d are entangled. If sin uiÞ0∀ i the

Schmidt number for any global bipartition sA , Ād is 2 and the
Schmidt decomposition is

uQ6l = ÎpA+
6 uQA

+luQ
Ā

6l + ÎpA−
6 uQA

−luQ
Ā

7l , s11d

pAn
6 =

s1 + nOAds1 6 nOĀd

2s1 6 OQd
, OA = k− QAuQAl , s12d

where uQA
6l, uQ

Ā

6l denote the analogous normalized definite

parity states for the subsystems A, Ā, with n=6, OAOĀ

=OQ and pA+
6 + pA−

6 =1. Hence, uQ6l can be effectively con-
sidered as two-qubit states with respect to any bipartition

sA , Ād, with uQA
6l, uQ

Ā

6l representing the orthogonal states of

each qubit. Accordingly, the reduced density matrix rA
6 of

subsystem A in the state uQ6l is

rA
6 = pA+

6 uQA
+lkQA

+u + pA−
6 uQA

−lkQA
−u . s13d

The entanglement between A and its complement Ā can be
measured through the global concurrence ssquare root of the
tangle f22gd CAĀ=Î2s1−tr rA

2d, which for a rank 2 density is
just an increasing function of the entanglement entropy EAĀ
=−tr rA log2 rA, with CAĀ=EAĀ=0 s1d for a separable sBelld
state. In the states s11d, we then obtain
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C
AĀ

6
=
Îs1 − OA

2ds1 − O
Ā

2d

1 6 OQ

. s14d

These values represent the side limits of CAĀ at the SP. For
OQ.0, C

AĀ

−
.C

AĀ

+
, with C

AĀ

−
=1 if OA=OĀ. Note that uQ6l

are simultaneous Bell states for sA , Ād only if OA=OĀ=0
fGreenberger-Horne-Zeilinger sGHZd limit of uQ6lg. In-
creasing overlaps will in general decrease the global en-
tanglement.

At the SP, the entanglement entropy of a block of L spins
in a 1D first neighbor spin 1/2 XY chain in a constant field
was found in f23g to be SL=−tr rL ln rL=ln 2 si.e., CLL̄
=ELL̄=1d in the thermodynamic limit, in agreement with Eq.
s14d for vanishing overlaps. Equation s14d extends this result
to general finite chains, leading to a slightly smaller value:
for small OA, OĀ, C

AĀ

6 <1− 1
2 sOA6OĀd2 and SL

6< ln 2

− 1
2 sOL6OL̄d2 fwith OL= s vy

vx
dL/2 in the s=1 /2 XY chaing.

Pairwise and subsystem entanglement. On the other hand,
the entanglement of a subsystem is enabled by nonzero over-
laps. A remarkable feature of the states s9d is that any two
spins or disjoint subsystems B ,C will also be entangled if the
complementary overlap OB + C is nonzero and OB

2 ,1, OC
2

,1. Moreover, this entanglement can be characterized by the
concurrence

CBC
6 =

Îs1 − OB
2ds1 − OC

2 dOB + C

1 6 OQ

, s15d

or equivalently, the negativity f24,25g,

NBC
6 =

1

2
fÎspA7

6 d2 + sCBC
6 d2/OB + C − pA7

6 g , s16d

where A=B+C. While the concurrence of an arbitrary mixed
state rA swhich can be defined through the convex roof ex-
tension of the pure state definition f26gd is not directly com-
putable in general sthe exception being the case of two qubits
f27gd, the negativity NBC= 1

2 fTrurA
tBu−1g, where rA

tB denotes
partial transpose f28g, can always be calculated f29g, being
just the absolute value of the sum of the negative eigenvalues
of rA

tB. Equation s16d represents then the side limits of NBC at
the SP.

Proof: for A=B+C, we first note that if OĀ=0, Eq. s13d
becomes rA

6= 1
2 suQAlkQAu+ u−QAlk−QAud, i.e., rA

6 coincident
and separable sconvex combination of product densities
f30gd. Entanglement between B and C can then only arise if
OB + CÞ0. Next, using similar Schmidt decompositions s11d
of the states uQA

6l, Eq. s13d can also be considered as an
effective two-qubit mixed state with respect to any bipartition
sB ,Cd of A: its support will lie in the subspace spanned by

the four states huQB
nluQC

n8l ,n ,n8=6j, such that

rA
6 =1

pA+
6 qBC+

+
0 0 pA+

6 aBC
+

0 pA−
6 qBC+

− pA−
6 aBC

− 0

0 pA−
6 aBC

− pA−
6 qBC−

−
0

pA+
6 aBC

+ 0 0 pA+
6 qBC−

+
2 ,

where qBCn
6 =

s1+nOBds16nOCd
2s16OBOCd , aBC

6 =ÎqBC+
6 qBC−

6 , and qBC+
6

+qBC−
6 =1. rA

6 will be entangled if its partial transpose has a
negative eigenvalue f28g, a condition here equivalent to a
positive mixed state concurrence f27g CBC

6

=MaxfC+
6 ,C−

6 ,0g, where Cn
6=2fpAn

6 aBC
n − pA−n

6 aBC
−n g represent

parallel sn=+d or antiparallel sn=−d concurrences, i.e.,
driven by uQA

+l or uQA
−l in Eq. s13d. This leads to Eq. s15d,

with CBC
+ sCBC

− d parallel santiparalleld. The ensuing negativ-
ity, given here by minus the negative eigenvalue of the par-
tial transpose srA

6dtB, is then given by Eq. s16d.
For B=A, C= ĀsOB + C→1d, Eq. s15d reduces to Eq. s14d,

with N
AĀ

6
= 1

2C
AĀ

6
. For a pair of spins iÞ j, OB=cos2si ui, OC

=cos2sj u j, and the result of f17g is recovered from Eq. s15d if
si=

1
2 and ui=u∀ i. We finally note that if OB=OC, NBC

+

=CBC
+ /2, as in the case of a global partition. In general, how-

ever, there is no proportionality between NBC
6 and CBC

6 .
The concurrences s15d fulfill the monogamy inequalities

f31g CB,C+D
2 $CBC

2 +CBD
2 for any three disjoint subsystems

B ,C ,D. We actually obtain here

CBC
2 + CBD

2 = CB,C+D
2 F1 −

s1 − OC
2 ds1 − OD

2 d
1 − OC

2 OD
2 G . s17d

Let us also remark that subsystem entanglement persists,
though attenuated, in the uniform mixture

r0 =
1

2
suQ+lkQ+u + uQ−lkQ−ud , s18d

which differs from 1
2 suQlkQu+ u−Qlk−Qud if OQÞ0 and rep-

resents the T→0+ limit of the thermal state r~e−bH at the SP
when u6Ql are GS sand the GS degeneracy there is 2d. Re-
placing pAn

6 by 1
2 spAn

+ + pAn
− d in Eq. s13d, we find now antipar-

allel global and subsystem concurrences, given for any dis-
joint subsystems B ,C by

CBC
0 =

1

2
sCBC

− − CBC
+ d = CBC

− OQ/s1 + OQd , s19d

i.e., half the parity splitting of CBC. Equation s19d remains

valid for a global bipartition sB=A , C= Ād. The ensuing
negativity can be similarly calculated.

The order of magnitude of subsystem concurrences is
governed by the complementary overlap OB + C. For small
subsystems slike a pair of spinsd in a large system, CBC

6 will
be appreciable just for sufficiently small angles in the
complementary system, i.e., ui

2<di /n, such that OB + C

<e−oiPĀsidi/n remains finite. This leads again to systems with
small XY anisotropy.

Uniform Solution. Let us now examine the possibility of a
common angle ui=u∀ i. Equation s4d leads then to
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vy
ij − vz

ij = svx
ij − vz

ijdcos2 u , s20d

implying a fixed ratio x;svy
ij −vz

ijd / svx
ij −vz

ijd=cos2 u for all
pairs with vx

ijÞvz
ij, and an isotropic coupling vy

ij =vx
ij if vx

ij

=vz
ij. A subset of isotropic couplings will not spoil this eigen-

state f32g. Equation s5d implies then bi arbitrary if u=0 or p
sXXZ case vy

ij =vx
ijd or, otherwise,

bi = cos uo
j

svx
ij − vz

ijdSsj −
1

2
dijD . s21d

The energy s6d becomes

EQ = −
1

2o
i,j

sifsjsvx
ij + vy

ij − vz
ijd + dijvz

iig . s22d

A general field allows then a uniform separable eigenstate sa
global coherent stated in cyclic as well as open chains with
arbitrary spins si in any dimension if Eq. s20d holds ∀i , j. For
instance, in an open 1D spin s chain with first neighbor cou-
plings vm

ij =vmdi,j61, Eq. s21d yields bi=bs

=2sÎsvy −vzdsvx−vzd at inner sites but b1=bn= 1
2bs at the

borders.
Equations s20d–s22d are actually valid for general com-

plex u, but real fields imply cos u real sx$0d. The case
cos2 u.1 simaginary ud corresponds to a rotation around the
x axis but can be recast as a rotation around the y axis by a
global rotation around the z axis. Hence, we may set cos2 u
P f0,1g. u6Ql will then be GS when Eq. s8d holds.

The concurrence s15d becomes, setting cos2 u=x,

CBC
6 =

Îs1 − x2SBds1 − x2SCdxS−sSB+SCd

1 6 xS , s23d

where SB=oiPBsi is the subsystem total spin and S=oisi the
total spin. It is independent of separation and coupling range,
depending solely on xS and the ratios SB /S, SC /S. If x=1
−d /2S, with d.0 and finite, xS<e−d/2 remains finite for
large S. Equation s23d leads then to Os1 /ÎSd and Os1 /Sd
global and subsystems concurrences for small SA, SB, and SC

C
AĀ

6 <ÎSAd

S

Î1 − e−d

1 6 e−d/2 , s24d

CBC
6 <

d

S

ÎSBSCe−d/2

1 6 e−d/2 . s25d

On the other hand, for SA= 1
2S, C

AĀ

−
=1, whereas C

AĀ

+

=tanh1
4d. Thus, while for large d both C

AĀ

6
rapidly approach

1 as SA increases, for small d sXXZ limitd, this occurs just for
C

AĀ

−
and SA close to S /2 shere uQ+l→ u0l, but uQ−l ap-

proaches the W-type state ~oi
Îsiu1ild.

Alternating solution and controllable entanglement at the
SP. Among other possibilities allowed by Eqs. s4d and s5d, let
us examine that of a field induced two-angle solution in a 1D
chain scyclic or opend of spin s with first neighbor XY cou-
plings svm

ij =di,j61vm, with vz=0d. We assume x=vy /vx
P f0,1g. A separable eigenstate with u2i=ue, u2i−1=uo is fea-
sible if there is an alternating field b2i=be, b2i−1=bo in inner
sites satisfying fEqs. s4d and s5dg

bebo = s2sd2vxvy . s26d

This leads to a transverse separability curve. The ensuing
angles satisfy cos uo cos ue=vy /vx and are given by

cos2 us =
bs

2 + s2svyd2

bs
2 + s2svxd2 , s = o,e , s27d

being field dependent. For be=bo, we recover the previous
uniform solution sbs=2sÎvxvyd. In an open chain, we should
just add, according to Eq. s5d, the border corrections b1

= 1
2bo, bn= 1

2bsn
. The states u6Ql will then be GS setting

uo,e.0 when vx.0 and uo.0, ue,0 in the antiferromag-
netic case vx,0 sfor even n if chain is cyclic, to avoid frus-
trationd.

The definite parity states uQ6l will again lead to infinite
entanglement range, but with three different field dependent
sand, hence, controllabled pairwise concurrences between
any two spins fEq. s15d for B= i, C= jg: even-even, odd-odd,
and even-odd, satisfying Coe

6 =ÎCoo
6 Cee

6, with Coo
6 .Coe

6

.Cee
6 if ubou, ubeu. Hence, Coo

6 can be made larger than Coe
6

despite the absence of odd-odd direct coupling. For suffi-
ciently large be, cos ue<1 but cos uo<x: just odd-odd pairs
will be appreciably entangled in this limit at the SP.
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FIG. 1. sColor onlined Negativities between the first and the jth

spin in an open spin s chain with first neighbor XY coupling, as a
function of the transverse field b, with border corrections ssee textd,
and three different values of s. We have set an anisotropy vy /vx

=1−d / s2snd, with d=2.5 and n=8 spins. The factorizing field cor-
responds to the last parity transition, and is singled out as the field
where all negativities merge, approaching common nonzero distinct
side limits. The lowest curve in each panel sin redd depicts the
end-to-end negativity sN1−nd.

ROSSIGNOLI, CANOSA, AND MATERA PHYSICAL REVIEW A 80, 062325 s2009d

062325-4



Application. As illustration, we first depict in Fig. 1 full
exact results for the GS negativities N1j between spins 1 and
j in a small open chain of uniform spin s with first neighbor
XY couplings in a uniform transverse field bi=b for i
=2, . . . ,n−1, with the border corrections b1=bn= 1

2b. For x
=vy /vxP s0,1d this chain will then exhibit an exact factoriz-
ing field bs=2svx

Îx where separable parity breaking states
with uniform angle cos u=Îx will become exact GS if vx
.0 sif vx,0, ui= s−1diu instead in the GSd. We have set x
=1−d / s2nsd, such that the side limits of the negativity at bs
are roughly independent of s and n. It is first seen that the
ensuing behavior of the N1j in terms of the scaled field b /bs
is quite similar for the three spin values considered ss=1 /2,
1, and 3/2, the latter involving a diagonalization in a basis of
65 536 states for n=8d. The GS exhibits ns parity transitions
as the field is increased from 0+ to bs, with the last transition
at bs. As the latter is approached, it is verified that the pair-
wise entanglement range increases, with all negativities ap-
proaching the common side limits s16d, distinct at each side,
given here by Nij

+ = 1
2Cij

+ < de−d/2

2ns1+e−d/2d fEq. s25dg and Nij
−

<
sCij

−d2ed/2

4pA−
− < d2e−d/2

4n2s1−e−d/2d2 . An interval of full range pairwise en-

tanglement around bs is then originated, which involves on
the left side essentially the last state before the last transition
sroughly an W stated. bs plays in this small chain the role of
a quantum critical field.

Figure 2 depicts results for a greater anisotropy d=7.5. In
this case, just the last two parity transitions are visible in the
negativity. The common side limits of Nij

6 are smaller and all
negativities exhibit a maximum to the right of the factorizing
field. The behavior is then more similar to that of larger XY
systems f15g. Nonetheless, there is still a clear interval of full
entanglement range around bs, with finite side limits at bs
when observed in detail sinsetd.

The side limits at separability can actually be modified in
this system by changing the even-odd field ratio h=be /bo,
according to Eq. s26d. Results for a fixed ratio h=10 swith
pertinent border correctionsd are shown in Fig. 3, in which
case separability is exactly attained at an odd field bos

=bs /Îh. We have again plotted just the negativities between
the first and the j spin, which now approach two common
side limits at each side, one for j even sNoe

6 d and one for j
odd sNoo

6 d. While the former become quite small, the latter
become clearly appreciable, the final effect for such large
ratios being essentially that just odd sites become uniformly
entangled in the vicinity of bos. Even-even negativities Nee

6

snot shownd are of course also very small at bos. Notice fi-
nally that N13 can become much larger than N12 in the region
around bos, despite the absence of second neighbor cou-
plings.

In summary, we have first determined the conditions for
the existence of separable parity breaking sand locally coher-
entd eigenstates in general XYZ arrays of arbitrary spins in a
general transverse field, showing in particular the possibility
of exact separability in open as well as nonuniform chains
through nonuniform transverse fields. We have also deter-
mined the entanglement properties of the associated definite
parity states, through the evaluation of the concurrence and
negativity for any pair of spins or subsystems, for any spin
values. These states, which approach both GHZ and W states
in particular limits, exhibit full entanglement range when
nonorthogonal, and can be seen as effective two qubit en-
tangled states for any bipartition. Moreover, the same holds
for their uniform mixture as well as for the reduced density
of any subsystem. The finite entanglement limits at the SP
become relevant in finite arrays close to the XXZ limit, where
the separability field can be clearly identified with the last
GS parity transition, as verified in the numerical results pre-
sented, playing the role of a quantum critical field. The pos-
sibility of exact separability in an alternating field sbe
=hbod for arbitrary even-odd ratios h, leading to controllable
entanglement side limits, has also been disclosed. The
present results provide a deeper understanding of the behav-
ior of pairwise entanglement in finite XYZ spin arrays subject
to transverse fields.
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CONICET sN.C. and J.M.M.d of Argentina.
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