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We evaluate the exact concurrence between any two spins in a cyclic XX chain of n spins placed in a uniform
transverse magnetic field, at both zero and finite temperature, by means of the Jordan-Wigner transformation
plus a number-parity-projected statistics. It is shown that, while at T=0 there is always entanglement between
any two spins in a narrow field interval before the transition to the aligned state, at low but nonzero tempera-
tures the entanglement remains nonzero for arbitrarily high fields, for any pair separation L, although its
magnitude decreases exponentially with increasing field. It is also demonstrated that the associated limit
temperatures approach a constant nonzero value in this limit, which decreases as L−2 for L!n, but exhibit
special finite-size effects for distant qubits sL<n /2d. Related aspects such as the different behavior of even and
odd antiferromagnetic chains, the existence of n ground-state transitions, and the thermodynamic limit n
→` are also discussed.
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I. INTRODUCTION

Quantum entanglement denotes those correlations with no
classical analog that can be exhibited by composite quantum
systems and that constitute one of the most fundamental fea-
tures of quantum mechanics. It is considered an essential
resource in the field of quantum information f1g, where it
plays a key role in various quantum-information processing
tasks such as quantum teleportation f2g and quantum cryp-
tography f3g. It is also playing an increasingly important role
in condensed matter physics, providing a new perspective for
understanding quantum phase transitions and collective phe-
nomena in strongly correlated systems f4–7g.

In particular, there has been considerable interest in inves-
tigating entanglement in quantum spin chains with Heisen-
berg interactions f8,9g, since they provide a scalable qubit
representation apt for quantum processing tasks f10,11g
which can be realized in diverse physical systems. Studies of
the pairwise entanglement in the Ising and XY models
f4,5,12g and in the isotropic Heisenberg model f13–16g at
zero and finite temperature and in a transverse uniform field,
as well as in diverse XX, XY, and XYZ models for two or a
small number of qubits f17–21g, have been made. An impor-
tant result is that the entanglement range may remain finite at
a quantum phase transition, limited for instance to first and
second neighbors in the Ising model f4,5g, in contrast with
the behavior of the correlation length, which diverges at
these points. Global thermal entanglement has also been
studied f22g, showing that limit temperatures for pairwise
entanglement are lower bounds to those limiting entangle-
ment between global partitions. A fundamental result for fi-
nite systems is that there is always a finite limit temperature
for entanglement, since any mixed state becomes completely
separable if it is sufficiently close to the full random state
f23,24g.

In this work we analyze the entanglement between any
two spins in a cyclic chain with nearest-neighbor XX cou-
pling in a transverse magnetic field scontrol parameterd by
means of an exact analytic treatment valid for any spin num-
ber n and pair separation L, based on the Jordan-Wigner

mapping and the use of number-parity-projected statistics for
T.0. Recent studies in XX chains have focused on either
chains with a small number of spins f17,21,25g, where re-
sults were obtained through direct diagonalization, or open
chains at zero temperature and field f15g. We will show that
the XX model offers very interesting properties such as en-
tanglement between any pair sfull ranged in a finite field in-
terval just before the critical point at T=0, which subsists for
large fields at low but nonzero temperatures T,TL. More-
over, limit temperatures TL approach a nonzero limit for
large fields, for all separations L. It also displays n ground-
state transitions at analytic field values, entailing a stepwise
variation of the entanglement range suitable for its use as an
entanglement switch. Let us mention that XX chains have
also been employed for entanglement teleportation f25g.

Section II describes the formalism for evaluating the exact
concurrence between arbitrary sites at both zero and finite
temperature. Section III describes the main physical results,
including the ground-state transitions and concurrence in
both ferro- and antiferromagnetic systems, and a detail study
of the limit temperatures for entanglement. Conclusions are
drawn in Sec. IV.

II. FORMALISM

We consider a cyclic chain of n spins with nearest-
neighbor XX coupling. The Hamiltonian reads

H = bSz − vo
j=1

n

ssj
xsj+1

x + sj
ysj+1

y d s1ad

=bSz −
1

2
vo

j=1

n

ssj
+sj+1

− + sj+1
+ sj

−d , s1bd

where sj
x,y,z are the spin components sin units of "d at site j,

sj
±=sj

x± isj
y, Sz=o j=1

n sj
z is the total spin along the direction of

the transverse magnetic field b, and n+1;1. Our aim is to
examine the entanglement between qubits at arbitrary sites
i , j siÞ jd in the thermal state
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rsTd = Z−1 exps− bHd, b = 1/T , s2d

where Z=Tr exps−bHd and T is the temperature swe set the
Boltzmann constant k=1d. This entanglement is determined
by the reduced pair density rij =Trn−hijjrsTd and can be mea-
sured through the concurrence f26g

Cij = f2lM − tr Rg+, R = Îrij
1/2r̃ijrij

1/2, s3d

where fug+;su+ uuud /2, lM denotes the largest eigenvalue of
the Hermitian matrix R, and r̃ij =42si

ysj
yr

ij
* si

ysj
y is the spin-

flipped density str R is the fidelity f1g between r̃ij and rijd.
The entanglement of formation f27g of the pair is Eij

=−on=±qn log2 qn, where q±= s1±Î1−Cij
2 d /2 and is just an

increasing function of Cij, with Eij =Cij =1 s0d for a maxi-
mally entangled sseparabled pair state.

Since H commutes with Sz and is invariant under transla-
tion and inversion, rij will commute with the pair spin com-
ponent Sij

z =si
z+sj

z and its elements will depend just on the
separation ui− ju. Hence, in the standard basis of Sij

z eigen-
states, it must be of the form

rij =1
pL

+ 0 0 0

0 pL aL 0

0 aL pL 0

0 0 0 pL
−
2, L = ui − ju , s4d

where pL
++2pL+ pL

−=1, pL
+− pL

−=2ksi
zl, and

pL
+ = KSsi

z +
1

2
DSsj

z +
1

2
DL, aL = ksi

+sj
−l . s5d

Here kOl;TrrsTdO denotes the thermal average of O and
ksi

zl= kSzl /n is the intensive magnetization. rij commutes as
well with the total spin of the pair sSijd2=Sij ·Sij, its eigen-
states being the standard triplet states and singlets u↑↑l, u↓↓l,
and su↑ ↓ l± u↓ ↑ ld /Î2, with eigenvalues pL

±, pL±aL. The pair
entanglement is obviously driven by the mixing coefficient
aL. The concurrence s3d becomes

CL = 2fuaLu − ÎpL
+pL

−g+, s6d

so that rij is entangled if and only if uaLu.ÎpL
+pL

−. This con-
dition also follows from the Positive Partial Transpose sPPTd
criterion f28g.

A. Exact energy levels

By means of the Jordan-Wigner transformation to fermion
operators cj

†=sj
+ exps−ipok=1

j−1sk
+sk

−d f8g, we may rewrite H ex-
actly as a bilinear form in cj

† ,cj for each value of the spin or
fermion number parity,

P ; expsipNd, N = o
j=1

n

cj
†cj = Sz + n/2.

The result for P=s= ±1 is f8g

Hs = o
j=1

n

bScj
†cj −

1

2
D − vS1

2
− d jnds1Dscj

†cj+1 + cj+1
† cjd

= o
kPKs

lkSck8
†ck8 −

1

2
D, lk = b − v cos vk, s7d

where the fermion operators c8k
† are related to cj

† by a parity-
dependent discrete Fourier transform

cj
† =

1
În

o
kPKs

eivk jck8
†, vk = 2pk/n , s8d

Ks = H− F1

2
nG +

1

2
ds1, . . . ,F1

2
sn − 1dG +

1

2
ds1J s9d

with f¯g denoting integer part. The index k is then half
integer sintegerd for s=1 s−1d.

The 2n energies are then okPKs
sNk−1/2dlk, where Nk

=0,1 and s= s−1dokNk. Note that the single-fermion energies
lk depend on the global parity s and are degenerate
slk=l−kd for ukuÞ0,n /2. It is also apparent from s7d that the
spectrum of H is independent of the sign of b, and for even
n also of the sign of v, as cos vk8=−cos vk for k8=n /2−k
and k8 belongs to the same parity as k if n is even. This is
also evident from s1d, since for even n the sign of v can be
inverted by a local transformation sj

x,y→ s−1d jsj
x,y sand that of

b by sj
y,z→−sj

y,zd. The concurrence s6d will then exhibit the
same properties, depending just on ubu and for even n just on
uvu f17g.

B. Exact partition function and concurrence

The partition function Z of the system is to be evaluated
in the full grand-canonical ensemble of the fermionic repre-
sentation. However, due to the parity dependence of the lat-
ter, this requires a number-parity-projected statistics f29g. Z
can then be written as a sum of partition functions for each
parity,

Z = Tr o
s=±1

1

2
s1 + sPde−bHs =

1

2 o
s=±1

sZ0
s + sZ1

sd , s10d

where 1
2 s1+sPd is the projector onto parity s and

Zn
s = TrPne−bHs = ebbn/2 p

kPKs

f1 + s− 1dne−blkg , s11d

for n=0,1. The expectation value of an operator O can then
be similarly expressed as

kOl =
1

2
Z−1 o

s=±1
sZ0

skOl0
s + sZ1

skOl1
sd , s12d

kOln
s = sZn

sd−1TrsPne−bHsOd, n = 0,1. s13d

In the case of many-body fermion operators, the thermal ver-
sion of Wick’s theorem f30g cannot be applied in the final
average s12d, but it can be used for evaluating the partial
averages s13d sas Pne−bHs =e−bHs+inpN is still the exponential
of a one-body operatord, in terms of the contractions
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gL ; kci
†cjln

s =
1

n
o

kPKs

kck8
†ck8ln

s cossLvkd , s14d

where L= i− j and kck8
†ck8ln

s= f1+ s−1dneblkg−1 fEq. s13dg. As
si

z=ci
†ci−

1
2 , this leads to

ksi
zln

s = g0 −
1

2
, KSsi

z +
1

2
DSsj

z +
1

2
DL

n

s

= g0
2 − gL

2 , s15d

for iÞ j. Using the identity si
+sj

−=si
+fpk=i+1

j−1 ssk
+sk

−+sk
−sk

+dgsj
− for

i, j, with sj
+sj+1

+ =cj
†cj+1

† , sj
+sj+1

− =cj
†cj+1 f8g, one also obtains

ksi
+sj

−ln
s =

1

2
DetsALd , s16d

where AL is the L3L matrix of elements

sALdij = 2gi−j+1 − di,j−1, s17d

i.e., DetsA1d=2g1, DetsA2d=4fg1
2−g2sg0− 1

2
dg. All terms in

s4d and s6d can then be exactly evaluated.
In the thermodynamic limit n→`, and for finite L!n, we

can ignore parity effects and replace sums over k by integrals
over v;vk. We can then directly employ Wick’s theorem in
terms of the elements

gL = kci
†cjl =

1

p
E

0

p cossLvd
1 + ebsb−v cos vddv . s18d

This leads to fEq. s5dg

pL
+ = g0

2 − gL
2, aL =

1

2
DetsALd , s19d

and pL
−= pL

++1−2g0, where AL is constructed with the ele-
ments s18d. We then obtain the final expression

CL = †uDetsALdu − 2Îsg0
2 − gL

2dfs1 − g0d2 − gL
2g‡+. s20d

Note that for T→0, Eq. s18d yields gL=0 for b. uvu and
gL=sinsLvd / sLpd swith g0=v /pd for ubu, uvu, where cos v
=b / uvu.

When the ground state is nondegenerate, Eqs. s19d and
s20d are also exactly valid for finite n in the T→0 limit,
using the exact contractions

gL = kci
†cjl0 =

1

n
o

k occ.
cossLvkd , s21d

where kOl0 denotes the ground-state average and the sum
runs over the occupied levels ssee next sectiond.

III. RESULTS

A. Ground-state transitions and concurrence

Let us first describe the behavior in the T→0 limit. As
fH ,Ng=0, the ground state of H can be characterized by the
fermion number N, i.e., the total spin component M =N
−n /2 in the spin representation. Since lk in s7d becomes
negative for b,v cos vk, the ground state will exhibit n tran-
sitions N→N+1 as b decreases from uvu to −uvu, starting
from N=0 sthe aligned state M =−n /2d for b. uvu slk.0 ∀

kd and ending with N=n sM =n /2d for b,−uvu slk,0 ∀ kd.
For v.0, the first transition 0→1 occurs at

b1 = v ,

i.e., when the lowest negative-parity level l0=b−v becomes
negative. It represents, for b.0, the entangled-separable
border at T=0. For b just below b1 the ground state is the
one-fermion state c08

†u0l= s1/Îndo jcj
†u0l, i.e., the W state

su↑ ↓ ↓ . . . ↓ l+ u↓ ↑ ↓ . . . ↓ l+ . . . d /În, which exhibits a con-
stant concurrence

CL = 2/n sN = 1d s22d

for any separation L sFig. 1d. Hence, the transition at b=b1 is
from a fully separable state for b.v saligned stated to a state
where any pair is equally entangled.

Due to the parity dependence of the energy levels, the
next transition 1→2 does not take place when the next lk
becomes negative sb=v cos vkd but rather when the lowest
s=1 level crosses the previous s=−1 level, i.e., when
2l±1/2=l0, which leads to b2=vf2 cossp /nd−1g. In general,
for v.0 the transitions N−1→N occur at bN=2v cos vk
−bN−1, with k= sN−1d /2, which leads to the critical fields
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FIG. 1. sColor onlined Top panel: Concurrence CL as a function
of site separation L in the 20 different entangled ground states of
Hamiltonian s1d existing for n=40 qubits and b.0. Ground states
are labeled by the effective fermion number N=M +n /2
=1, . . . ,n /2, which can be selected by adjusting the magnetic field
b sN fermions for bN+1,b,bNd. For N=1, CL has the same value
for all separations fEq. s22dg. The inset depicts the entanglement
range Lm vs the magnetic field in the same system, which for b
.v vanishes at T=0 but remains maximum if 0,T,Tc;Tn/2 ssee
next sectiond. Bottom: Same details for an odd antiferromagnetic
chain with n=41 qubits fresults for the T→0 limit of rsTdg. For
N=1 all pairs are still entangled but CL decays for increasing L fEq.
s25dg.
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bN = v

cosFSN −
1

2
Dp/nG

cosfp/s2ndg
, 1 ø N ø n , s23d

i.e., bN=vfcos vk−sin vk tansp /2ndg. Thus, bN,bN−1, with
bn−N+1=−bN and bN<v cos vk for large n.

Equation s22d is valid for b2,b,b1. The exact expres-
sion for CL at the other N-fermion ground states is given by
Eq. s20d with the elements s21d, which become

gL =
sinsNLp/nd
n sinsLp/nd

, s24d

with g0=N /n=limL→0 gL. For N=1, gL=1/n ∀ L and Eq.
s20d leads to Eq. s22d.

For Nù2, CL will depend on the separation L, decreasing
almost linearly with L for not too small n, as seen in Fig. 1.
A series expansion of s20d yields the initial trend CL

<s2N /ndf1−pLÎsN2−1d /3 /ngd for NL!n. The extent of
pairwise entanglement decreases then rapidly as N increases
sinset in Fig. 1d, the separation between the most distant
entangled qubits being Lm<fsn+1.79d /3.57g for N=2 and,
roughly, Lm<fsn+4d / s2Ndg for 2,N!n /2.

Just first and second neighbors sL=1,2d remain entangled
for ubu,0.65v ∀ n fand ubu,0.82v sN*n /5d for n→`g
whereas only adjacent pairs sL=1d remain entangled for ubu
,0.26v ∀ nÞ5 fand ubu,0.5v sN*n /3d for n→`g sfor n
=5 second neighbors are entangled ∀ b.0d. The concur-
rence of adjacent pairs increases first linearly with N
sC1<2N /n for N!nd and becomes maximum for N=n /2
sn.4d, where g1=1/ fn sinsp /ndg<1/p for large n and C1

=2g1s1+g1d−1/2<0.339.
For odd n, results for v,0 must be separately examined.

The lowest negative-parity level is now l±fn/2g=b
− uvucossp /nd, so that the first transition occurs at

b1
− = uvucossp/nd sv , 0, n oddd ,

with the ground state twofold degenerate after the transition
sk= ± fn /2gd. The concurrence of the mixture 1

2ok=±fn/2guklkku
of the two degenerate ground states ukl= s1/Îndo je

−ivkjcj
†u0l

fthe T→0 limit of rsTdg is

CL
−

= 2 cossLp/nd/n sN = 1d s25d

which is again nonzero ∀ L sn is oddd although it now de-
cays as L increases sbottom panel in Fig. 1d. For L!n, CL

−

<2/n, in agreement with s22d, whereas for most distant qu-
bits sL= fn /2gd, CL

−=2 sinfp / s2ndg /n<p /n2. Hence, for
large L a significant odd-even difference in CL arises if v
,0, even for large qubit number n, due to the ground-state
degeneracy of the odd system.

The next transition for v,0 and n odd occurs when
ln/2+ln/2−1=lfn/2g, i.e., at b2

−= uvuf1+coss2p /ndg−b1
−, and in

general at bN
− = uvuok=N/2−1

N/2 cos vk−bN−1
− , which leads to the

smaller critical fields,

bN
− = bN cossp/nd, 1 ø N ø n , s26d

where bN are the fields s23d. Ground states remain twofold
degenerate ∀NÞ0,n, since there is just one fermion in the
highest occupied level (k= ± sn−Nd /2).

Equation s25d holds for b2
−,b,b1

−. The expression of CL
−

for general N in the T→0 limit can be similarly obtained by
using Eq. s21d for each of the degenerate ground states and
then taking the average. The final result is

CL
−

= fuRefDetsAL
−dgu − 2Îsg0

2 − gL
2d„s1 − g0d2 − gL

2
…g+,

s27d

where AL
− is constructed with the elements,

gL
− = gLeiLp/n, s28d

with gL given again by Eq. s24d. For N=1, Eq. s27d leads to
Eq. s25d. The behavior of CL

− for Nù2 is similar to that of
CL fEq. s20dg, although it is smaller than CL sdue to the
ground-state degeneracyd and its decay with L is less linear
ssee bottom paneld. For instance, for L=1, RefDetsA1

−dg
=DetsA1dcossp /nd, whence C1

−,C1, with C1
−→C1 for large

n.
Let us finally mention that for n→` and pN /n→v, with

L finite, Eqs. s24d–s28d both coincide exactly with the limit
of Eq. s18d for T→0, where bN→v cos v.

B. Results for finite temperatures

Illustrative exact results for n=14–15 and the thermody-
namic limit n→` are depicted in Figs. 2 and 3. For T close
to 0, the concurrence exhibits a stepwise behavior in finite
chains, in agreement with the T=0 transitions previously de-
scribed, presenting dips at the critical fields s23d–s26d due to
the ground-state degeneracy at these points slevel crossingd.
It is also verified that CL is smaller in odd antiferromagnetic
chains, particularly for large L close to n /2, in agreement
with Eqs. s25d–s27d.

While at T=0, there is no entanglement in the ground
state for b.b1, a fundamental result for T.0 is that rsTd
remains entangled for all fields b.b1 if T is sufficiently low,
leading to a small but nonzero concurrence CL for any sepa-
ration L if 0,T,TLsbd. Moreover, the limit temperature
TLsbd approaches a nonzero limit TL for b→` ∀L, being
practically constant for b* uvu sand b*0 if L=1d. This be-
havior applies for any n, including n→` as well as the spe-
cial case v,0 and n odd, as seen in the lower panels of Figs.
2 and 3.

In order to rigorously prove the previous behavior, we
note that for b− uvu@kT se−bsb−uvud!1d, we may keep just
zero, one and two fermion states in exps−bHd, i.e.,

Z < ebbn/2S1 + o
kPK−

e−blk + o
k,k8PK+

e−bslk+lk8dD ,

and similarly for rsTd. This leads to aL<e−bbIL
−sbvd and

pL
+<e−2bbfI0

+2sbvd− IL
+2sbvdg up to lowest order in e−bb,

where

N. CANOSA AND R. ROSSIGNOLI PHYSICAL REVIEW A 75, 032350 s2007d

032350-4



IL
±sbvd =

1

n
o

kPK±

ebv cos vk cossLvkd . s29d

Hence, up to first order in e−bb we obtain

CL < 2e−bbfIL
−
sbvd − ÎI0

+2sbvd − IL
+2sbvdg+. s30d

Thus, as b increases the concurrence decreases exponentially
when it is positive, but the limit temperature TLsbd becomes
constant, as the entanglement condition CL.0 becomes b
independent, i.e.,

IL

−
sbvd . ÎI0

+2sbvd − IL
+2sbvd . s31d

Equation s31d is always satisfied for sufficiently small but
positive T, for any distance L, ensuring a nonzero concur-
rence and limit temperature TLsbd for any b. uvu. This is
easy to prove for v.0, where for T→0+, IL

−sbvd<ebv /n
. I0

+sbvd<2ebv cossp/nd /n. It also holds for v,0 sn oddd,
since in this case, for T→0+, IL

−sbvd
<ebuvucossp/nd cossLp /nd /n, whereas the right-hand side of

s31d becomes <Î2ebuvucos2sp/nd sinsLp /nd /n, IL
−sbvd.

In the thermodynamic limit n→`, and for finite L!n, we
may neglect parity effects and just replace

IL
±sbvd →

1

p
E

0

p

ebv cos v cossLvddv = ILsbvd , s32d

where ILsxd is the modified Bessel function of the first kind
hILsxd<exf1+ s1−4L2d /8xg /Î2px for x→`, with ILs−xd
= s−dLILsxdj. Equation s30d becomes then identical with the
result obtained from Eqs. s18d–s20d fgL→e−bbILsbvd for b
− uvu@T, with DetsALd→2gLg. Equation s31d then becomes

Î2ILsbuvud . I0sbvd , s33d

which is again always satisfied for sufficiently low T∀L. The
limit temperatures TL;TLs`d are then determined for n
→` by the equation Î2ILsbuvud= I0sbuvud, which leads to
T1<0.486uvu, T2<0.16uvu, and

TL < uvuln 2/L2 s34d

for large L fas ILsxd / I0sxd<e−L2/s2xd for x*L2g. Thus, TLsbd
decreases as the inverse square of the pair distance L for
large b. The maximum value attained by CL for b. uvu nev-
ertheless becomes small and decays exponentially with both
b and L2 (CL<e−sb/uvu−1dL2/t fstd /L for T= uvut /L2,TL, with
fstd=Î2t /pfe−t/2−Î1−e−tg). Equation s34d also indicates
roughly the value of TLsbd at the critical region b<uvu, since
it is almost constant for bù uvu sFigs. 2 and 3d.

On the other hand, for large L<n /2, the projected expres-
sion s30d is required even for large n. For instance, for even
n and L=n /2, cossLvkd=0 (s−1dk) for k half-integer sinte-
gerd. Hence, in this case In/2

+ sbvd=0, while for v.0 and
large n,
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FIG. 2. sColor onlined Concurrence stopd and limit temperatures
for entanglement TLsbd sbottomd for pairs i , i+L as a function of the
magnetic field, for n=14 qubits and in the thermodynamic limit n
→`. The concurrence is plotted close to the T→0 limit
sT=0.005vd. All limit temperatures remain constant for b /v→`
ssee textd. Results for even n lie mostly above those for n→`,
particularly for large L swhere they saturated and are independent of
the sign of v.
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FIG. 3. sColor onlined Same details as Fig. 2 for n=15 qubits
and v,0. Results now lie mostly below those for n→` swhich are
the same as in Fig. 2d and do not saturate for large L. Results for
n=15 and v.0 are similar to those of Fig. 2.
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I0sn/2d
+s−d sbvd < ebvu2s4dse−2bvp2/n2

d/n , s35d

after replacing cos vk<1−vk
2 /2 fu2sud;2ok=1/2

` uk2
, u4sud

;1+2ok=1
` s−1dkuk2

, denote the elliptic theta functionsg.
These results also approximately hold for large odd n and
L= fn /2g if v.0. Equation s31d then becomes In/2

− sbvd
. I0

+sbvd, and since u2sud=u4sud for u=e−p, it leads to the
limit temperature,

Tfn/2g < 2pv/n2 s36d

for the most distant pairs and v.0. It is greater than Eq. s34d
for L=n /2 by a factor of p / s2 ln 2d<2.27.

Equation s36d does not hold for v,0 if n is odd. In this
case, we may directly employ the asymptotic expression of
Eq. s31d for T→0+, which for large n yields

Tfn/2g <
uvup2

2n2 lnf2Î2n/pg
, sv , 0, n oddd . s37d

Thus, in this case, there is an additional logarithmic factor in
the denominator, which makes Tfn/2g lower than Eq. s36d and
also Eq. (34) for L=n /2, originating an odd-even staggering
of Tn/2 if v,0.

The behavior of TL is depicted in Fig. 4. It is seen that for
L*n /4, it deviates from the 1/L2 law given by Eq. s34d,
approaching the values given by Eq. s36d or s37d for L
<n /2. Figure 5 depicts the typical thermal behavior of CL
for v.0 near the transition at b=b1. For b,b1 there is en-
tanglement between all pairs if T is lower than a certain
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FIG. 4. sColor onlined Top: Limit temperatures TL for entangle-
ment between pairs for large magnetic fields b@v as a function of
separation L, for n=14 and 40 qubits, determined by Eq. s31d. Inset:
Ratio between TL and the value in the thermodynamic limit TL

`,
determined by Eqs. s33d and s34d. TL deviates from TL

` for L
*n /4, approaching, for L→n /2, Eq. s36d for n even or n odd and
v.0, and Eq. s37d for n odd and v,0. Bottom: The limit tempera-
ture for the most distant qubits sL= fn /2gd, showing the odd-even
staggering arising for v,0 sdashed lined. The upper slowerd dotted
line depicts the result of Eq. s36d fs37dg.
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FIG. 5. sColor onlined The thermal behavior of CL for n=40
qubits near the transition at b=v. Limit temperatures remain stable
at the transition, indicating the reentry of CL for T.0∀L for b
.v. The inset is an enlargement of the low T region, showing the
accumulation of the limit temperatures for large L at a value close
to that given by Eq. s36d.
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FIG. 6. sColor onlined Concurrence stopd and limit temperatures
for entanglement sbottomd for separation L=2 and different n, as a
function of the magnetic field. The concurrence is plotted at T
=0.01v. Dotted lines depict the thermodynamic limit.
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temperature, given approximately by Eq. s36d. It also shows
the reentry of CL for T.0 for b.v, which is quite promi-
nent for low L.

Finally Fig. 6 depicts the typical behavior with the qubit
number n of the concurrence and limit temperature. We have
chosen a separation L=2. Although the thermodynamic limit
is on the average rapidly approached, the stepwise behavior
of CL at low T<0.01v remains visible even for n=40, and
deviations in the limit temperature can be significant at the
onset. They are as well significant for small n&10.

An interesting feature is that the slope of TLsbd can be
negative in this region, a fact already seen in Fig. 2 for n
=14, and visible here for n=8 and n=20. This occurs when
the value of the onset field bc for finite n swhich for L=2
corresponds to b2, b3, b7, and b14 for n=6, 8, 20, and 40d lies
above the value for n→`, as occurs for n=8,20. In these
cases, there is a small field interval below bc where entangle-
ment between second neighbors exists only above a thresh-
old temperature TL

i sbd.0, up to the higher limit temperature
TLsbd.

A final comment is that we have checked all expressions
by comparison with calculations for low n&10 based on the
direct diagonalization of H. In particular, for n=2, the en-
tanglement condition s31d becomes exact ∀ b, as in this case
there are just one- and two-fermion excited states, reducing
sL=1d to sinhsbvd.1 and leading to the known limit tem-
perature T1=v / lns1+Î2d f19g.

IV. CONCLUSIONS

We have provided an exact analytic treatment of the en-
tanglement between arbitrary pairs in cyclic XX chains in the

presence of a transverse magnetic field, valid at both zero
and finite temperatures and for any qubit number n. We have
shown that, in spite of its simplicity, this system exhibits
very interesting features such as a discrete set of fn /2g dif-
ferent entangled ground states at T=0 sand b.0d, which can
be easily selected by adjusting the magnetic field across the
critical values s23d or s26d, and which develop increasing
entanglement ranges, reaching always full range sall pairs
entangledd in an interval b2,b,b1, even for odd antiferro-
magnetic chains.

Moreover, while at T=0 the ground state is fully sepa-
rable for b.b1, we have rigorously proved that for T.0
there is a small but nonzero entanglement between any pair
for all fields b.b1 if T is sufficiently low, which decays
exponentially with increasing field and with the square of the
separation L. Limit temperatures TL are roughly independent
of b for b*v and decay as L−2 for L&n /4, but tend to
saturate at Tfn/2g fEq. s36dg for most distant pairs sL<n /2d if
n is even or v.0. We have also shown that, due to degen-
eracy of the ground state, pairwise entanglement in odd an-
tiferromagnetic chains is weaker, particularly for distant
pairs, where odd-even effects in the concurrence and TL
subsist for all n.
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