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with nonlocal interactions in the mean-field approximation. In the chiral limit, we develop a semianalytic
framework that allows us to explicitly determine the phase transition curve, the position of the critical points,
some relevant critical exponents, etc. For the case of finite current quark masses, we show the behavior of various
thermodynamical and chiral response functions across the phase transition.
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I. INTRODUCTION

The behavior of strongly interacting matter under extreme
conditions of temperature and/or density has important con-
sequences in nuclear and particle physics as well as in
astrophysics and cosmology. From the theoretical point of
view, even if a significant progress has been made on the
development of ab initio calculations as lattice QCD [1–3],
these are not yet able to provide a detailed knowledge of the
full QCD phase diagram, and most theoretical approaches rely
on the study of low-energy effective models. Qualitatively
we expect that chiral symmetry, which is broken at very
low temperatures and densities, will be restored as the
temperature and density are increased. However, the precise
characteristics of this phase transition are still not known.
For two massless flavors, most effective approaches to QCD
suggest the existence of a tricritical point on the (T ,µ) plane,
which separates a first-order phase-transition line found at
lower T and larger µ, and a second-order transition line where
the chiral restoration occurs for higher T and lower µ. For
two light flavors a similar behavior is expected, although
the second-order transition line is replaced with a more or
less sharp crossover, and, correspondingly, the tricritical point
becomes an end point. In any case, for a given effective
model that can provide a reasonable successful description
of low-energy strong interactions, it is important to obtain as
much information as possible about the characteristics of the
chiral restoration transition. In previous works [4,5] we have
begun the study of chiral restoration in the context of chiral
quark models with nonlocal interactions [6], which can be
considered as some nonlocal extension of the widely studied
Nambu−Jona-Lasinio (NJL) model [7]. In fact, nonlocality
arises naturally in the context of several successful approaches
to low-energy quark dynamics as, for example, the instanton
liquid model [8] and the Schwinger-Dyson resummation
techniques [9]. It has been also argued that nonlocal covariant
extensions of the NJL model have several advantages over the
local scheme, such as, e.g., a natural regularization scheme
that automatically preserves the anomalies [10], small next

leading order corrections [11], etc. In addition, it has been
argued [12,13] that a proper choice of the nonlocal regulator
and the model parameters can lead to some form of quark
confinement, in the sense that the effective quark propagator
has no poles at real energies.

Several studies [13–15] have shown that these nonlocal
chiral quark models provide a satisfactory description of the
hadron properties at zero temperature and density. The aim of
the present work is to complement the analysis of Refs. [4,5],
presenting further details about the chiral phase transition
within these schemes. Indeed, we show that in the chiral
limit it is possible to develop a semianalytic framework that
allows us to explicitly determine the phase-transition curve, the
position of the critical points, some relevant critical exponents,
etc. For the case of finite-current quark masses, we present
the behavior of various thermodynamical and chiral response
functions across the phase transition. In particular, it is found
that thermal and chiral susceptibilities show clear peaks that
allow to define a phase-transition temperature as is usually
done in lattice calculations.

The paper is organized as follows. In Sec. II we provide
a short description of the model and its treatment in the
mean-field approximation (MFA). In Sec. III we study the
phase transition in the chiral limit by performing the Landau
expansion of the free energy. We also obtain the MFA critical
exponents. In Sec. IV we present and discuss the behavior of
the different thermodynamical and chiral response functions
for the case of finite-current quark masses, and we show
the corresponding phase diagrams. In Sec. V we present
a summary of our main results and conclusions. Finally,
some details of the calculations are given in Appendixes A
and B.

II. NONLOCAL CHIRAL QUARK MODELS

Let us begin by stating the Euclidean action for the nonlocal
chiral quark model in the case of two light flavors and SU(2)
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isospin symmetry. We have1

SE =
Z

d4x

·
ψ̄(x) (−i /∂ + mc11) ψ(x) − G

2
ja(x)ja(x)

¸
,

(1)

where ψ = (ud)T and mc stands for the u and d current quark
mass. The current ja(x) is given by

ja(x) =
Z

d4y d4z r̃(y − x)r̃(x − z)ψ̄(y) 0a ψ(z), (2)

where 0a = (11, iγ5 Eτ ) and the function r̃(x − y) is a nonlocal
regulator. The latter can be translated into momentum space:

r̃(x − z) =
Z

d4p

(2π )4
e−i(x−z)pr(p). (3)

In fact, dimensional analysis together with Lorentz invariance
implies that r(p) can be a function only of p2/32, where 3 is
a cutoff parameter describing the range of the nonlocality in
momentum space. Hence we use for the Fourier transform of
the regulator the form r3(p2) from now on.

From the Euclidean action in Eq. (1), the partition function
for the model at zero T and µ is defined as

Z0 =
Z

Dψ̄Dψe−SE . (4)

We perform now a standard bosonization of the theory, intro-
ducing the sigma and pion meson fields Ma(x) = [σ (x), Eπ (x)].
In this way the partition function can be written as [5]

Z0 =
Z
DσDπ det A(Ma) exp

·
− 1

2G

Z
d4p

(2π )4
M2

a (p)̧ , (5)

where the operator A reads, in momentum space,

A(Ma) = (− /p + mc) (2π )4 δ(4)(p − p0)

+ r3(p2)Ma(p − p0) r3(p02)0a. (6)

In what follows we work within the MFA, in which the
meson fields are expanded around their translational invariant
vacuum expectation values,

σ (x) = σ̄ + δσ (x), (7)

πi(x) = δπi(x), (8)

and the fluctuations δσ (x) and δπi(x) are neglected (vacuum
expectation values of the pion fields vanish owing to parity
conservation). Within this approximation the determinant in
Eq. (5) is formally given by

det A = exp Tr log A = exp V (4)
Z

d4p

(2π )4
tr log

× £− /p + mc + σ̄ r2
3(p2)

¤
, (9)

where tr stands for the trace over the Dirac, flavor, and color
indices, and V (4) is the four-dimensional volume of the path
integral.

1For simplicity we neglect here possible diquark channels. See
Ref. [16] for details on their role in the phase diagram of this type of
model.

III. PHASE TRANSITION IN THE CHIRAL LIMIT

In Refs. [4,5] we have analyzed the chiral restoration within
nonlocal chiral quark models for some definite regulators.
In particular, we have shown that in the chiral limit this
phase transition is a second-order one for low values of
the chemical potential µ. In this section we rederive this
result, following the so-called classical approach proposed
by Landau, in which we expand the free energy in powers
of the order parameter (in this case the quark condensate
hq̄qi) in the vicinity of the critical temperature. This shows
the equivalence of the chiral restoration in nonlocal chiral
quark models with the corresponding phase transitions taking
place in other physical systems, such as ferromagnets or
superfluids. As stated, we work within the MFA, which in
this context means approximating the path integral in Eq. (5)
by its maximum, reached at some saddle point.

In our case, the partition function in the grand canonical
ensemble for finite temperature T and chemical potential µ

can be obtained from Eqs. (5) and (9). In these expressions,
the integrals over four-momentum space have to be replaced
with Matsubara sums according toZ

d4p

(2π )4
F (p4, Ep) →

ZX
p

F (p4, Ep)

≡ T

∞X
n=−∞

Z
d3p

(2π )3
F (ωn − iµ, Ep), (10)

where ωn are the Matsubara frequencies corresponding to
fermionic modes, ωn = (2n + 1)πT . In the same way volume
V (4) is replaced with V/T , where V is the three-dimensional
volume in coordinate space. As in Refs. [4,5], we are assuming
here that the quark interactions depend on only the temperature
and chemical potential through the arguments of the regulators.
The grand canonical thermodynamical potential per unit
volume is thus given by [5]

ωMF(T ,µ,mc) = −T

V
logZMF(T ,µ,mc)

= σ̄ 2

2G
− 4Nc

ZX
p

log[p2 + 62(p2)], (11)

where 6(p2) = mc + σ̄ r2(p2) stands for the quark self-
energy, and the mean-field value σ̄ (T ,µ,mc) is obtained from
the condition

∂ωMF

∂σ̄
= 0. (12)

In fact, ωMF turns out to be divergent. The regularization
procedure used here amounts to defining

ω
(reg)
MF (T ,µ,mc) = ωMF(T ,µ,mc) − ωfree(T ,µ,mc)

+ ω
(reg)
free (T ,µ,mc) + ω0, (13)

where ω
(reg)
free (T ,µ,mc) is the regularized expression for the

thermodynamical potential of a free fermion gas, and ω0 is a
constant fixed by the condition ω

(reg)
MF = 0 at T = µ = 0 (see

Appendix A for details).
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In the analogy with a ferromagnetic system, the chiral
condensate can be identified with the magnetization per unit
volume, hq̄qi ←→ −M/V , whereas the current quark mass
mc plays the role of the external magnetic field H. We have

hq̄qi = 1

2

µ
∂ω

∂mc

¶
T, µ

, (14)

where the 1
2 factor results from the fact that this relation holds

for each quark flavor separately, i.e., q = u, d, although they
have a common mass mc. In the chiral limit, the existence of
a second-order phase transition for a fixed value of µ implies
that the condensate hq̄qi goes to zero when the temperature
T approaches from below a given critical value Tc(µ), above
which we have hq̄qi = 0 and the chiral symmetry is restored.
Thus, for T ∼ Tc(µ) and to leading order in mc, we can
perform the Landau expansion (see Appendix A)

ω
(reg)
MF (T ,µ,mc) = ω0 + ω

(reg)
free (T ,µ,mc = 0)

+A(T ,µ)hq̄qi2 + C(T ,µ)hq̄qi4

+ 2mchq̄qi + O
¡hq̄qi6, hq̄qi3 mc,m

2
c

¢
,

(15)

where the coefficients A and C are given by

A(T ,µ) = 1

4 N2
c S2

11(T ,µ)

·
1

8G
− NcS21(T ,µ)

¸
,

C(T ,µ) = S42(T ,µ)

128 N3
c S4

11(T ,µ)
− S32(T ,µ)

32 N4
c S5

11(T ,µ)

×
·

1

8G
− NcS21(T ,µ)

¸
, (16)

with

Smn(T ,µ) =
ZX
p

r2m
3 (p2)

p2n
. (17)

The regularized thermodynamical potential for a massless
fermion gas—second term on the right-hand side of Eq. (15)—
can be calculated by evaluation of the integral in Eq. (A2) in
the massless case. We obtain

ω
(reg)
free (T ,µ, 0) = −Nc

3

·
7π2

30
T 4 + T 2µ2 + 1

2π2
µ4

¸
. (18)

In the limit mc = 0, it can be seen [17] that for C > 0 the
system undergoes a second-order phase transition at a critical
temperature Tc(µ), obeying A[Tc(µ), µ] = 0. This implies

S21[Tc(µ), µ] = 1

8 GNc

, (19)

which defines a second-order transition curve in the (T ,µ)
plane. As is described in Appendix B, for sufficiently small
(but relevant) values of T and µ the Matsubara sum implicit in
S21[Tc(µ), µ] can be analytically worked out. This leads to a
simple relation between Tc and µ, namely

π2

3

·
Tc(µ)

3

¸2

+
³ µ

3

´2
= β0 − π2

Nc

1

G32
, (20)

where β0 = 3−2
R

dppr4
3(p2) is a dimensionless quantity that

depends on only the shape of the regulator. Note that this

relation generalizes that obtained in Ref. [18] for the NJL
model. We also point out that, for a given value of µ and
temperatures that are close to the critical value Tc(µ) obtained
from Eq. (19), we have

A(T ,µ) = λt, (21)

where

t ≡ [T − Tc(µ)]/Tc(µ), λ = T 2
c (µ)

48 NcS
2
11[Tc(µ), µ]

. (22)

We note in passing that, once the Landau expansion has
been established, it is a usual textbook exercise [17] to derive
the critical exponents ruling the behavior of the specific heat,
the order parameter hq̄qi, and the chiral susceptibility near the
second-order critical points:

cV,µ,mc
|mc=0 ∼ |t |−α, hq̄qi|mc=0 ∼ |t |β,

χV,T ,µ|mc=0 ∼ |t |−γ , hq̄qi|t=0 ∼ mδ
c.

(23)

Here the specific heat and the chiral susceptibility are defined
as

cV,µ,mc
= −T

·
∂2ω(T ,µ,mc)

∂T 2

¸
µ,mc

= T

·
∂s(T ,µ,mc)

∂T

¸
µ,mc

, (24)

χV,T ,µ = −1

2

·
∂2ω(T ,µ,mc)

∂m2
c

¸
T ,µ

= −
·
∂hq̄qi(T ,µ,mc)

∂mc

¸
T ,µ

, (25)

where s(T ,µ,mc) is the entropy density. As expected, we
obtain the mean-field critical exponents,2

α = 0, β = 1
2 , γ = 1, δ = 3, (26)

a result that was under discussion in the somewhat related
Dyson-Schwinger models of QCD [19]. Equation (26) imply
that the chiral susceptibility diverges at T = Tc. In the case of
specific heat, there is no divergence but a finite discontinuity
at mc = 0, t = 0,

cV,µ,mc
|t=0− = cV,µ,mc

|t=0+ + NcT
3
c

36 S42
, (27)

where cV,µ,mc
|t=0+ is the specific heat at constant µ that is

due to the free fermion gas pressure pfree = −ω
(reg)
free (T ,µ, 0),

evaluated at T = Tc. From Eq. (18) we get

cV,µ,mc
|t>0 = 2

3
NcT

µ
µ2 + 7 π2

5
T 2

¶
. (28)

As stated, the transition remains second order as long as
C[Tc(µ), µ] > 0. This is expected to be the case for low values
of the chemical potential. However, if µ is increased, we could
reach a point at which the coefficient C vanishes. Beyond this
point, called “tricritical,” the system undergoes a first-order

2At the tricritical point, the mean field critical exponents are α =
1
2 , β = 1

4 , γ = 1, and δ = 5.
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FIG. 1. (a) Chiral condensate vs. temperature and (b) specific heat cV,µ vs temperature. Solid, dashed, and dashed-dotted curves correspond
to µ = 0, µ = 100, and 200 MeV, respectively.

phase transition (the order parameter hq̄qi is discontinuous
at the corresponding critical temperature). In this way, the
tricritical point is obtained from the conditions A(T ,µ) =
C(T ,µ) = 0 or, equivalently,

S42[Tc(µ), µ] = 0. (29)

Again, for sufficiently small (but relevant) values of T and µ

the Matsubara sum in S42 can be analytically worked out (see
Appendix B), leading to

S42(T ,µ) = 1

8π2

½
β1(T/3)2

·
π2

3
+ (µ/T )2

¸

+β2 − f (µ/T ) − log(T/3)

¾
, (30)

where

β1 = −8 32 dr3(p2)

dp2

¯̄̄
¯
p=0

,

(31)

β2 =
Z ∞

0

dp

p

£
r8
3(p2) − e−4p2¤ + 1

2
(γ − 1) − log 2π,

and f (x), which satisfies f (0) = 0, is given by Eq. (B10) of
Appendix B. It is interesting to note the similarity between
our expressions in Eqs. (20), (29), and (30) and those
obtained in Ref. [20] within a very different theoretical
approach. A brief discussion on the subject is also included in
Appendix B.

Let us consider for definiteness a nonlocal model in which
the regulator is a Gaussian function,

r3(p2) = exp(−p2/232). (32)

In this case we have β1 = 4, and the integral in β2 vanishes. In
addition, it is easily seen that S42(T , 0) is a positive function
of T/3, which implies that in the chiral limit the model
leads to a second-order chiral phase transition for vanishing
chemical potential. The transition remains second order when
µ is increased up to the tricritical point, and the corresponding

transition line in the (T ,µ) plane can be immediately obtained
from Eq. (20), with β0 = 1/4. The critical temperature at
µ = 0 is thus given by

Tc(0) =
√

3

2π
3

µ
1 − 4π2

NcG32

¶1/2

. (33)

We illustrate these features by considering a particular parame-
ter set, namely 3 = 760 MeV and G = 30 GeV−2. These are
the parameters corresponding to Set II in Ref. [5], leading
to Tc(0) = 102 MeV. The second-order phase transition is
clearly shown in Fig. 1(a), where the solid curve represents
the chiral condensate for µ = 0 as a function of T. Now,
by using Eq. (29), we can find the position of the tricritical
point, which in this case is found to be located at (T ,µ) =
(72 MeV, 133 MeV). In Fig. 1(a), dashed and dashed-dotted
curves show the behavior of the chiral condensate for µ =
100 and 200 MeV, below and above the tricritical point,
respectively. Both the values for Tc(0) and the position of the
tricritical point are found to be in very good agreement with
those numerically obtained in Ref. [5]. Finally, the described
effect on the specific heat is shown in Fig. 1(b), where we
plot cV,µ as a function of the temperature for µ = 0, 100, and
200 MeV.

The result in Eq. (33) is useful for pointing out a generic
feature of this type of model in the chiral limit. In fact, it
is not difficult to show [13] that, in such a limit, for zero
T and µ one obtain expressions for the pion decay constant
f (0)

π and the chiral condensate hq̄qi(0) such that f (0)
π /3 and

hq̄qi(0)/3 depend on only the combination G32. To get a
ratio f (0)

π /hq̄qi(0) ' 0.4, as required by phenomenology, these
expressions lead to G32 ' 16. If this value is now replaced
in Eq. (33) we get Tc(0)/3 ' 0.12, which is somewhat
large, but still lies within the expected range of validity.
However, if we impose the critical temperature Tc(0) to be
approximately equal to 170 MeV, as suggested by lattice
QCD calculations, we get 3 ' 1.4 GeV, which, together with
G32 ' 16, enhances f (0)

π and hq̄qi(0) up to roughly 40% above
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the corresponding phenomenological values. Thus it can be
generically said that, if in the chiral limit—and within the
MFA—we want to satisfy the phenomenological constraints
on the values of fπ and hq̄qi, the nonlocal models under
consideration lead to a relatively low critical temperature Tc(0).
Of course, this might be modified by finite quark mass effects
and/or beyond MFA corrections.

IV. PHASE TRANSITION AND RESPONSE FUNCTIONS
FOR FINITE QUARK MASS

In this section we concentrate on the analysis of the
phase transition for finite-current quark masses in the isospin
limit. For this purpose we consider different thermodynamical
response functions. In particular, it will be seen that, for
reasonable values of the current quark mass mc, the chiral
susceptibilities show clear peaks that can be used to define the
transition curves in the crossover region.

The response functions are basically given by the second
derivatives of the Helmholtz free energy F (T , V, N̄ ). The latter
is related to the thermodynamical potential by

F (V, T , N̄ ) = [Ä(V, T , µ) + 2 N̄µ]µ=µ(V,T ,N̄ ), (34)

where N̄ = − 1
2 (∂Ä/∂µ)V,T (as in the case of the quark

condensate, the 1
2 factor comes from defining N̄ = N̄u = N̄d ).

We consider, as before, the limit of a large system in which
Ä(V, T , µ) = V ω(T ,µ), F (V, T , N̄ ) = V f (T , N̄/V ); thus,
instead of average particle number N̄ , our quantities will
be given in terms of the average particle density ρ = N̄/V .
We can define three independent thermodynamical response
functions, namely the specific heat at fixed volume and particle
number cV,ρ,m, the isothermal compressibility κT,ρ,mc

, and the
coefficient of thermal expansion αp,ρ,mc

. These are given by

cV,ρ,mc
= −T

V

·
∂2F (T , V, N̄,mc)

∂T 2

¸
V,N̄,mc

= T

·
∂s(T , ρ,mc)

∂T

¸
ρ,mc

, (35)

1

κT,ρ,mc

= V

·
∂2F (T , V, N̄,mc)

∂V 2

¸
T ,N̄,mc

= ρ

·
∂p(T , ρ,mc)

∂ρ

¸
T ,mc

, (36)

FIG. 2. (Color online) Some response func-
tions for fixed ρ, corresponding to parameter
Set II. In the left-hand panels curves are given
as functions of T, with ρ/ρ0 fixed at three
representative values, namely 0.25 (dotted), 0.75
(dashed), and 2.0 (solid). Right-hand panels
show the curves as functions of ρ/ρ0 for T fixed
at 50 MeV (solid) and 100 MeV (dashed).
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FIG. 3. (Color online) Some response func-
tions for fixed µ, corresponding to parameter
Set II. In the left-hand panels curves are given
as functions of T, with µ fixed at three rep-
resentative values, namely 100 MeV (dotted),
250 MeV (dashed), and 300 MeV (solid). Right-
hand panels show the curves as functions of µ

for T fixed at 50 MeV (solid) and 100 MeV
(dashed).

αp,ρ,mc
= 1

V

µ
∂V

∂T

¶
p,N̄,mc

= −κT,ρ,mc

·
∂2F (T , V, N̄,mc)

∂V ∂T

¸
N̄,mc

= κT,ρ,mc

·
∂p(T , ρ,mc)

∂T

¸
ρ,mc

. (37)

There are also other thermodynamical response functions that
can be defined, such as the specific heat at constant pressure
cp,ρ,mc

and the adiabatic compressibility κs,ρ,mc
. However,

these can be written in terms of the three quantities in
Eqs. (35)–(37).

Note that we have explicitly included the dependence of
the free energy on the current quark mass mc. In fact, we
can still define some extra response functions associated with
the chiral transition by differentiating the free energy with
respect to mc. In the analogy with magnetic systems, these
would be the specific heats at constant magnetization and
constant applied magnetic field, CM,CH , the isothermal and
adiabatic susceptibilities χT , χS , and the coefficient of thermal
magnetization, αH . As before, these quantities are related
to each other, leaving only two new independent response
functions. Here we choose to consider those analogous to
the isothermal susceptibility and the coefficient of thermal

magnetization; thus we define

χV,T ,ρ = − 1

2 V

·
∂2F (T , V, N̄,mc)

∂m2
c

¸
T ,V,N̄

= −
·
∂hq̄qi(T , ρ,mc)

∂mc

¸
T ,ρ

, (38)

αV,ρ,mc
= − 1

2 V

·
∂2F (T , V, N̄,mc)

∂mc∂T

¸
V,N̄

= −
·
∂hq̄qi(T , ρ,mc)

∂T

¸
ρ,mc

. (39)

Let us show the numerical results for these quantities
for the case of a nonlocal Gaussian regulator. We have
chosen the parameter set 3 = 760 MeV, G = 30 GeV−2, and
mc = 7.7 MeV, which corresponds to Set II in the notation
of Ref. [5]. It can be seen that these parameters lead to the
empirical values of the pion mass and decay constant and
provide reasonable results for the chiral quark condensate and
the quark self-energy 6(0) at zero T and µ. In Fig. 2 we show
the curves corresponding to the specific heat cV,ρ,mc

and the
chiral response functions χV,T ,ρ and αV,ρ,mc

. In the left-hand
panels, these functions are plotted versus the temperature for
three representative values of the density (the quoted values
refer to nuclear matter density, ρ0 ' 1.3 × 106 MeV3). Note
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FIG. 4. Phase diagram showing the chiral
transition curves in the T − µ plane (upper
panels) and the T − ρ plane (lower panels),
for parameter Sets I (left) and II (right). Solid
curves correspond to first-order phase-transition
curves, and dashed (dashed-dotted) curves show
the crossover curves obtained from the peaks in
the chiral (thermal) susceptibilities. The dotted
curves in the lower panels represent the spin-
odals, and the fat dots indicate in each case the
position of the end point.

that for low nonzero densities the system is homogeneous
only for temperatures that exceed a critical value. Below
this limit, as we will see, there is a region where phases
with broken and restored chiral symmetry coexist. In the
right-hand panels, the same response functions are plotted
as functions of the density, fixing the temperature at 50
and 100 MeV. Once again, for low temperatures there is
a mixed-phase region, and as a consequence the functions
are not well defined at intermediate densities. We have
also analyzed the response functions corresponding to the
parameter set given by G = 50 GeV−2,mc = 10.5 MeV, and
3 = 627 MeV, or Set I in the notation of Ref. [5]. Sets I
and II might be interpreted as confining and nonconfining,
respectively, in which “confinement” is understood in the sense
that the pole structure of the quark propagator does not allow
quarks to materialize on-shell in Minkowski space [12,13].
The curves in the case of Set I do not differ qualitatively
from those shown in Fig. 2; therefore they have not been
included here.

Now let us pay special attention to the responses of the
chiral condensate (order parameter of the phase transition) at
fixed temperature and chiral quark mass (or “magnetization”).
These are given by Eqs. (38) and (39), and their behavior
as functions of the temperature is shown in the second and
third rows of Fig. 2 (left-hand panels). As is well known,
susceptibilities are particularly useful for analyzing the phase-
transition features. In the present model, as shown in previous
works [4,5], for low temperatures the system undergoes a
first-order chiral phase transition, which turns into a smooth

crossover for temperatures exceeding a given “end point.” In
this crossover region, the transition is characterized by the
presence of respective peaks in the mentioned susceptibilities,
the height and sharpness of these peaks giving a measure of
the crossover steepness. The same can be observed if we look
at the chiral and thermal susceptibilities for fixed µ, which
are given by the second derivatives of the thermodynamical
potential and are in fact the natural quantities to deal with
in the grand canonical ensemble. The definition of the chiral
susceptibility χV,T ,µ has already been given in Eq. (25), and the
thermal susceptibility at constant µ is defined as

αV,µ,mc
= −1

2

·
∂2ω(T ,µ,mc)

∂mc∂T

¸
µ

= −
·
∂hq̄qi(T ,µ,mc)

∂T

¸
µ,mc

. (40)

The curves showing the behavior of the susceptibilities
χV,T ,µ and αV,µ,m as functions of the temperature and the
chemical potential are shown in Fig. 3 (the chosen parameter
set is the same as that in Fig. 2). For completeness we
also include the curves for the specific heat at constant µ,
previously introduced in Sec. III (where the case of varying
mc was discussed). In a natural way, the peaks in the curves
for χV,T ,µ and αV,µ,mc

can be used to define the position at
which the chiral transition occurs. Thus we can extend the
phase-space diagram to include the crossover transition curves
in addition to the first-order ones. This is represented in Fig. 4,
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FIG. 5. (Color online) Numerical results for
the scaled quantities ε/T 4 (solid curves), 3

4 s/T 3

(dashed curves), and 3p/T 4 (dashed-dotted
curves). Curves are given as functions of T/Tc

for fixed values of µ that are indicated in each
case together with the respective critical temper-
atures. The arrows show the asymptotic values,
which correspond to a free fermion system. Left-
and right-hand panels show the results obtained
for Sets I and II, respectively.

where crossover curves obtained from the peaks in χV,T ,µ and
αV,µ,mc

have been represented by dashed and dotted curves,
respectively. Although chiral and thermal susceptibilities lead
to slightly different points, it is seen that the transition region is
well defined. Solid curves correspond to the first-order phase
transition, and the fat dots indicate the end points. Left- and
right-hand panels show the results for parameter Sets I and II,
respectively, and upper (lower) panels show the phase-space
transition curves in the T − µ (T − ρ) plane. Note that in the
T − ρ phase diagrams there is a region below the first-order
transition lines where both phases are allowed. The latter can
be interpreted [21] as a zone in which droplets containing light
quarks of mass mc coexist with a gas of constituent, massive
quarks. The dotted curves inside this zone are the spinodals,
i.e., the boundaries of the region in which the energetically
unfavored solutions can exist as metastable states.

Our results for the phase-transition curves in the T − µ

plane are qualitatively similar to those obtained from lattice

QCD calculations [2,3], although both the critical temperature
at µ = 0 and the end-point temperature turn out to be relatively
low in our case (see discussion at the end of Sec. III).
For the sake of comparison, it is also interesting to analyze
the curvature of the phase boundary at µ = 0. This is an
appropriate quantity to be studied in lattice QCD, where the
main problem in the analysis of the T − µ phase diagram is
the inclusion of a finite real chemical potential. Recent lattice
calculations [1] yielded Tc(d2Tc/dµ2)|µ=0 = −0.14 ± 0.06,
whereas the result obtained within the standard NJL model
(up to some finite-current quark mass corrections) gives a
value of about −0.40 [22]. In our model, the curvature can
be calculated numerically from the results plotted in Fig. 4,
leading to values of about −0.26 and −0.30 for Sets I and II,
respectively. In the chiral limit the corresponding calculation
can be carried out from the analytical expression in Eq. (20),
leading to Tc(d2Tc/dµ2)|µ=0 = −3/π2 ' −0.304.
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Finally, let us quote the numerical results for the behavior
of the energy density, the entropy density, and the pressure as
functions of temperature. The corresponding curves are shown
in Fig. 5, where we plot the scaled quantities ε/T 4, 3

4 s/T 3,
and 3p/T 4 versus the relative temperature T/Tc for Sets I and
II and different values of the chemical potential. The arrows
indicate the value corresponding to a free fermion system in
the large T limit, given by 7π2/10—see Eq. (18). Note that
for Set I there is a range of temperatures below Tc for which
all three quantities are negative. This might be taken as a
further indication that for this parameter set there is a sort
of “confinement”: Somewhat below Tc hadronic degrees of
freedom ought to be included, and the system cannot be simply
treated as a quark gas. This represents a qualitative difference
between Sets I and II. It is interesting to see that, in spite of this
fact, the behavior at the transition region is relatively similar
in both cases.

V. SUMMARY AND OUTLOOK

In this paper we have presented further details of the chiral
phase transition within chiral quark models including nonlocal
interactions in the MFA. In the chiral limit, our analysis
allows us to obtain semianalytical expressions for the transition
curve and the location of the critical points. For the case of
finite-current quark masses, we have studied the behavior of
various thermodynamical and chiral response functions across
the phase transition. In the crossover region the thermal and
chiral susceptibilities display clear peaks that allow us to define
a transition temperature in the same way as is usually done in
lattice calculations.

The resulting phase diagrams are qualitatively similar to
those obtained within other frameworks, such as, e.g., the
standard NJL model, the Bag model, and lattice QCD. In
the nonlocal schemes studied here, however, the transition
temperature at µ = 0 is found to be somewhat lower than the
expected value Tc(0) ' 170 MeV once the model parameters
are fitted so as to reproduce both the empirical values of mπ

and fπ and the phenomenological value of the light quark
condensates at zero temperature and density. In fact, this result
may be improved if alternative ways of including nonlocality
are included, such as, e.g., regulator schemes inspired in
one-gluon exchange processes [23], or through the inclusion of

beyond MFA contributions. Work in this direction is currently
in progress.
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APPENDIX A: EXPANSION OF
THE THERMODYNAMICAL POTENTIAL

IN POWERS OF hq̄qi
The grand canonical thermodynamical potential defined by

Eq. (11) turns out to be divergent. Here we have regularized
it by subtracting the expression corresponding to a system of
free fermions of mass mc and adding it in a regularized form.
We have thus

ω
(reg)
MF (T ,µ,mc) = σ̄ 2

2G
− 4Nc

ZX
p

log

·
p2 + 62(p2)

p2 + m2
c

¸

+ω
(reg)
free (T ,µ,mc) + ω0, (A1)

where

ω
(reg)
free (T ,µ,mc) = − 4NcT

Z
d3p

(2π )3
{log[1 + e−(E−µ)/T ]

+ log[1 + e−(E+µ)/T ]}, (A2)

where E = p
p2 + m2

c and ω0 is a constant fixed by the
condition that the thermodynamical potential vanish at zero
T and µ. We point out that this regularization prescription
relies on the well-behaved shape of the regulator in 6(p2).
Alternative schemes can be applied in other cases; see,
e.g. [24].

Let us assume that in the chiral limit, mc = 0, the order
parameter hq̄qi vanishes at a given temperature T = Tc. We
are interested in the description of the situation in the vicinity
of this temperature; hence it is useful to carry out a double
expansion of ω

(reg)
MF in powers of hq̄qi and mc. For mc = 0,

we can perform the expansion of ω
(reg)
MF in powers of hq̄qi by

taking into account the derivatives

∂2ωMF

∂hq̄qi2

¯̄̄
¯
hq̄qi=0

= ∂2ωMF

∂σ 2

µ
∂hq̄qi
∂σ

¶−2
¯̄̄
¯̄
hq̄qi=0

,

∂4ωMF

∂hq̄qi4

¯̄̄
¯
hq̄qi=0

= ∂4ωMF

∂σ 4

µ
∂hq̄qi
∂σ

¶−4

− 4
∂2ωMF

∂σ 2

µ
∂hq̄qi
∂σ

¶−5
∂3hq̄qi
∂σ 3

¯̄̄
¯̄
hq̄qi=0

, (A3)

∂ωMF

∂hq̄qi
¯̄̄
¯
hq̄qi=0

= ∂3ωMF

∂hq̄qi3

¯̄̄
¯
hq̄qi=0

= ∂5ωMF

∂hq̄qi5

¯̄̄
¯
hq̄qi=0

= 0.
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Because hq̄qi = 0 implies σ = 0, it is easy to see that the
preceeding partial derivatives are given by

∂hq̄qi
∂σ

¯̄̄
¯
σ=0

= −4NcS11(T ,µ),

∂3hq̄qi
∂σ 3

¯̄̄
¯
σ=0

= 24NcS32(T ,µ),

(A4)
∂2ωMF

∂σ 2

¯̄̄
¯
σ=0

= 1

G
− 8NcS21(T ,µ),

∂4ωMF

∂σ 4

¯̄̄
¯
σ=0

= 48NcS42(T ,µ),

where the functions Smn(T ,µ) are defined by

Smn(T ,µ) =
ZX
p

r2m(p2)

p2n
. (A5)

On the other hand, for mc 6= 0, we have

∂ωMF

∂mc

¯̄̄
¯
mc=0

= 2 hq̄qi. (A6)

Taking into account this relation, together with Eqs. (A4)
and (A3), we easily arrive at the result shown in Eq. (15).

APPENDIX B: EVALUATION OF MATSUBARA SUMS

In this appendix we show how to work out the Matsubara
sums Sm1 and Sm2, which are defined by Eq. (A5). These
sums appear in the Landau expansion of the thermodynamical
potential near the critical temperature; see Eq. (15).

To carry out the calculations, we take into account the
analysis in Ref. [5], where Cauchy’s theorem was used to
convert the Matsubara sums into an integral plus a sum over
pole residues. In the case of a function F (p2) that has only
simple poles and no cuts in the complex plane, we obtain [5]ZX

p

F (p2) =
Z

d4p

(2π )4
F (p2)

+ 2
Z

d3p

(2π )3
Re

X
Rk>−µ
Ik > 0

γk Res [F(z); zk]

× [n+(zk + µ) + n−(zk + µ)], (B1)

where the function F is defined as F(z) ≡ F [(−iz − iµ)2 +
| Ep|2], zk = Rk + iIk are the residues of this function in the
complex plane z, and the coefficient γk is defined as γk = 1/2
for Ik = 0 and γk = 1 otherwise. We have also introduced here
(complex) occupation number functions n±(z), defined by

n±(z) = 1

1 + exp [(z ∓ µ)/T ]
. (B2)

In the case of the sum S21(T ,µ), the corresponding function
F21(z) is given by

F21(z) = r4
3[−(z + µ)2 + | Ep|2]

−(z + µ)2 + | Ep|2 , (B3)

which has only two simple poles located at z± = −µ ± | Ep|,
with residues ∓(2| Ep|)−1. Therefore Eq. (B1) can in principle
be applied. There is, however, a subtle point to be taken into
account. The derivation of Eq. (B1) assumes that |F(z)| → 0
when Re z → ∞, which is in fact true for all the situations
considered in Ref. [5]. However, depending on the specific
form of the regulator, this condition might not be satisfied by
the function F21(z). If this is the case, Eq. (B1) can still be
applied, provided that T ,µ ¿ 3 (see subsequent discussion).

Assuming that Eq. (B1) holds, we get

S21(T ,µ) =
ZX
p

r4
3(p2)

p2
= 1

8π2

Z ∞

0
dp p r4

3(p2)

− 1

4π2

Z ∞

0
dp p [n+(p) + n−(p)]. (B4)

The last integral in this expression can be worked out
analytically. We haveZ ∞

0
dp p[n+(p) + n−(p)]

= −T 2[Li2(−eµ/T ) + Li2(−e−µ/T )] = π2T 2

6
+ µ2

2
,

(B5)

which, together with Eq. (B4), leads to the result quoted in
Eq. (20). As we have mentioned, these relations are valid
only for sufficiently low values of T ,µ compared with the
cutoff scale 3. In the case of the Gaussian regulator we have
checked that, for T 6 3/6 and µ 6 3/4, Eq. (20) is verified
with an accuracy of less that 1%. In the case of the Lorentzian
regulator the region of validity is somewhat smaller, but at the
same time the relevant cutoff parameter is larger than in the
Gaussian case [5]. As a conclusion, we find that in all cases
considered here Eq. (20) can be taken to be valid with very
good approximation for the values of T and µ of physical
interest.

A similar analysis can be carried out for the sum S42(T ,µ).
Here the situation is somewhat more complicated, as we have
to deal with double poles and Eq. (B1) is no longer valid. We
have instead

S42(T ,µ) =
ZX
p

r8(p2)

p4

=
Z

d4p

(2π )4
F (p2) +

Z
d3p

(2π )3

½
Res

· F(z)

1 + ez/T

¸
z+

− Res

· F(z)

1 + e−z/T

¸
z−

¾
, (B6)

where F (p2) = r8
3(p2)/p4, F(z) = F [−(z + µ2) + | Ep|2].

Evaluating the residues leads to

S42(T ,µ) = 1

8π2

Z ∞

0
dp

½
1

2π

·Z ∞

−∞
dq

r8
3(p2 + q2)

(p2 + q2)2

¸

− 1

p
[n+(p) + n−(p)]
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− 4mr 0
3(0)p[n+(p) + n−(p)]

− 1

T
[n+(p) + n−(p) − n2

+(p) − n2
−(p)]

¾
, (B7)

where r 0
3(0) = dr3(p2)/dp2|p2=0 . The first two terms lead to

divergent integrals that we can work out with the help of a
definite regulator, e.g., the Gaussian one, by writing

r8
3(x2) = r8

3(x2) − e−4x2/32 + e−4x2/32
. (B8)

For the Gaussian regulator, the sum of the divergent integrals

in Eq. (B7), properly regularized, is given by

Z ∞

0
dp

(
1

2π

"Z ∞

−∞
dq

e−4(p2+q2)/32

(p2 + q2)2

#
− 1

p
[n+(p) + n−(p)]

)

= 1

2
+ γ

2
− log(π

√
m) − log (T/3) − f (µ/T ), (B9)

where

f (x) = 2 sin h2(x/2)
Z ∞

0

dy

y

tan h(y/2)

cos hx + cos hy
. (B10)

Finally, the integral of the last term in Eq. (B7) can be explicitly
performed, giving simply

Z ∞

0
dp[n+(p) + n−(p) − n2

+(p) − n2
−(p)] = T . (B11)

The previous result in Eq. (B5), together with Eqs. (B7)–(B11),
leads to the expression quoted in Eq. (30). Again this relation
is strictly valid for T ,µ ¿ 3. For the Gaussian regulator
we have checked that it still holds up to 1% in the region
T 6 3/9, µ 6 3/5. As before, this is also the case for the
Lorentzian regulator for the values of T and µ relevant for
our analysis.

It is interesting to point out the similarity between our
equations determining the second-order transition line and the
tricritical point, and those obtained in Ref. [20]. In that article,
the authors address the study of the T − µ phase diagram by
using a different approach, in which they propose a large flavor
number expansion and a resummed renormalization scheme.
It can be seen that the results in Ref. [20], Eqs. (13) and (14),
have the same form as our expressions if we take the limit
λ = 0, which in the context of Ref. [20] means neglecting the
contributions from the meson sector (this should be analogous
to the MFA considered here). Moreover, the validity of these
results is also limited to relatively low values of T and µ

in view of the presence of a Landau pole arising from the
renormalization procedure.
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