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Entanglement between distant qubits in cyclic XX chains
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We evaluate the exact concurrence between any two spins in a cyclic XX chain of n spins placed in a uniform
transverse magnetic field, at both zero and finite temperature, by means of the Jordan-Wigner transformation
plus a number-parity-projected statistics. It is shown that, while at 7=0 there is always entanglement between
any two spins in a narrow field interval before the transition to the aligned state, at low but nonzero tempera-
tures the entanglement remains nonzero for arbitrarily high fields, for any pair separation L, although its
magnitude decreases exponentially with increasing field. It is also demonstrated that the associated limit
temperatures approach a constant nonzero value in this limit, which decreases as L™> for L<n, but exhibit
special finite-size effects for distant qubits (L=n/2). Related aspects such as the different behavior of even and
odd antiferromagnetic chains, the existence of n ground-state transitions, and the thermodynamic limit n

— o0 are also discussed.
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I. INTRODUCTION

Quantum entanglement denotes those correlations with no
classical analog that can be exhibited by composite quantum
systems and that constitute one of the most fundamental fea-
tures of quantum mechanics. It is considered an essential
resource in the field of quantum information [1], where it
plays a key role in various quantum-information processing
tasks such as quantum teleportation [2] and quantum cryp-
tography [3]. It is also playing an increasingly important role
in condensed matter physics, providing a new perspective for
understanding quantum phase transitions and collective phe-
nomena in strongly correlated systems [4-7].

In particular, there has been considerable interest in inves-
tigating entanglement in quantum spin chains with Heisen-
berg interactions [8,9], since they provide a scalable qubit
representation apt for quantum processing tasks [10,11]
which can be realized in diverse physical systems. Studies of
the pairwise entanglement in the Ising and XY models
[4,5,12] and in the isotropic Heisenberg model [13-16] at
zero and finite temperature and in a transverse uniform field,
as well as in diverse XX, XY, and XYZ models for two or a
small number of qubits [17-21], have been made. An impor-
tant result is that the entanglement range may remain finite at
a quantum phase transition, limited for instance to first and
second neighbors in the Ising model [4,5], in contrast with
the behavior of the correlation length, which diverges at
these points. Global thermal entanglement has also been
studied [22], showing that limit temperatures for pairwise
entanglement are lower bounds to those limiting entangle-
ment between global partitions. A fundamental result for fi-
nite systems is that there is always a finite limit temperature
for entanglement, since any mixed state becomes completely
separable if it is sufficiently close to the full random state
[23,24].

In this work we analyze the entanglement between any
two spins in a cyclic chain with nearest-neighbor XX cou-
pling in a transverse magnetic field (control parameter) by
means of an exact analytic treatment valid for any spin num-
ber n and pair separation L, based on the Jordan-Wigner
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mapping and the use of number-parity-projected statistics for
T>0. Recent studies in XX chains have focused on either
chains with a small number of spins [17,21,25], where re-
sults were obtained through direct diagonalization, or open
chains at zero temperature and field [15]. We will show that
the XX model offers very interesting properties such as en-
tanglement between any pair (full range) in a finite field in-
terval just before the critical point at 7=0, which subsists for
large fields at low but nonzero temperatures 7<<7,. More-
over, limit temperatures 7; approach a nonzero limit for
large fields, for all separations L. It also displays n ground-
state transitions at analytic field values, entailing a stepwise
variation of the entanglement range suitable for its use as an
entanglement switch. Let us mention that XX chains have
also been employed for entanglement teleportation [25].

Section II describes the formalism for evaluating the exact
concurrence between arbitrary sites at both zero and finite
temperature. Section III describes the main physical results,
including the ground-state transitions and concurrence in
both ferro- and antiferromagnetic systems, and a detail study
of the limit temperatures for entanglement. Conclusions are
drawn in Sec. IV.

II. FORMALISM

We consider a cyclic chain of n spins with nearest-
neighbor XX coupling. The Hamiltonian reads

n

H=bS"-v>, (578741 + 875741) (1a)
=1

n

. ] - -
=bS* - EUE (S;—Sj+1 + S;.lsj), (lb)
j=1

4

where 57" are the spin components (in units of 7) at site j,
n

s;=sjxis], $°=27_ s is the total spin along the direction of
the transverse magnetic field b, and n+1=1. Our aim is to
examine the entanglement between qubits at arbitrary sites

i,j (i#j) in the thermal state
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p(T)=Z"exp(- BH), B=1/T, (2)

where Z=Tr exp(-BH) and T is the temperature (we set the
Boltzmann constant k=1). This entanglement is determined
by the reduced pair density p;;=Tr,_;;1p(T) and can be mea-
sured through the concurrence [26]

R= 1/2~ (3)

Ci=[2\y —trR],, =N\pyj thth ’

where [u], = (u+|ul)/2, \); denotes the largest eigenvalue of
the Hermitian matrix R, and ﬁ,-j=42sys 'p.sisy is the spin-
flipped density (tr R is the fidelity [1] between p;; and p;;).

The entanglement of formation [27] of the pair is Ej

=-3,.q,10g q,, where g.=(1+y1- )/2 and is just an
increasing function of Cj;, with E;;=C; -—1 (0) for a maxi-
mally entangled (separable) pair state.

Since H commutes with S° and is invariant under transla-
tion and inversion, p;; will commute with the pair spin com-
ponent S% -—s +sj and its elements will depend just on the
separatlon li—j|. Hence, in the standard basis of S eigen-
states, it must be of the form

PZ 0O 0 O
0 0
pij= Pt . L=li-jl, 4)
0 ay  pr 0
0 0 0 p;

where p;+2p;+p; =1, p;—p;=2(s7), and

p2=<(sf+%)(sj+%)>, a; =(sis;). (5)

Here (O)=Trp(T)O denotes the thermal average of O and
(s7)=(S.)/n is the intensive magnetization. p;; commutes as
well with the total spin of the pair (S¥)?=S¥.S¥, its eigen-
states being the standard triplet states and smglets
and (|1 | )=|] 1))/v2, with eigenvalues p?, p, +a;. The pa1r
entanglement is obviously driven by the mixing coefficient
a;. The concurrence (3) becomes

C, =2l — piprl., (6)

so that p;; is entangled if and only if |a;|> \p;p;. This con-
dition also follows from the Positive Partial Transpose (PPT)
criterion [28].

A. Exact energy levels

By means of the Jordan- W1gner transformation to fermion
operators cT—s exp(— szk_lsks,;) [8], we may rewrite H ex-
actly as a blllnear form in ¢}, ¢; for each value of the spin or
fermion number parity,

n

— o
N= 2‘; cjcj—Sz+n/2.
j:

P = exp(imN),

The result for P=o==+1 is [§]
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1 1
E) —U<5 - 5jn50'1>(c;cj+1 +C;+1Cj)

= > Mlelfel -
K\ Ck Gk~

keK,

n
H,= 2 b(c;cj -
j=1

1
2), Ny=b—v cos wy, (7)

where the fermion operators ¢’ are related to c]‘ by a parity-
dependent discrete Fourier transform

2 ezwkjcf}'

wy = 27kin, (8)
\nkeK

K(;:{— |:%n:| +%5(,1, ...,B(n— 1)} + 2501} ©)

with [---] denoting integer part. The index k is then half
integer (integer) for =1 (-1).

The 2" energies are then % g (Ny—1/2)N\;, where N;
=0,1 and o=(~1)>". Note that the single-fermion energies
N; depend on the global parity o and are degenerate
(N¢=N\_y) for |k| #0,n/2. It is also apparent from (7) that the
spectrum of H is independent of the sign of b, and for even
n also of the sign of v, as cos wy=—cos w;, for k'=n/2—k
and k' belongs to the same parity as k if n is even. This is
also evident from (1), since for even n the sign of v can be
inverted by a local transformation s7” — (= 1)jsx ¥ (and that of
b by s7¢——s} ‘). The concurrence (6) will then exhibit the
same propertles depending just on |b| and for even n just on
lo| [17].

B. Exact partition function and concurrence

The partition function Z of the system is to be evaluated
in the full grand-canonical ensemble of the fermionic repre-
sentation. However, due to the parity dependence of the lat-
ter, this requires a number-parity-projected statistics [29]. Z
can then be written as a sum of partition functions for each

parity,

1 1
Z=Tr >, 5(1+0P)6‘BH0=52 (Z$+0Z7), (10)

o=%1 o=+1

where %(1 +0P) is the projector onto parity o and

27 = TePrePo= oB2 T[ [14+ (= 1)), (11)
keK,

for v=0, 1. The expectation value of an operator O can then
be similarly expressed as

1
(0)=57" > (Z3O0Y + 0ZH0))), (12)
o==+1

(0)7=(Z)) ' Te(P"e™PH00), v=0,1. (13)

In the case of many-body fermion operators, the thermal ver-
sion of Wick’s theorem [30] cannot be applied in the final
average (12), but it can be used for evaluating the partial
averages (13) (as PYe PHo=¢=PHo+vaN ig still the exponential
of a one-body operator), in terms of the contractions
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1 ! o
g ={(cle)y = > (eifen)? cos(Lay), (14)

keK,

where L=i—j and {(c; c;)7=[1+(=1)"eM]"" [Eq. (13)]. As
sf=cjc,»—%, this leads to

1 1 1\
=280~ 5 <<S?+5><S§+§>> =g,- &, (15)

for i # j. Using the idfntity sts7 =TT}, (sksg+sisp)]s; for
i<j, with s7s%, =clcl,,, sTs7,,=c]c;. [8], one also obtains

AT
+.-\O 1
(575700 = S Det(A,), (16)
where A; is the L X L matrix of elements
(AL)ij =28 js1— 51',,‘—1, (17)

ie., Det(A;)=2g;, Det(A,) =4[g%—g2(g0— %)] All terms in
(4) and (6) can then be exactly evaluated.

In the thermodynamic limit n — o, and for finite L <n, we
can ignore parity effects and replace sums over k by integrals
over o= w;. We can then directly employ Wick’s theorem in
terms of the elements

1 (™ cos(Lw)
— (TN — Itk e AN
8L= <Ci Cl> - W»f() 1+ e,B(b—v cos m)dw' (18)
This leads to [Eq. (5)]
1
Pi=g-85 a =, Det(A,), (19)

and p;=p;+1-2g,, where A; is constructed with the ele-
ments (18). We then obtain the final expression

C=[|Det(A,)| - 2\(g - gD[(1 - g0)> - g711,.  (20)

Note that for T—0, Eq. (18) yields g;=0 for »>|v| and
gr=sin(Lw)/ (L) (with gy=w/ ) for |b|<|v|, where cos
=b/v|.

When the ground state is nondegenerate, Egs. (19) and
(20) are also exactly valid for finite n in the 7—0 limit,
using the exact contractions

8L= <CJ-C.,'>0 = l E cos(Lay), (21)

k occ.
where (O), denotes the ground-state average and the sum
runs over the occupied levels (see next section).

III. RESULTS
A. Ground-state transitions and concurrence

Let us first describe the behavior in the 7— 0 limit. As
[H,N]=0, the ground state of H can be characterized by the
fermion number N, i.e., the total spin component M=N
—n/2 in the spin representation. Since \; in (7) becomes
negative for b <v cos wy, the ground state will exhibit n tran-
sitions N—N+1 as b decreases from |v| to —|v|, starting
from N=0 (the aligned state M=-n/2) for b>|v| (\,>0 V
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FIG. 1. (Color online) Top panel: Concurrence C; as a function
of site separation L in the 20 different entangled ground states of
Hamiltonian (1) existing for n=40 qubits and »>0. Ground states
are labeled by the effective fermion number N=M+n/2
=1,...,n/2, which can be selected by adjusting the magnetic field
b (N fermions for by, <b<by). For N=1, C; has the same value
for all separations [Eq. (22)]. The inset depicts the entanglement
range L,, vs the magnetic field in the same system, which for b
>y vanishes at 7=0 but remains maximum if 0<7T<T.=T,, (see
next section). Bottom: Same details for an odd antiferromagnetic
chain with n=41 qubits [results for the 7— 0 limit of p(7)]. For
N=1 all pairs are still entangled but C; decays for increasing L [Eq.

(25)].

k) and ending with N=n (M=n/2) for b<-[v| (\ <0 V k).
For v >0, the first transition 0— 1 occurs at

b1=U,

i.e., when the lowest negative-parity level A\y=b—v becomes
negative. It represents, for »>0, the entangled-separable
border at T=0. For b just below b; the ground state is the
one-fermion state c6?|0>=(1/\s'n)2jc;|0>, ie., the W state
(|TLL...i>+|iTl...L>+...)/v‘;, which exhibits a con-

stant concurrence

C,=2In (N=1) (22)

for any separation L (Fig. 1). Hence, the transition at b=b, is
from a fully separable state for b>v (aligned state) to a state
where any pair is equally entangled.

Due to the parity dependence of the energy levels, the
next transition 1 —2 does not take place when the next A\,
becomes negative (b=v cos wy) but rather when the lowest
o=1 level crosses the previous o=-1 level, i.e., when
2N412=N\g, Which leads to b,=v[2 cos(7/n)—1]. In general,
for v >0 the transitions N—1— N occur at by=2v cos w;
—by_y, with k=(N—-1)/2, which leads to the critical fields
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-]

by = , 1=N=n, 23
N=Y cos[7/(2n)] " 23)

i.e., by=v[cos w;—sin wy tan(7/2n)]. Thus, by<by_,, with
b,_ns1=—by and by=v cos w, for large n.

Equation (22) is valid for b, <b<b,. The exact expres-
sion for C; at the other N-fermion ground states is given by
Eq. (20) with the elements (21), which become

B sin(NLr/n)

8L= sin(La/n)’ @4)
with go=N/n=lim;_,og;. For N=1, g;=1/n V L and Eq.
(20) leads to Eq. (22).

For N=2, C; will depend on the separation L, decreasing
almost linearly with L for not too small 7, as seen in Fig. 1.
A series expansion of (20) yields the initial trend C;
~(2N/n)[1-mL+\(N*~1)/3/n]) for NL<n. The extent of
pairwise entanglement decreases then rapidly as N increases
(inset in Fig. 1), the separation between the most distant
entangled qubits being L,,~[(n+1.79)/3.57] for N=2 and,
roughly, L,,=~[(n+4)/(2N)] for 2<N<n/2.

Just first and second neighbors (L=1,2) remain entangled
for || <0.65v V n [and |b|<0.82v (N=n/5) for n— ]
whereas only adjacent pairs (L=1) remain entangled for ||
<0.26v V n#5 [and |b|<0.5v (N=n/3) for n— ] (for n
=5 second neighbors are entangled V 5>0). The concur-
rence of adjacent pairs increases first linearly with N
(C,=2N/n for N<n) and becomes maximum for N=n/2
(n>4), where g,=1/[n sin(w/n)]= 1/ for large n and C,
=2g,(1+g,)—1/2=0.339.

For odd n, results for v <0 must be separately examined.
The lowest negative-parity level is now A.p,=b
—|v|cos(ar/n), so that the first transition occurs at

by =|v|cos(m/n) (v <0, n odd),

with the ground state twofold degenerate after the transition
(k=+[n/2]). The concurrence of the mixture %Ekzi[n,2]|k)<k|
of the two degenerate ground states [k)=(1/\n)S e~ Wicl]0)
[the T— 0 limit of p(7)] is '

C,=2cos(La/n)in (N=1) (25)

which is again nonzero V L (n is odd) although it now de-
cays as L increases (bottom panel in Fig. 1). For L<n, C]
~2/n, in agreement with (22), whereas for most distant qu-
bits (L=[n/2]), C;=2sin[7/(2n)]/n~=m/n?. Hence, for
large L a significant odd-even difference in C; arises if v
<0, even for large qubit number 7, due to the ground-state
degeneracy of the odd system.

The next transition for v <0 and n odd occurs when
N2+ Mo 1 =Nppa)s 18-, at by =|v|[1+cos(27/n)]-b7, and in
general at by=|v|=}3,, | cos w—by_,, which leads to the
smaller critical fields,
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by=bycos(m/n), 1<N<n, (26)
where by are the fields (23). Ground states remain twofold
degenerate VN # 0,n, since there is just one fermion in the
highest occupied level (k=+(n—N)/2).

Equation (25) holds for b; <b<bj. The expression of C}
for general N in the 7— 0 limit can be similarly obtained by
using Eq. (21) for each of the degenerate ground states and
then taking the average. The final result is

Cy. = [[Re[Det(A])]] - 2v(g2 - g)((1 - go)* — 2) 1.
(27)

where A; is constructed with the elements,

gr=gre™™", (28)

with g; given again by Eq. (24). For N=1, Eq. (27) leads to
Eq. (25). The behavior of C;~ for N=2 is similar to that of
C, [Eq. (20)], although it is smaller than C; (due to the
ground-state degeneracy) and its decay with L is less linear
(see bottom panel). For instance, for L=1, Re[Det(A])]
=Det(A,)cos(7/n), whence C;<C,, with C;— C| for large
n.

Let us finally mention that for n— o and #N/n— w, with
L finite, Egs. (24)—(28) both coincide exactly with the limit
of Eq. (18) for T— 0, where by— v cos w.

B. Results for finite temperatures

Ilustrative exact results for n=14-15 and the thermody-
namic limit n— <0 are depicted in Figs. 2 and 3. For T close
to 0, the concurrence exhibits a stepwise behavior in finite
chains, in agreement with the 7=0 transitions previously de-
scribed, presenting dips at the critical fields (23)—(26) due to
the ground-state degeneracy at these points (level crossing).
It is also verified that C; is smaller in odd antiferromagnetic
chains, particularly for large L close to n/2, in agreement
with Egs. (25)—(27).

While at T=0, there is no entanglement in the ground
state for b>b,, a fundamental result for 7>0 is that p(7)
remains entangled for all fields b> b, if T is sufficiently low,
leading to a small but nonzero concurrence C; for any sepa-
ration L if 0<T<T.(b). Moreover, the limit temperature
T,(b) approaches a nonzero limit T; for b—o VL, being
practically constant for b= |v| (and =0 if L=1). This be-
havior applies for any n, including n— o as well as the spe-
cial case v <0 and n odd, as seen in the lower panels of Figs.
2 and 3.

In order to rigorously prove the previous behavior, we
note that for b—|v|>kT (¢ BV <1), we may keep just
zero, one and two fermion states in exp(-BH), i.e.,

Zzeﬁb"’2<1+ S e S

—BNjHNy
keK_ k<k' ek

and similarly for p(T). This leads to a;~eP’I;(Bv) and
pr=~e P I (Bv)-I;*(Bu)] up to lowest order in e,
where
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b/v

FIG. 2. (Color online) Concurrence (top) and limit temperatures
for entanglement 7 (b) (bottom) for pairs i,i+L as a function of the
magnetic field, for n=14 qubits and in the thermodynamic limit n
—o. The concurrence is plotted close to the 7—0 limit
(T=0.005v). All limit temperatures remain constant for b/v—
(see text). Results for even n lie mostly above those for n— o,
particularly for large L (where they saturate) and are independent of
the sign of v.

1
FE(Bu) == >, eP < % cos(Lay). (29)

keK,

Hence, up to first order in ¢# we obtain

Cp, = 2P0, (Bo) = I (Bv) - 2 (Bv)],.  (30)

Thus, as b increases the concurrence decreases exponentially
when it is positive, but the limit temperature T;(b) becomes
constant, as the entanglement condition C; >0 becomes b
independent, i.e.,

1,(Bv) > I2(Bv) - [[X(Bv). (31)

Equation (31) is always satisfied for sufficiently small but
positive 7, for any distance L, ensuring a nonzero concur-
rence and limit temperature 7;(b) for any b>|v|. This is
easy to prove for v >0, where for T— 0%, I,(Bv)=e"’/n
> I5(Bv) =2eP ™ [y Tt also holds for v <O (n odd),
since  in  this  case, for T—0%  I,/(Bv)
=~ Plvleos(@in) cog(Lar/n) /n, whereas the right-hand side of
(31) becomes = \2eBwlcos*(ain) sin(Lar/n)/n<I,~(Bv).

In the thermodynamic limit 7 — o, and for finite L <n, we
may neglect parity effects and just replace
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CL
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FIG. 3. (Color online) Same details as Fig. 2 for n=15 qubits
and v <0. Results now lie mostly below those for n— oo (which are
the same as in Fig. 2) and do not saturate for large L. Results for
n=15 and v >0 are similar to those of Fig. 2.

m

I;(Bv) — if ePr s @ cos(Lw)dw=1,(Bv), (32)

0
where I, (x) is the modified Bessel function of the first kind
{I,(x)=e1+(1-4L%)/8x]/N2mx for x—oe, with I,(-x)
=(=)%I,(x)}. Equation (30) becomes then identical with the

result obtained from Egs. (18)—(20) [g,— e #’I,(Bv) for b
—|v|>T, with Det(A;) —2g,]. Equation (31) then becomes

\21,(Blv]) > 1,(Bv), (33)

which is again always satisfied for sufficiently low TV L. The
limit temperatures T;=T;() are then determined for n
— o by the equation \2I,(Blv|)=Iy(B|v]), which leads to
T,~0.486|v|, T,~0.16[v], and

T, =~ |v|ln2/L? (34)

for large L [as I, (x)/Iy(x) ~ e 1129 for x=L7?]. Thus, T;(b)
decreases as the inverse square of the pair distance L for
large b. The maximum value attained by C, for 5> |v| nev-
ertheless becomes small and decays exponentially with both
b and L2 (C,~e PWEDLIE() L for T=|o|t/L2<T,, with
f(t)=\2t/m{e?~\1-€7"]). Equation (34) also indicates
roughly the value of 7, (b) at the critical region b= |v|, since
it is almost constant for b= |v| (Figs. 2 and 3).

On the other hand, for large L=n/2, the projected expres-
sion (30) is required even for large n. For instance, for even
n and L=n/2, cos(Lw;)=0 ((=1)) for k half-integer (inte-
ger). Hence, in this case I;,(Bv)=0, while for v>0 and
large n,
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FIG. 4. (Color online) Top: Limit temperatures 7; for entangle-
ment between pairs for large magnetic fields »>uv as a function of
separation L, for n=14 and 40 qubits, determined by Eq. (31). Inset:
Ratio between 7; and the value in the thermodynamic limit T7,
determined by Egs. (33) and (34). T, deviates from 77 for L
=n/4, approaching, for L—n/2, Eq. (36) for n even or n odd and
v>0, and Eq. (37) for n odd and v <0. Bottom: The limit tempera-
ture for the most distant qubits (L=[n/2]), showing the odd-even
staggering arising for v <0 (dashed line). The upper (lower) dotted
line depicts the result of Eq. (36) [(37)].

_ _ nz
I?)—((n/)Z)(ﬁv) ~ P 0, y)(e 280 (35)

after replacing cos w,=~1-wi/2 [62(14)522211/2#‘2, 0,(u)
= 1+22f=,(—1)kuk2, denote the elliptic theta functions].
These results also approximately hold for large odd n and
L=[n/2] if v>0. Equation (31) then becomes I, ,(Bv)
>13(Bv), and since O(u)=6,(u) for u=e"", it leads to the
limit temperature,

Tin) = 20/n* (36)

for the most distant pairs and v > 0. It is greater than Eq. (34)
for L=n/2 by a factor of 7/(21n2)=~2.27.

Equation (36) does not hold for v <0 if n is odd. In this
case, we may directly employ the asymptotic expression of
Eq. (31) for T— 0%, which for large n yields

o]

— L (b<0,n0dd). (37)
202 In[2+2n/ 7]

T[n/2] =
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n=40 : ‘: 3 '
I b/v=0.995 —— g

T/v

FIG. 5. (Color online) The thermal behavior of C; for n=40
qubits near the transition at b=v. Limit temperatures remain stable
at the transition, indicating the reentry of C; for T>0VL for b
>vp. The inset is an enlargement of the low T region, showing the
accumulation of the limit temperatures for large L at a value close
to that given by Eq. (36).

Thus, in this case, there is an additional logarithmic factor in
the denominator, which makes 77,,»] lower than Eq. (36) and
also Eq. (34) for L=n/2, originating an odd-even staggering
of T, if v<<0.

The behavior of 7; is depicted in Fig. 4. It is seen that for
L=n/4, it deviates from the 1/L? law given by Eq. (34),
approaching the values given by Eq. (36) or (37) for L
~n/2. Figure 5 depicts the typical thermal behavior of C;
for v >0 near the transition at b=>b;. For b<<b, there is en-
tanglement between all pairs if 7 is lower than a certain

T T T ‘ T T T ‘ T T T

0.3 n=6 —

0.2

0.1

G
T T T ' T T T ' T T T ' T

T2/V

0.1

b/v

FIG. 6. (Color online) Concurrence (top) and limit temperatures
for entanglement (bottom) for separation L=2 and different n, as a
function of the magnetic field. The concurrence is plotted at T’
=0.01v. Dotted lines depict the thermodynamic limit.
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temperature, given approximately by Eq. (36). It also shows
the reentry of C; for 7>0 for b>v, which is quite promi-
nent for low L.

Finally Fig. 6 depicts the typical behavior with the qubit
number n of the concurrence and limit temperature. We have
chosen a separation L=2. Although the thermodynamic limit
is on the average rapidly approached, the stepwise behavior
of C; at low T=0.0lv remains visible even for n=40, and
deviations in the limit temperature can be significant at the
onset. They are as well significant for small n =< 10.

An interesting feature is that the slope of T, (b) can be
negative in this region, a fact already seen in Fig. 2 for n
=14, and visible here for n=8 and n=20. This occurs when
the value of the onset field b, for finite n (which for L=2
corresponds to b, bz, by, and by, for n=6, 8, 20, and 40) lies
above the value for n— o, as occurs for n=8,20. In these
cases, there is a small field interval below b. where entangle-
ment between second neighbors exists only above a thresh-
old temperature T}, (b) >0, up to the higher limit temperature
T,(b).

A final comment is that we have checked all expressions
by comparison with calculations for low n =< 10 based on the
direct diagonalization of H. In particular, for n=2, the en-
tanglement condition (31) becomes exact V b, as in this case
there are just one- and two-fermion excited states, reducing
(L=1) to sinh(Bv)>1 _and leading to the known limit tem-
perature T;=v/In(1+2) [19].

IV. CONCLUSIONS

We have provided an exact analytic treatment of the en-
tanglement between arbitrary pairs in cyclic XX chains in the

PHYSICAL REVIEW A 75, 032350 (2007)

presence of a transverse magnetic field, valid at both zero
and finite temperatures and for any qubit number n. We have
shown that, in spite of its simplicity, this system exhibits
very interesting features such as a discrete set of [n/2] dif-
ferent entangled ground states at 7=0 (and b>0), which can
be easily selected by adjusting the magnetic field across the
critical values (23) or (26), and which develop increasing
entanglement ranges, reaching always full range (all pairs
entangled) in an interval b, <b<b;, even for odd antiferro-
magnetic chains.

Moreover, while at 7=0 the ground state is fully sepa-
rable for b>b;, we have rigorously proved that for 7>0
there is a small but nonzero entanglement between any pair
for all fields b>b, if T is sufficiently low, which decays
exponentially with increasing field and with the square of the
separation L. Limit temperatures 7; are roughly independent
of b for b=v and decay as L2 for L=<n/4, but tend to
saturate at Tp,/») [Eq. (36)] for most distant pairs (L~n/2) if
n is even or v >0. We have also shown that, due to degen-
eracy of the ground state, pairwise entanglement in odd an-
tiferromagnetic chains is weaker, particularly for distant
pairs, where odd-even effects in the concurrence and 7
subsist for all 7.
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