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We determine the conditions under which general dimer-type spin chains with XYZ couplings of arbitrary
range in a general transverse field will exhibit an exactly separable parity-breaking eigenstate. We also provide
sufficient conditions which ensure that it will be a ground state. We then examine the exact side limits at
separability of the entanglement between any two spins in a finite chain, showing that in the vicinity of
separability, the system will loose all signatures of dimerization, with pairwise entanglement approaching
infinite range and becoming independent of separation and interaction range. The possibility of a nonuniform
exactly separable ground state induced by an alternating field is also shown. As illustration, we examine the
behavior of the pairwise entanglement in a finite XY dimer chain under a uniform as well as alternating field.
Related aspects of the magnetization are also discussed.
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I. INTRODUCTION

Quantum entanglement is an essential resource for quan-
tum information science, allowing radically new forms of
information transmission and processing,1–4 It has also
aroused great interest in condensed matter and many-body
physics,5 providing a different perspective for the analysis of
strongly correlated systems. Fundamental properties of en-
tanglement in quantum spin chains have been determined,
especially in connection with critical phenomena in the ther-
modynamic limit.5–7 The study of finite spin chains can also
provide insights into the most basic aspects of entanglement
and is presently also stimulated by the unprecedented level
of control that can be reached in some recently developed
quantum devices,8,9 able to realize spin arrays with control-
lable Heisenberg interactions.

A fundamental related question is the range the entangle-
ment between individual spins can reach under the action of
an applied magnetic field. At the standard critical field of
large anisotropic XY or XYZ chains, it remains finite and
typically small sfor instance, restricted to just first and sec-
ond neighbors in a 1D Ising chain in a transverse fieldd6

However, it can diverge at a different field: anisotropic
chains may also exhibit a factorizing field, where an exactly
separable ground state sGSd becomes possible, i.e., where
the mean field GS becomes exact. This remarkable feature
was first discovered in 1D chains with first-neighbor
couplings10,11 and recently examined in detail in more gen-
eral systems in a uniform field.12–19 A general method for
determining separability was in particular developed in Refs.
17 and 18. In the immediate vicinity of the factorizing field,
the pairwise entanglement in a finite chain can reach full
range.14,16 The transverse factorizing field in finite XYZ
chains arises actually at the crossing of opposite Sz-parity
levels,16 with separable parity-breaking eigenstates emerging
from the superposition of the entangled definite parity
states.20

The aim of this work is to examine the previous issues in
finite dimer-type arrays, which have recently received much
attention.17,19,21,22 We will consider arrays of arbitrary spins
with XYZ couplings of arbitrary range in a transverse field,

not necessarily uniform, and determine the separability con-
ditions together with the entanglement side limits at separa-
bility, which will be shown to be independent of separation,
coupling range and other details such as the strength of the
coupling between dimers. At these points all traces of dimer-
ization will then be lost. We will also examine factorization
under an alternating field, which can give rise to a separa-
bility curve with field dependent separable solutions and en-
tanglement limits. Entanglement between spins unconnected
by the interaction can in this way exceed that between linked
pairs in the vicinity of separability. These effects are espe-
cially noticeable for finite chains close to the XXZ limit.
Related aspects of the magnetization and the entanglement
between one spin and the rest of the chain are also discussed.

Section II contains the general theoretical results, includ-
ing the mean field+RPA interpretation of the separability
conditions, while Sec. III the application to general dimer-
type chains, including illustrative exact results for finite
chains. The appendix contains the details of the exact calcu-
lation obtained through the Jordan-Wigner transformation.
Conclusions are finally drawn in Sec. IV.

II. FORMALISM

A. Transverse factorizing fields

We first consider the general Hamiltonian

H = o
i

bisi
z −

1

2o
iÞj

svx
ijsi

xsj
x + vy

ijsi
ysj

y + vz
ijsi

zsj
zd , s1d

which describes an array of n spins si not necessarily equal,
interacting through XYZ-type couplings of arbitrary range in
a general transverse applied field bi. It satisfies fH , Pzg=0,
where Pz=expfipoi=1

n ssi
z+sidg denotes the global Sz parity or

phase flip shere si is the spin value at site id. Denoting with
u0il the local state with its spin fully aligned along the −z
direction ssi

zu0il=−siu0ild, this Hamiltonian will exhibit a
fully separable parity-breaking eigenstate of the form
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uQl ; uu1 . . . unl = ^ i=1
n expfiuisi

ygu0il , s2d

i.e., a state with its spins fully aligned along local axes form-
ing angles ui with the z axis, if sand only ifd the conditions

vy
ij = vx

ij cos ui cos u j + vz
ij sin ui sin u j , s3d

bi sin ui = o
jÞi

sjsvx
ij cos ui sin u j − vz

ij sin ui cos u jd , s4d

are satisfied.20 They can be obtained replacing si
m in H by the

rotated operators e−iuisi
y
si

meiuisi
y

and solving HQu0l=Euu0l,
where HQ=e−ioiuisi

y
Heioiuisi

y
and u0l= ^ iu0il. Equations s3d and

s4d actually hold for general local rotations eifi·siu0il since the
latter can also be cast in the form s2d through complex angles
ui and a suitable normalization factor.20,23 Note also that for a
spin 1/2 array Eq. s2d is in fact the most general separable
state. The energy EQ becomes

EQ = − o
i=1

n

siFbi cos ui +
1

2o
jÞi

sjsvx
ij sin ui sin u j

+ vz
ij cos ui cos u jdG . s5d

If uvy
iju#vx

ij ∀ i , j and uiP s0,pd∀ i, uQl, as well as its de-
generate partner state

u− Ql = PzuQl = u− u1, . . . − unl ,

will be ground states of H when Eqs. s3d and s4d are
fulfilled.20 Of course, they can be GS also in other cases10,11

by suitably adjusting the relative signs of the ui ssee Sec.
III Ad. Equation s4d are in fact the stationary conditions for
the energy s5d at fixed bi, vm

ij, representing the mean field
equations which ensure stability of u6Ql against one-spin
excitations.

Equation s3d warrant that u6Ql will be exact eigenstates
by canceling the residual matrix elements linking u6Ql with
two-spin excitations and have a clear meaning within the
random phase approximation24,25 sRPAd: If satisfied, ∀i , j
the RPA vacuum will coincide with the mean-field state.
More explicitly, the zero temperature RPA matrix swhose
eigenvalues are the RPA energiesd is

HRPA = S A B−

− B− − A
D, Aij = lidij + Bij

+ ,

Bij
6 = − 1

2
Îsisjsvx

ij cos ui cos u j + vz
ij sin ui sin u j 6 vy

ijd ,

where mli are the eigenvalues of the local mean field Hamil-

tonian bisi
z−o j,mvm

ijksj
mlQsi

m=lisi
z8 and Bij

6 the elements asso-
ciated with the dispersion ssi

+sj
−d and creation ssi

+sj
+d of spin

excitations respectively. Equation s3d is then equivalent to
the condition B−=0, implying no RPA corrections to the
mean-field vacuum.

From Eq. s3d it is seen that a uniform eigenstate with ui
=u∀ i becomes feasible if the anisotropy ratio

x ;
vy

ij − vz
ij

vx
ij − vz

ij = cos2 u , s6d

is constant for all pairs and satisfies x.0 fif x.1 scomplex
ud, a global rotation of p /2 around the z axis will lead to
x→1 /x and u realg. Equation s4d leads then to

bi = Îx o
jÞi

svx
ij − vz

ijdsj , s7d

if xP f0,1d sthe opposite sign for all bi is obviously also
feasibled and to bi arbitrary if x=1 sXXZ or XX case,26 where
u0l is an exact eigenstate ∀bid. Any spin array with couplings
satisfying Eq. s6d will then exhibit a uniform separable de-
generate eigenstate uQl= uu , . . . ,ul if the fields bi at sites i are
tuned at the values s7d. It will be a GS when uvy

iju,vx
ij ∀ i , j.

B. Entanglement at factorizing fields

In a finite array the exact GS of H will not be in general
exactly degenerate in the vicinity of the factorizing point,
and will have a definite Sz parity. The correct side limits at
the factorizing field are then provided by the normalized
definite parity states

uQ6l =
uQl 6 u− Ql

Î2s1 6 k− QuQld
, s8d

where k−Q uQl=pi=1
n cos2si ui is the overlap between the de-

generate separable eigenstates. The states s8d satisfy
PzuQ6l= 6 uQ6l and are obviously also exact eigenstates
when Eqs. s3d and s4d are fulfilled.

These states are entangled, with Schmidt rank4 2 for any

bipartition sA , Ād of the whole system20 shere A denotes a

subset of spins and Ā the complementary subsetd. Moreover,
the reduced state of any subsystem of two or more spins can
be effectively considered as a two-qubit mixed state with
respect to any bipartition.20 The entanglement between any
two subsystems can then be measured through the concur-
rence, a measure of entanglement originally introduced for
two-qubit systems27 swhere it can be exactly computed, see
Sec. III Dd, and later extended to mixed states of general
bipartite systems through the convex roof extension of the
generalized pure state expression.28,29 The concurrence be-
tween any two spins i , j in the states uQ6l can be shown to
be20

Cij
6 =

Îs1 − cos4si uids1 − cos4sj u jdk− Q
ij
uQ

ij
l

1 6 k− QuQl
, s9d

where k−Q
ij

uQ
ij
l=pkÞi,jcos4k uk denotes the complementary

overlap. It will be appreciable for sufficiently small angles uk
if ui ,u jÞ0.

On the other hand, the entanglement between one spin
and the rest of the chain in the states s8d can be measured
through the entropy Si=−Trfri log rig, where ri
=Trī uQ6lkQ6u is the reduced density matrix of the spin at
site i, or alternatively, through the pure state concurrence28

Ci=Î2s1−Tr ri
2d. The latter provides an upper bound to the

sum of all pairwise concurrences Cij stemming from site
i:20,30,31 Ci

2$o jÞi Cij
2 . It fully determines Si when si=1 /2

sSec. III Dd. Its expression in the states s8d reads20
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Ci
6 =

Îs1 − cos4si uids1 − pkÞicos4sk ukd
1 6 k− QuQl

, s10d

with Ci
6<Î1−cos4si ui if the overlap is neglected. The en-

tanglement between L and n−L spins, as well as between
any two sets of spins in the states s8d can also be exactly
calculated.20

When u6Ql are GS, Eqs. s9d and s10d represent the actual
side limits of the GS concurrences Cij and Ci at the factor-
izing point, where a transition uQ+l→ uQ−l will take place as
the field increases.16,20 The entanglement between two spins
will then reach full range in its vicinity, provided
k−Q

ij
uQ

ij
lÞ0 and uiÞ0, ∀ i , j fEq. s9dg.

When ui=p /2∀ i fcorresponding for vz=0 to the Ising
case vy =0 according to Eq. s6dg, u6uil are orthogonal and
Ci

6=1 while Cij
6=0∀ i , j. The previous effect becomes sig-

nificant in the opposite limit of small ui ssystems close to the
XXZ limitd. We also remark that the uniform mixture of both
definite parity states, r0= 1

2 suQ+lkQ+u+ uQ−lkQ−ud, is also en-
tangled and leads to attenuated concurrences20 Cij

0

=Cij
− k−QuQl

1+k−QuQl and Ci
0=Ci

− k−QuQl
1+k−QuQl .

III. APPLICATION TO DIMER-TYPE CHAINS

Let us now consider a pair of uniform interacting chains
of the same size m and spins ss, not necessarily equal. We
can embed this system in a single nonuniform chain of even
size n=2m assigning odd sevend sites to the first ssecondd
chain, as schematically depicted in Fig. 1 sleftd, such that
s=o ,e. We may then consider

vm
ij = vm

sisj − id , s11d

where si=o ,e indicates the parity of the site, such that vm
ssld

represents the interchain sinternald couplings for l odd
sevend. Accordingly, vosld=ves−ld for l odd and
vssld=vss−ld for l even fbut vosldÞvesld in generalg. In the
cyclic case vss−ld=vssn− ld∀s , l.

An important example of this type is that of a dimer chain
with just nearest neighbor couplings sFig. 1, rightd, where
vm

ssld=vm
sdl,61:

Hd = o
i=1

n/2

Fb2i−1s2i−1
z + b2is2i

z − o
m=x,y,z

vm
o s2i−1

m s2i
m + vm

e s2i
ms2i+1

m G .

s12d

Here vm
e can be considered as the sweakd couplings between

dimers and vm
o the sstrongd internal couplings, the system

becoming dimerized si.e., an array of independent spin pairsd
for vm

e →0 ssee also Sec. III Cd.
A different example of Eq. s11d, which nonetheless will

exhibit factorization properties similar to those of Eq. s12d
ssee belowd, is a pair of arrays with no internal couplings
interacting through a constant full range coupling: vm

ssld
=2vm /n∀ l odd and 0 otherwise such that

Hp = boSo
z + beSe

z −
1

n
o

m=x,y,z
vmSo

mSe
m, s13d

where So,e
m =ol even

odd sl
m are the total spin components of each

array and we have assumed a constant field is applied to each
of them. This system is obviously equivalent to an interact-
ing pair of spins So= 1

2nso and Se= 1
2nse if restricted to the

maximum spin multiplet. As in the Lipkin model,32 the 1 /n
scaling ensures here a bounded intensive energy kHl /n for
n→` and fixed vm.

A. Uniform separable eigenstates

In the general case s11d with cyclic boundary conditions, a
separable eigenstate with a common angle ui=u∀ i is then
feasible if Eq. s6d holds for any connected pair, i.e., x

=
vy

ssld−vz
ssld

vx
ssld−vz

ssld P f0,1d and constant ∀l, and there is a uniform
field bi=bsi in each subchain given by

bs = Îx o
s8=o,e

vss8ss8, s = o,e , s14d

where vss=ol evenvx
ssld−vz

ssld and voe=ol oddvx
ssld−vz

ssld
=veo, with bo=be if so=se. Such uniform eigenstate is also
feasible for a similar open chain provided a nonuniform
field, as determined by Eq. s7d, is applied. For short range
couplings this will imply just boundary corrections. The en-
suing states u6Ql will be GS if uvy

ssldu,vx
ssld∀s , l.

The definite parity states s8d will then lead to a finite
concurrence s9d for any spin pair, which will depend on the
parity of the sites but not on their separation: The odd-odd
sCoo

6 d, even-even sCee
6d, and odd-even sCoe

6 d concurrences will
be given, according to Eq. s9d, by

Css
6 =

s1 − x2ssdxS−2ss

1 6 xS , Coe
6 = ÎCoo

6 Cee
6 , s15d

where S= 1
2nsso+sed is the total spin. The range of the en-

tanglement between two spins will then increase as the fac-
torizing fields s14d are approached in each subchain, becom-
ing independent of the coupling range and separation. If so
=se, obviously Coo=Cee=Coe.

Css
6 will be appreciable for sufficiently small XY anisotro-

pies: If x<1−d /S then xS<e−d for small d /S. In fact, for
d→0 sXX limitd Css

+ →0 but Css
− →2ss /S si.e., 2 /n for so

a b

2

1 3

4

1

2
3

4

FIG. 1. sColor onlined Schematic plot of sad a system described
by the couplings s11d, representing two interacting cyclic chains
and sbd the dimer chain of Eq. s12d, a particular case of sad. Num-
bers indicate the notation used in Figs. 2 and 3.
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=se, which is the maximum attainable value when all pairs
are equally entangledd,33 as uQ+l→ u0l but uQ−l approaches
the entangled W-type state34 ~oisi

+u0l. In the opposite limit
sIsing case x=0d, u6Ql become orthogonal and Css=0.

In the dimer chain s12d, the uniform separable eigenstate
becomes then feasible if there is a common anisotropy x

=
vy

s−vz
s

vx
s−vz

s P f0,1d for s=o ,e and the fields are chosen as fEq.
s14dg

bo = Îxvoese, be = boso/se, s16d

where voe=vx
o+vx

e−vz
o−vz

e. In an open chain we should just
add the border corrections b1= 1

2bo, bn= 1
2be according to Eq.

s7d. Thus, in the ferromagnetic-type case uvy
su#vx

s for s
=o ,e, its GS will become uniform at the factorizing fields
s16d, regardless of the ratio vx

e /vx
o sas long as it is nonzerod,

loosing there all signatures of a dimerized structure and lead-
ing to the full range concurrences s15d as side limits.

Let us also remark that for the nearest neighbor couplings
of Eq. s12d, the antiferromagnetic case vx

s,0∀s can be
brought back to the previous case by means of local rotations
of angle p around the z axis at even sites simplying si

m→
s−1di+1si

m and hence vm
s →−vm

s ∀s for m=x ,yd. A uniform
separable eigenstate u%% . . .l;uuu. . .l in the rotated system
corresponds then to an alternating solution ui= s−1di+1u
sNeél-type state u%- % - . . .l;uu ,−u ,u. . .ld in the origi-
nal system. Note that this holds for arbitrary spins ss sequal
or distinctd. Separability sbut not entanglementd in the so
=se=1 /2 dimer chain was discussed in Ref. 19, with the
correct treatment for general antiferromagnetic couplings
discussed in detail in Refs. 17 and 18.

For even m=n /2 sto avoid frustration effectsd,18 the mixed
case vx

o.0, vx
e,0 sor vice-versad can also be recast as a

ferromagnetic case vx
s.0∀s by means of local rotations of

p around the z axis in even sites of both subchains fs2i+k
m

→ s−1di+1s2i+k
m for k=−1,0 and m=x ,y, implying vm

e →−vm
e g.

The uniform solution corresponds here to u2i+k= s−1di+1u for
k=−1,0 in the original mixed system, i.e.,18,19

u%% - - . . .l;uu ,u ,−u ,−u ,u , . . .l. Hence, for even n /2
we may always assume vx

s.0∀s in Eq. s12d.
In the system s13d, the same uniform separable eigenstate

becomes feasible if x=
vy−vz

vx−vz
P f0,1d and the fields are set at

the values s16d, with voe=vx−vz fEq. s14dg. We may again
assume vx$0 since its sign can be changed replacing Se

m→
−Se

m for m=x ,y. This system will exhibit just three different
GS pairwise concurrences sCoo ,Cee ,Coed for any bo and be,
which will approach the same limits s15d at the fields s16d.

B. Alternating separable eigenstates

In the case of two interacting subchains with no internal
couplings, such as Eqs. s12d and s13d, we may also consider
the possibility of different and controllable uniform angles
uo, ue swith uuouÞ uueud in each subchain, i.e.,

uQl = uuoueuoue. . .l ,

through an alternating field boÞbe. For simplicity we will
consider XY couplings svz

ij =0d. According to Eqs. s3d and
s4d, such a solution is feasible if for s=o ,e and l odd,

x =
vy

ssld
vx

ssld
= cos uo cos ue, bs = voe sin us

tan us̄

ss̄, s17d

where voe=ol oddvx
ssld and s̄Þs fi.e., voe=vx

o+vx
e in Eq. s12d

and voe=vx in Eq. s13dg. This implies

bobe = xsvoed2sose, s18d

cos2 us =
x2 + b̃s

2

1 + b̃s
2

, b̃s ;
bs

voess̄

. s19d

Hence, for fields bo ,be satisfying Eq. s18d we obtain a sepa-
rable eigenstate with alternating angles uo, ue determined by
Eq. s19d. Since one of the fields is now free, we may adjust
in such system the individual angles and thus the internal
sCoo

6 ,Cee
6d and interchain sCoe

6 =Ceo
6 d pairwise concurrences at

separability, given now by

Css
6 =

s1 − xs
2ssdxs

Ss−2ssx
s̄

Ss̄

1 6 xs
Ssx

s̄

Ss̄
, Coe

6 = ÎCoo
6 Cee

6 , s20d

where xs;cos2 us and Ss=nss /2. If ubou. ubeu and so=se,
Coo

6 ,Coe
6 ,Cee

6, despite the absence of even-even direct cou-

pling svee=voo=0d. For b̃o= b̃e we recover Eqs. s15d and s16d.
The values of Css8

6 depend now on the ratio h= b̃o / b̃e fb̃o

=Îhx, b̃e=Îx /h when Eq. s18d holdsg. For h@1, cos uo
→1 but cos ue→x, implying that in this limit Cee

6 remains
finite at the factorizing field, while Coo

6 and Coe
6 vanish. Note

also that us is a decreasing function of b̃s.
In the ferromagnetic case vx

s.0, uo and ue have both the
same sign. For antiferromagnetic couplings vx

s,0∀s in the
dimer chain s12d, we would have instead uo.0 and ue,0
sor vice-versad, whereas in the mixed case vx

evx
o,0, uQl

= uuoue ,−uo ,−ue ,uoue , . . .l, as previously discussed. Border
corrections b1= 1

2bo, bn= 1
2be would also apply in an open

dimer chain.
The concurrence between one spin and the rest of the

chain Csi
;Ci, will be given at separability by fEq. s10dg

Cs
6 =

Îs1−xs
2ssds1−xs

2sSs−ssdxs̄
2Ss̄d

16xs
Ssxs̄

Ss̄
. s21d

C. Spin 1/2 pair

We may explicitly verify the previous expressions svalid
for general nd in the “two-qubit” case sso=se=1 /2, n=2d,
which also represents the vm

e →0 limit in the spin 1/2 dimer
chain s12d. Setting v6= 1

4 svx6vyd$0 and b6= 1
2 sbo6bed,

with bo=b1, be=b2, the eigenstates and energy levels of
Hamiltonian s1d become in this case

uC6
− l = a7

− u↑↓l 6 a6
− u↓↑l, E6

− = 1
4vz 7 Îb−

2 + v+
2 ,

s22d
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uC6
+ l = a7

+ u↑↑l 6 a6
+ u↓↓l, E6

+ = − 1
4vz 7 Îb+

2 + v−
2 ,

s23d

where sa6
n d2=

1

2
s16

bn

Îbn
2+v−n

2
d and the superscript n=6 indi-

cates the Sz parity. The GS corresponds to uC+
−l or uC+

+l, with
E+

− and E+
+ crossing precisely when the factorizing conditions

s3d and s4d hold. At this point uC+
6l become the states s2d. In

particular, for an homogeneous field sb−=0, b+=bd, E+
−

=E+
+ when b= 1

2
Îxsvx−vzd fEq. s7dg, whereas for vz=0 they

cross when bobe= 1
4xvx

2 fEq. s18dg. It is then explicitly veri-
fied that the states s2d are the true side limits at the crossing
point, with separability arising just from the crossing of these
two states. Factorization corresponds then to the quantum
critical point of the spin 1/2 pair. It should be also noticed
that uC+

6l can here be always written as projected states s2d
using suitable angles stan2 1

2u1=
a−

+a−
−

a+
+a+

− , tan2 1
2u2=

a−
+a+

−

a+
+a−

− d. The

concurrence C12=Î2s1−Tr r1
2d in the states uCn

6l reads

C12
6 = 2ua+

6a−
6u = uv7u/Îb6

2 + v7
2 , s24d

and coincides with both general results s9d and s10d for the
present case fC12

6 = usin u1 sin u2u / s16cos u1 cos u2dg.
In the spin 1/2 dimer chain s12d, Eq. s24d represents the

limit of the concurrence C2i−1,2i for vm
e →0. This implies that

its GS will become fully dimerized si.e., an array of maxi-
mally entangled pairsd at zero field, since in this case C12

6

=1 and all eigenstates uCn
6l are Bell states. However, at finite

fields, C12
6 =1 only if b6=0sbe= 7b°d, in which case just half

of the eigenstates remain maximally entangled. For bo,e.0,
maximum entanglement sC12=1d for vm

e →0 will then arise
just for an homogeneous field b+=b lower than the factoriz-
ing field, i.e., when the pair GS is antiparallel suC+

−ld.
Let us finally notice that for n=6,

ksi
zln ; kC+

nusi
zuC+

nl = − 1
2 sndi+1bn /Îbn

2 + v−n
2 , s25d

implying ks1
zl+= ks2

zl+ but ks1
zl−=−ks2

zl−, i.e., opposite magne-
tizations for negative Sz parity ssee belowd.

D. Results

Figures 2 and 3 depict illustrative results for the GS pair-
wise concurrence Cij in a finite spin 1/2 dimer chain de-
scribed by Eq. s12d with cyclic XY couplings svz

s=0d. We
have set vm

e =avm
o , with vy

s=xvx
s for s=o ,e. Full exact results

for finite n can in this case be obtained through the Jordan-
Wigner transformation ssee Appendixd. In this system Cij
=C1,j−i+1sC2,j−i+2d for i odd sevend.

The reduced density matrix for a pair of spins i , j will

commute with the pair parity eipssi
z+sj

z−1d, being then of the
form sk . . . l denotes here the GS averaged

rij =
1

4
+ ksi

zlsi
z + ksj

zlsj
z + 4 o

m=x,y,z
ksi

msj
mlsi

msj
m. s26d

The GS pairwise concurrence Cij can then be evaluated as27

2lmax−Tr R, with lmax the greatest eigenvalue of the matrix
R=4Îsi

ysj
yrijsi

ysj
yrij, and reads

Cij = MaxfCij
+,Cij

−,0g ,

Cij
6 = 2fuksi

xsj
x 7 si

ysj
ylu − Îs 1

4 7 ksi
zsj

zld2
− 1

4 ksi
z 7 sj

zl2g ,

s27d

being parallel14 si.e., as in the states u↑↑l+ u↓↓ld if Cij
+ .0 and

antiparallel su↑↓l− u↓↑ld if Cij
− .0 sjust one of Cij

6 can be
positived. The entanglement of formation of the pair can then
be obtained as27 Sij =−on=6pn log2 pn, where p6

= 1
2 s16Î1−Cij

2 d. Cij =Sij =0 s1d for a separable smaximally
entangledd pair.

The case of a uniform field bo=be=b is depicted in Fig. 2.
Here C1j =C2,j+1 for j odd. At b=0 and for a=1 suniform
chaind, there is entanglement just between first neighbors
sC12=C23.0d. For a small anisotropy x=0.9, as soon as the
ratio a decreases below 1 the concurrence between weakly
coupled pairs sC23d rapidly decreases stop paneld, vanishing
here already for a&0.74, whereas C12 rapidly increases,
practically reaching saturation for a=0.25 scenter paneld.
Hence, at zero field approximate dimerization is achieved
already for low a, the system becoming essentially an array
of maximally entangled pairs in the antiparallel states uC+

−l.
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FIG. 2. sColor onlined Concurrences between spins i , j vs mag-
netic field in a spin 1/2 XY dimer chain sEq. s12dd for two values of
a;vm

e /vm
o and of the anisotropy x;vy

s /vx
s. The field is here uni-

form, with n=20 spins. All Cij approach the same side limits s15d
swhich are independent of ad at the factorizing field s28d svertical
bard, as seen in the insets sblow up of main plotd, changing from
antiparallel to parallel and exhibiting there the same finite step. The
red dot at b=bs indicates the concurrence Cij

0 in the mixture of both
definite parity ground states.
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The previous picture remains valid for weak finite fields.
As seen in the top and central panels, increasing the uniform
field destroys dimerization in a stepwise manner, the GS re-
maining almost unchanged until the first step, occurring at
bp< 1

2
Îxvx

os1−ad for a not close to 1. These steps, clearly
visible in small chains with low anisotropy, reflect the n /2
GS Sz-parity transitions scrossings between the lowest levels
of opposite parity,16,19 which are close but not degenerated
taking place as the field increases when xP s0,1g, as in the
homogeneous XY chain. At the same time, the concurrence
range increases as the last step is approached. The latter oc-
curs precisely at the uniform factorizing field fEq. s7dg

bs =
1

2
Îxvx

os1 + ad , s28d

where the dimer structure is completely lost and entangle-
ment reaches full range: all pairs become equally entangled
irrespective of separation or location, with Cij reaching the
side limits s15d ∀iÞ jslimb→bs

6 Cij =Cij
6d, which are indepen-

dent of a and hence the same in top and central panels. At
this field all Cij exhibit the same finite discontinuity, chang-
ing from antiparallel sb,bsd to parallel sb.bsd. For a→0,
bp and bs sfirst and last stepsd merge at the two-qubit factor-
izing field 1

2
Îxvx

o.
For stronger fields b.bs we obtain a weak parallel con-

currence, which for first and second neighbors persists for
arbitrarily strong fields and can be described perturbatively.
First ssecondd neighbors concurrences are first ssecondd order
in vx

s /b and given, up to Osvx
s /bd2, by

C12 < Uv−
o

b
U −

1

2
Sa

v−
o

b
D2

, C23 < Uav−
o

b
U −

1

2
Sv−

o

b
D2

,

Ci,i+2 < Uav−
ov+

o

bbsi
U −

1

2
Sv−

o

b
D2

s1 + a2d ,

where v6
o = 1

4 svx
o6vy

od= 1
4vx

os16xd and b= 1
2 sbo+bed. Note

that a threshold value of a is required for a positive second
neighbor concurrence for strong fields.

For higher anisotropies slower xd, the behavior becomes
similar to that of larger systems. The GS parity transitions
become less noticeable, as seen for x=0.5 in the bottom
panel, and the pairwise concurrence side limits at the factor-
izing field are smaller. Nonetheless, the increase in the con-
currence range in its vicinity remains clearly appreciable. Let
us remark that for small separations ui− ju, the results for Cij

6

for n=20 at x=0.5 are already very close to those for n
→`. We should also mention that as x decreases, lower
ratios a are required to achieve approximate dimerization at
low fields sat x=0.5 and b=0, C23 vanishes only for a
&0.58d.

Figure 3 depicts the typical behavior for small anisotro-
pies when different fields are applied at even at odd sites,
with a fixed ratio h=bo /be=3. The factorizing value for bo

fEq. s18dg is here

bs
o = Îhbs =

1

2
Îhxvx

os1 + ad . s29d

At bs
o there are now three different limits for the concur-

rences at each side, Coo
6 , Cee

6, and Coe
6 , which represent the

common side limits of C1,2j+1, C2,2j+2, and C1,2j ,C2,2j+1 ∀j
and are given by Eq. s20d. They satisfy here

Cee
6/Coo

6 = sx + hd/sx + h−1d . 1,

for h.1, implying Cee
6 .Coe

6 . In particular, C24 fwhich ap-
proaches Cee

6 for bo→ sbs
od6g clearly exceeds in the vicinity

of bs
o both first neighbor concurrences C12 and C23, despite

the absence of second-neighbor couplings.
It is also seen that C12 is no longer nearly constant up to

the first parity transition, which occurs now at bop

< 1
2
Îhxvx

os1−ad. This effect can be easily understood with
the two-qubit concurrence s24d: at low a, C12 is essentially
described in the first region by the two-qubit expression s24d
for C12

− , which for b−= 1
2bos1−1 /hdÞ0, is no longer constant

and decreases as bo increases.
In order to highlight the universality of the limits at the

factorizing field, we depict in Fig. 4 the pairwise concur-
rences in the system s13d for so=se=1 /2, where the exact
solution can be obtained through direct diagonalization in the
So=Se=n /2 representation. In the XY case, voe=vx and the
odd factorizing field at fixed ratio bo /be=h is bs

o= 1
2vx

Îhx.
There are now just three different concurrences at all fields,
Coo=C1,2j+1, Cee=C2,2j+2, and Coe=C1,2j =Ceo sj indepen-
dentd, which approach the same limits of Figs. 2 and 3 fEqs.
s15d and s20dg at the factorizing field, since the latter depend
solely on x and the field ratio h. They are here comparable to
the values away from the factorizing field, since the mo-
nogamy bound on o jÞiCij

2 entails Css8=Os1 /nd in this sym-
metric system.33 In the case considered Coo and Cee are in
fact maximum at the factorizing field. Note again that for
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FIG. 3. sColor onlined Same details as the top and center panel
of Fig. 2 for the case of different fields at even and odd sites, with
a fixed ratio bo /be=3. Now odd-even, odd-odd, and even-even con-
currences approach different common side limits at the factorizing
field s29d, with C24 becoming the greatest concurrence in its
vicinity.
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bo /be.1, Cee.Coe in the vicinity of bs
o, despite the absence

of even-even couplings.
Finally, we depict in Fig. 5 the site magnetizations Msi

;ksi
zl together with the concurrence Csi

;Ci between one
spin and the rest of the chain fEq. s10dg. For a spin 1/2 chain
with fH , Pzg=0, both quantities are strictly related, since the

reduced density matrix for one spin in a state with definite
parity is diagonal in the sz basis sri=

1
2 +2ksi

zlsi
z as ksi

ml=0 for
m=x ,yd and hence

Ci = Î2s1 − Tr ri
2d = Î1 – 4ksi

zl2. s30d

Thus, Ci=1 when ksi
zl=0 szero fieldd. At the factorizing field

it approaches the side limits s10d. The ensuing entanglement
entropy can be evaluated as Si=−on=6pn log2 pn, with p6

= 1
2 s16Î1−Ci

2d.
While for a uniform field the even and odd site magneti-

zations coincide and decrease stepwise as the field increases,
approaching −1 /2 for strong fields, for nonuniform fields
they first acquire opposite signs sMo=−Med in the “dimer
phase,” i.e., before the first parity transition. Here the mag-
netization is essentially described by the two-qubit result
s25d, which yields Me=−Mo.0 in the state uC+

−l if bo.be.
Accordingly, Me first increases as bo fand hence be and b− in
s25dg increases, in close agreement with Eq. s25d. After the
first transition, Me starts to decrease, crossing 0 and ap-
proaching −1 /2 stogether with Mod for strong fields, even
though it may still increase between transitions.

This entails a nonmonotonous behavior of Ce for increas-
ing fields, particularly appreciable for low a, where Ce satu-
rates again sCe=1d at a finite field, i.e., when Me vanishes. At
the factorizing field Cs approaches the limits s21d, which are
independent of a, with the magnetization step there given

by20 DMi;ksi
zl−− ksi

zl+=
sin2 uik−QīuQīl

1−k−QuQl2 . For strong fields the be-
havior of Ms and Cs can again be described perturbatively:

we obtain Mo<Me<− 1
2 f1− s v−

os1+ad
b d2g with Co<Ce

<u v−
os1+ad

b u.

IV. CONCLUSIONS

We have first determined the factorization conditions for
general dimer-type arrays with XYZ couplings in general
transverse fields. We have also examined the entanglement
properties of the associated definite parity states, which con-
stitute the actual GS side limits at separability in a finite
system, showing that weak but nonzero full range pairwise
entanglement can be reached in the vicinity of factorizing
fields. The possibility of an alternating and field dependent
separable GS through a nonuniform field along a separability
curve fEq. s18dg has also been shown, for general spin. Bor-
der corrections to the field allow exact separability also in
open chains.

We have then examined the magnetic behavior of a finite
spin 1/2 XY dimer chain. The factorizing field corresponds to
the last parity transition exhibited by the exact GS for in-
creasing field. Dimerization breakdown takes then place in
steps, with all signatures of dimer structure being completely
lost at the factorizing point: for a uniform field, the concur-
rence between any two spins approaches there sat each sided
a constant value, independent of separation and coupling ra-
tio ve /vo. The same behavior occurs in an alternating field,
except that in this case there are three different concurrence
side limits at separability, which depend on the odd-even
field ratio. The entanglements between spins unconnected by
the coupling may here exceed that between connected pairs.
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FIG. 4. sColor onlined Concurrences between spins i , j vs mag-
netic field in a system with constant full range couplings between
even and odd sites, described by Hamiltonian s13d. We have set
again x=0.9, n=20, and a uniform salternatingd field in the top
sbottomd panels. Odd-even, odd-odd, and even-even concurrences
approach at the factorizing field exactly the same side limits as
those of Figs. 2 and 3, respectively, which are here of the same
order as the values outside this field.
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FIG. 5. sColor onlined Magnetization at even and odd sites
Ms;kss

z l stop panelsd and the concurrence Cs;Ci fEq. s30dg be-
tween the site and the rest of the chain sbottom panelsd, in the dimer
chain of Figs. 2 and 3 with x=0.9. Results for an alternating field
with fixed ratio bo /be=3 and for a uniform field are depicted. The
discontinuities at the factorizing field are explicitly shown. The
“dimer phase” sfields below the first transitiond presents opposite
magnetizations for a nonuniform field and leads to a nonmonoto-
nous behavior of Ce after this transition.
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The previous properties are not a particular feature of the
system considered. For full-range coupling, the same behav-
ior is obtained at separability, as the eigenstates become there
independent of the coupling range. The behavior of the con-
currence between one spin and the rest of the chain has also
been examined. An alternating field can induce opposite
magnetizations at even and odd sites before the first transi-
tion, leading to a nonmonotonous behavior of this concur-
rence for increasing fields with two saturation points. The
present results shed light on the complex behavior of en-
tanglement in these systems and its relation with factoriza-
tion. The exposed features can make such finite critical sys-
tems of special interest for diverse applications.

ACKNOWLEDGMENTS

The authors acknowledge support from CIC sR.R.d and
CONICET sN.C. and J.M.M.d of Argentina.

APPENDIX: EXACT SOLUTION OF THE DIMER CHAIN
WITH ALTERNATING FIELD

By means of the Jordan-Wigner transformation,35 and for
a fixed value p=6 of the global Sz-parity Pz, we may exactly
rewrite the dimer XY Hamiltonian s12d for ss= 1

2 as a qua-
dratic form in standard fermion creation and annihilation op-
erators cj

† and cj. For an alternating field bi=bsj, with s j
=o ,e the site parity, we obtain in the cyclic case,

Hd
p = o

j=1

n

fbsjscj
†cj − 1

2d − h j
psv+

sjcj
†cj+1 + v−

sjcj
†cj+1

† + h.c.dg ,

sA1d

where n+1;1, v6
s = 1

4 svx
s6vy

sd, h j
−=1, and h j

+=1−2d jn. By
means of separate discrete parity dependent Fourier trans-
forms for even and odd sites,

Sc2j−1
†

c2j
† D =

1
În/2

o
kPk6

e−ivkjScko8
†

cke8
† D, v =

4p

n
,

where k+= h 1
2 , . . . , n

2 − 1
2 j, k−= h0, . . . , n

2 −1j, we may rewrite
sA1d as

Hd
p = o

kPkp
Ho

s

bscks8
†cks8 − fv+

kcko8
†cke8 + v−

kcko8
†c−ke8† + h.c.gJ

= o
kPkp

o
n=6

lk
nsakn

† akn − 1
2d , sA2d

where v6
k =v6

o 6v6
e e−ivk. The final diagonal form sA2d is ob-

tained by means of a Bogoliubov transformation cks8
†

=on=6Uks
n akn

† +Vks
n a−kn determined through the diagonaliza-

tion of 434 blocks

Hk =1
bo − v+

k 0 − v−
k

− v̄+
k be v̄−

k 0

0 v−
k − bo v+

k

− v̄−
k 0 v̄+

k − be
2 sA3d

whose eigenvalues are 6lk
+ and 6lk

−, with

lk
62 = D 6 ÎD2 − ubobe − sv+

k + v−
kdsv̄+

k − v̄−
kdu2,

and D= sbod2+sbed2

2 + uv+
k u2+ uv−

k u2. Care should be taken to select
the correct signs of lk

6 in order that the vacuum of the op-
erators akn has the proper Sz parity and represents the lowest
state for this parity.

The spin correlations in the lowest states for each z parity
can then be obtained from the ensuing basic fermionic con-
tractions f ij = kci

†cjl− 1
2dij and gij = kci

†cj
†l, which can be di-

rectly obtained from the inverse Fourier transform of

kcks8
†cks8

8 l=onVks
n V̄ks8

n and kcks8
†c−ks8

8† l=onVks
n U−ks8

n . We then
obtain, through the use of Wick’s theorem, ksi

zl= f ii, ksi
zsj

zl
= f iif j j − f ij

2 +gij
2 , and ksi

+sj
7l= 1

4 fdetsAij
+d6detsAij

−dg, where Aij
6

are si− jd3 si− jd matrices of elements 2sf +gdi+p+1
0,i+q+0
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