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Hypernuclear weak decay puzzle
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A general shell model formalism for the nonmesonic weak decay of the hypernuclei has been developed. It
involves a partial wave expansion of the emitted nucleon waves, preserves naturally the antisymmetrization
between the escaping particles and the residual core, and contains as a particular case the weak L-core
coupling formalism. The extreme particle-hole model and the quasiparticle Tamm-Dancoff approximation are
explicitly worked out. It is shown that the nuclear structure manifests itself basically through the Pauli prin-
ciple, and a very simple expression is derived for the neutron- and proton-induced decays rates Gn and Gp ,
which does not involve the spectroscopic factors. We use the standard strangeness-changing weak LN→NN
transition potential which comprises the exchange of the complete pseudoscalar and vector meson octets
(p ,h ,K ,r ,v ,K*), taking into account some important parity-violating transition operators that are systemati-
cally omitted in the literature. The interplay between different mesons in the decay of L

12C is carefully ana-
lyzed. With the commonly used parametrization in the one-meson-exchange model ~OMEM!, the calculated
rate GNM5Gn1Gp is of the order of the free L decay rate G0(GNM

th >G0) and is consistent with experiments.
Yet the measurements of Gn/p5Gn /Gp and of Gp are not well accounted for by the theory (Gn/p

th &0.42,Gp
th

*0.60G0). It is suggested that, unless additional degrees of freedom are incorporated, the OMEM parameters
should be radically modified.
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I. INTRODUCTION

The free L hyperon weak decay ~with transition rate G0

52.5031026 eV) is radically modified in the nuclear envi-
ronment. First, as a result of the Pauli principle, the mesonic
decay rate GM[G(L→Np) is strongly blocked for A>4.
Second, new nonmesonic ~NM! decay channels LN→NN
become open, where there are no pions in the final state. The
corresponding transition rates can be stimulated either by
protons, Gp[G(Lp→np), or by neutrons, Gn[G(Ln
→nn). The ultimate result is that in the mass region above
A512 the total hypernuclear weak decay rates GM1GNM
(GNM5Gn1Gp) are almost constant and close to G0 @1#.

Because of the practical impossibility of having stable L
beams, the NM decays in hypernuclei offer the best oppor-
tunity to examine the DS521 nonleptonic weak interaction
between hadrons. Yet the major motivation for studying
these processes stems from the inability of the present theo-
ries to account for the measurements, in spite of the huge
theoretical effort that has been invested in this issue over
several decades @2–26#. More precisely, the theoretical mod-
els reproduce fairly well the experimental values of the total
width GNM (GNM

exp >G0), but the ratio Gn/p[Gn /Gp (0.5
<Gn/p

exp<2) remains a puzzle.
In the one-meson-exchange model ~OMEM!, which is

very often used to describe the hypernuclear LN→NN de-
cay, it is assumed that the process is triggered via the ex-
change of a virtual meson. The obvious candidate is the one-
pion-exchange ~OPE! mechanism, and following the
0556-2813/2002/66~5!/055209~16!/$20.00 66 0552
pioneering investigations of Adams @3#,1 several calculations
have been done in L

12C , yielding GNM
(OPE)>G0 and Gn/p

(OPE)

>0.1– 0.2 @10,12,13,21,24#.
The importance of the r meson in the weak decay mecha-

nism was first discussed by McKellar and Gibson @4#. They
found that, because of the sensitivity of the results to the
unknown LNr vertex, the estimates for GNM could vary by a
factor of 2 or 3 when the potential Vr was included. ~See
also Ref. @5#.! The present-day consensus is, however, that
the effect of the r meson on both GNM and Gn/p is small
@10,12,13,15#.

Until recently, there have been quite dissimilar opinions
regarding the full OMEM, which encompasses all pseudo-
scalar mesons (p ,h ,K) and all vector mesons (r ,v ,K*). In
fact, while Dubach et al. @12# claimed that the inclusion of
additional exchanges in the p1r model plays a major role
in increasing the n/p ratio, Parreño, Ramos, and Bennhold
@13# and Sasaki, Inoue, and Oka @21# argued that the overall
effect of the heavier mesons on this observable was very
small. However, the two latter groups have recently cor-
rected their calculations for a mistake in including the K and
K* mesons, and so their estimates of Gn/p have been aug-
mented quite substantially @22,24#. Almost simultaneously,
Oset, Jido, and Palomar @25# have also shown that the K
meson contribution was essential to increase Gn/p . However,
the experimental data have not been fully explained yet.

1McKellar and Gibson @4# have pointed out that this publication
contains a very important error and that the decay rates given by
Adams @3# should be multiplied by 6.81.
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In the last few years, many other attempts have not been
particularly successful either in accounting for the measured
Gn/p ratio. To mention just a few of them: ~1! analysis of
the two-nucleon stimulated process LNN→NNN @7,9,14#,
~2! inclusion of interaction terms that violate the isospin
DT51/2 rule @16,20#, ~3! description of the short-range
baryon-baryon interaction in terms of quark degrees of free-
dom @17,21#, and ~4! introduction of correlated two-pion ex-
change potentials besides the OPE @18#. Consistent ~though
not sufficient! increases of the n/p ratio were found in the
last two works. ~For instance, Gn/p was boosted up to 0.36
for the decay of L

12C @18#.! In fact, only Jun @26# was able so
far to reproduce well the GNM , Gp , and Gn/p data. He has
employed, in addition to the OPE, an entirely phenomeno-
logical four-baryon point interaction for short-range interac-
tions, including the DT53/2 contribution as well, and has
conveniently fixed the different model coupling constants.
Let us also note that after the present work had been com-
pleted, Itonaga et al. @27# have updated their studies and
have performed extensive calculations of the NM decays in
the mass region 4<A<209, which have revealed that the
correlated-2p and -1v exchange potentials significantly im-
prove the Gn/p ratios over the OPE results.

In the OMEM, a weak baryon-baryon-meson ~BBM! cou-
pling is always combined with a strong BBM coupling. The
strong one is determined experimentally with some help
from the SU~3! symmetry, and the involving uncertainties
have been copiously discussed in the literature @28–31#. It is
the weak BBM couplings which could become the largest
source of errors. In fact, only the weak NLp amplitude can
be taken from the experiment, at the expense of neglecting
the off-mass-shell corrections. All other weak BBM cou-
plings are derived theoretically by using SU~3! and SU(6)w
symmetries, octet dominance, current algebra, partial conser-
vation of axial vector current ~PCAC!, pole dominance, etc.
@6,12,13,32–37#. Assortments of such methods have been de-
veloped and employed for a long time in weak interaction
physics to explain the hyperon nonleptonic decays. Specifi-
cally, to obtain the weak BBM couplings for vector mesons
the SU(6)w symmetry is used, which is not so well estab-
lished as the SU~3! symmetry is. Moreover, the results de-
rived by way of the SU(6)w symmetry depend on the con-
tributions of factorizable terms aV and aT , which were only
very roughly estimated @12,32,34#. Well aware of all these
limitations, McKellar and Gibson @4# have allowed for an
arbitrary phase between the r and p amplitudes in the p
1r model. The same criterion was adopted by Takeuchi,
Takaki, and Bandō @5#.

We wish to restate that the OMEM transition potential is
purely phenomenological and that it is not derived from a
fundamental underlying form, as happens, for instance, in the
case of electromagnetic transitions or semileptonic weak de-
cays. Only the OPE model is a natural and simple extrapo-
lation of the mesonic decay mechanism of the L to the NM
process: the weak BBM coupling is identical to that used in
the phenomenological description of the free L, and the
strong vertex is the one traditionally used in describing the
pNN vertex. The assumption is that this is a valid approxi-
mation, although the pion is off the mass shell. Accordingly,
05520
all modern interpretations of the NM weak decay use the
OPE as the basic building block for the medium- and long-
range part of the decay interaction. On the contrary, the full
OMEM is not used very often and, in place of the one-meson
h, K, ... exchanges, other mechanisms are employed as re-
ferred to above. One should also keep in mind that both the
strong and weak BBM couplings, as well the meson masses,
can become significantly renormalized by the nuclear envi-
ronment @38#.

The high momentum transfer in the NM decay makes the
corresponding transition amplitude very sensitive to the
short-range behavior of the NN and NL interactions. In fact,
quite recently it has been pointed out that the final state
interactions ~FSIs! have a very large influence on the total
and partial decay rates @24# ~see also Ref. @27#!.2 As a result
of the same reason, one could expect that the nuclear struc-
ture effects not included in the main field @such as the ran-
dom phase approximation ~RPA! or pairing correlations,
higher-order seniority excitations in the initial and final
states, etc.# should not play an important role. Yet it could be
useful to understand this issue more genuinely and to get a
more complete control on the nuclear structure aspect of the
problem. These are the main motivations for the present
work.

The only existing shell model framework for the hyper-
nuclear decay is the one based on the weak coupling model
~WCM! between the hyperon and the (A21) core
@8,13,18,27#. It involves the technique of coefficients of frac-
tional parentage, and the spectroscopic factors ~SFs! explic-
itly appear in the expressions for the transition rates. Yet in
nuclear structure calculations it is in general simpler to
evaluate the transition probabilities directly from the wave
functions, instead of doing it via the SFs. Here we first de-
velop a fully general shell model formalism and then we
work out thoroughly the extreme particle-hole model
~EPHM! and quasiparticle Tamm-Dancoff approximation
~QTDA! for the even-mass hypernuclei.

Owing to the above-mentioned characteristics of the
OMEM, it might be legitimate to ask whether it is possible to
account for all three data GNM , Gp , and Gn/p by not fully
complying with the constraints imposed by the SU~3!,
SU(6)w , and chiral symmetries on the BBM couplings. To
find out in which way these parameters should be varied we
perform a multipole expansion of the transition rate in the
framework of the EPHM, which unravels in an analytic way
the interplay between different mesons in each multipole
channel.

Attention will be given also to the parity-violating poten-
tial, since there are several typographical errors in the recent
papers @13,19,24#, regarding this part of the transition poten-
tial. We will also consider some important contributions due

2The FSIs also make hard the extraction of the n/p ratio from the
experimental data @39–43#, and to surmount this difficulty Hash-
imoto et al. @43# have quite recently combined the Monte Carlo FSI
internuclear cascade models from Ref. @14# with the geometry of
the detectors. Moreover, Golak et al. @47# have shown that the FSIs,
in principle, hinder the measurement of the n/p ratio in L

3 H .
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to the vector mesons, which, although always included in the
description of the nuclear parity violation @32,44–46#, have
been so far neglected in all studies of the NM hypernuclear
decays, except those of Dubach et al. @12,34#.

The outline of this paper is as follows: The general shell
model formalism for the hypernuclear LN→NN weak decay
is developed in Sec. II. The nonrelativistic approximation for
the effective Hamiltonian is presented in Sec. III. The EPHM
and QTDA are explained in Sec. IV, where the multipole
expansion of GNM is also done. Numerical evaluations of the
L
12C→10C1nn and L

12C→10B1pn decay rates are carried
out in Sec. V, and the conclusions are presented in Sec. VI.
The formulas for the nuclear matrix elements are summa-
rized in the Appendix.

II. TRANSITION RATE

The decay rate, of a hypernucleus ~with spin JI and en-
ergy EI) to residual nuclei ~with spins JF and energies EF)
and two free nucleons ~with total spin S and energies ep and
eP), follows from Fermi’s golden rule:

G52p (
SMSJFMF

E u^pPSM S ;JFM FuVuJIM I&u2

3d~ep1eP1EF2EI!
dp

~2p!3
dP

~2p!3 . ~2.1!

Here V is the weak hypernuclear potential, the wave func-
tions for the kets upPSM S ;JFM F& and uJIM I& are assumed
to be antisymmetrized and normalized, and a transformation
to the relative and center-of-mass ~c.m.! momenta p and P is
already implied, i.e.,

p5
1
2 ~p12p2!, P5p11p2 . ~2.2!

It is convenient to define the quantity

I~p ,P !5~4p!24 (
SMSJFMF

E dVpdVP

3u^pPSM S ;JFM FuVuJIM I&u2, ~2.3!

and rewrite Eq. ~2.1! as

G5
16M N

3

p E
0

DF
deAe~DF2e!I~p ,P !, ~2.4!

where P52AM Ne , p5AM N(D2e), DF5EI2EF22M N ,
and M N is the nucleon mass.

The partial wave expansion of the wave function of the
nonantisymmetrized two-particle ket uPpSM S) is then per-
formed:
05520
~rRs1s2uPpSM S!5~4p!2 (
lmLM

il1LY lm* ~ p̂ !Y LM*

3~ P̂~rRs1s2uplm ,PLM ,SM S!,

~2.5!

where

~rRs1s2uplm ,PLM ,SM S!

5Y lm~ r̂ !Y LM~ R̂ ! j l~pr ! jL~PR !xSMS
~s1s2! ~2.6!

describes the spherical free waves for the outgoing particles,

r5r12r2 , R5
1
2 ~r11r2! ~2.7!

are the relative and c.m. coordinates, and l and L are the
quantum numbers for the relative ~l! and c.m. ~L! orbital
angular momenta. After performing the angular integration
in Eq. ~2.3! we obtain

I~p ,P !

5 (
SMSJFMF

(
lmLM

u^plm ,PLM ,SM S ;JFM FuVuJIM I&u2,

~2.8!

which goes into

I~p ,P !5 (
SlLlJJF

u^pPlLlSJ ,JF ;JIM IuVuJIM I&u2

~2.9!

when the angular momentum couplings l1L5l, l1S5J
are carried out. The quantum number M I is superfluous and
will be omitted from now on.

The transition potential is written in the Fock space as

V5 (
lLlSJ jN jL

^pPlLlSJuVu jL jNJ&

3~apl~1/2!
† aPL~1/2!

† !lSJ~a j̄N
a j̄L

!J , ~2.10!

where, in the same way as in Eq. ~2.1!, a transformation to
the relative and c.m. momenta is implied. Here jL and jN are
the single-particle shell model states of the decaying par-
ticles, and a jm5(2) j1ma j2m @49#. One gets

I~p ,P !5 Ĵ I
22 (

SlLlJJF
a
U(

jN jL

^pPlLlSJuVu jL jNJ&

3^JIi~a jN
† a jL

† !JiJF
a&U2

, ~2.11!

where the transition amplitudes ^JIi(a jN
† a jL

† )JiJF& are re-
duced with respect to the angular momenta, the label a
stands for different final states with the same spin JF , and
Ĵ[A2J11.
9-3
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The effective weak hypernuclear interaction is isospin de-
pendent, i.e.,

V~r,sLsN ,tLtN!5 (
t50,1

VT~r,sLsN!Tt , Tt5 H 1,
tL•tN ,

~2.12!

and therefore the nuclear matrix elements have to be evalu-
ated in the isospin formalism. This implies Eq. ~2.11! goes
into

ImtN
~p ,P !5 Ĵ I

22 (
SllLTJJF

a
U(

jN jL

M~pPlLlSJT; jL jN ,mtN
!

3^JIi~a jNmtN

† a jL

† !JiJF
a&U2

, ~2.13!

where

M~pPlLlSJT; jL jN ,mtN
!

5
1

&
@12~2 ! l1S1T#(

t
~pPlLlSJuVtu jL jNJ !

3~TM T5mtL1mtN
uTtumtLmtN

! ~2.14!

is the antisymmetrized nuclear matrix element, and mtp
5 1

2

and mtL[mtn
52 1

2 . It is assumed, as usual @13#, that L be-
haves as a u 1

2, 2 1
2& isospin state. In that way, the phenomeno-

logical DT5 1
2 rule is incorporated into the effective interac-

tion. Note that in Eqs. ~2.13! and ~2.14!, mtN
5M T2mtL.

To evaluate (pPlLlSJuVtu jL jNJ) one has to carry out the
j j-LS recoupling and the Moshinsky transformation @50# on
the ket u jL jNJ) to get

~pPlLlSJuVtu jL jNJ !

5 ĵL ĵN (
l8S8nlNL

l̂8Ŝ85
lL

1
2

jL

lN
1
2

jN

l8 S8 J
6

3~nlNLl8unLlLnNlNl8!

3~pPlLlSJuVtunlNLl8S8J !

~2.15!

where ~¯u¯! are the Moshinsky brackets @50#. Here l and L
stand for the quantum numbers of the relative and c.m. or-
bital angular momenta in the LN system. The explicit ex-
pressions for the transition potentials are given in the next
section, and the formulas that are needed to evaluate the
matrix elements (pPlLlSJuVtunlNLl8S8J) and
(TM TuTtumtLmtN

) are summarized in the Appendix.
When the hyperon is assumed to be weakly coupled to the

A21 core, which implies that the interaction of L with core
05520
nucleons is disregarded, one has that uJI&[u(JC jL)JI&,
where JC is the spin of the core. From

^JIi~a jNmtN

† a jL

† !JiJF&

5~2 !JF1J1JIĴ Ĵ IH JC JI jL

J jN JF
J ^JCia jNmtN

† iJF&, ~2.16!

we obtain

ImtN
~p ,P !5 (

SlLlJTJF
a

Ĵ2U(
jN

M~pPlLlSJT; jL jN ,mtN
!

3H JC JI jL

J jN JF
J ^JCia jNmtN

† iJF
a&U2

. ~2.17!

Occasionally it could be convenient to include the isospin
coupling as well into ^JCia jNmtN

† iJF& and work with the spin-

isospin reduced parentage coefficients

^JCTCiua jN~1/2!
† uiJFTF&5T̂C

^JCTCM TC
ia jNmtN

† iJFTFM TF
&

~TFM TF
1
2 mtN

uTCM TC
!

,

~2.18!

where TC , M TC
and TF , M TF

are the isospin quantum num-
bers of the core and residual nuclei, respectively. In this case

ImtN
~p ,P !5T̂C

22 (
JF

aTFSlLlJT
Ĵ2S TFM TF

1
2 mtNUTCM TCD 2

3U(
jN

M~pPlLlSJ; jL jN ,mtN
!

3H JC JI jL

J jN JF
J ^JCTCiua jN~1/2!

† uiJF
aTF&U2

.

~2.19!

Thus, knowing the transition potential V and the initial
and final nuclear wave functions uJI& and uJF& ~or uJC& and
uJF&), we can evaluate the transition rate ~2.4!, with the in-
tegrations going up to

D jNmtN
5M L2M N1e jL

1e jNmtN
, ~2.20!

where e jL
and e jNmtN

are the single-particle energies.

III. EFFECTIVE INTERACTION

As the reduction of the relativistic one-meson-exchange t
matrix, to the nonrelativistic effective potential V , is in the
literature @4,6,10–13,24,34,37#, it will not be repeated here.
For the parity-conserving ~PC! potential we will just list a
9-4
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few results that are indispensable for establishing the nota-
tion and for the final discussion. More attention will be given
to the parity-violating ~PV! potentials. In dealing with them
some tricky details appear concerning the passage from mo-
mentum space to coordinate space. We first illustrate the pro-
cedure for one pseudoscalar meson ~p! and one vector me-
son ~r!, and afterwards we generalize the results to all six
mesons.

The effective strong ~S! and weak ~W! Hamiltonians read

HNNp
S 5igNNpc̄Ng5p•tcN ,

HNNr
S 5c̄NS gNNr

V gm1igNNr
T snm]n

2M Drm•tcN ,

HLNp
W 5iGFmp

2 c̄N~Ap1Bpg5!p•tcLS 0
1 D ,
05520
HLNr
W 5GFmp

2 c̄NS Argmg51Br
Vgm1iBr

T snm]n

2M̄
D

3rm•tcLS 0
1 D , ~3.1!

where GFmp
2 is the weak coupling constant, cN and cL are

the baryon fields, p and r are the meson fields, t is the
isospin operator, M the nucleon mass, and M̄ the average
between the nucleon and L masses. The isospin spurion (1

0)
is included in order to enforce the empirical DT5 1

2 rule
@13#.

The corresponding nonrelativistic t matrix in momentum
space ~with the hyperon L being always in the first vertex! is
tp~q!52tL•tN
Ap~sN•q!1Bp~sL•q!~sN•q!

mp
2 1q2 ,

tr~q,Q!52tL•tN

3
iAr~sL3sN!•q22Ar8sL•Q1Br~sL3q!~sN3q!2Br8

mr
21q2 , ~3.2!
where the coupling constants AM , AM8 , BM , and BM8 are
defined in Table I and

q5p82p, Q5
1
2 ~p81p!, ~3.3!

with p8 and p being, respectively, the relative momenta for
the initial and final states. @We have adopted this labeling to
be consistent with Eq. ~2.2!.# In momentum space the po-
tential reads

^p1p2uVup18p28&52~2p!3d~p181p282p12p2!t~q,Q!,
~3.4!

and in order to arrive at coordinate space the Fourier trans-
form is applied:

^r1r2uVur18r28&

5E dp18

~2p!3
dp28

~2p!3
dp1

~2p!3
dp2

~2p!3 ^p1p2uVup18p28&

3exp$i@p18•r181p28•r282p1•r12p2•r2#%. ~3.5!

After some trivial integrations and the coordinate transfor-
mation

x5r2r8, X5
1
2 ~r81r!, ~3.6!
we get

^r1r2uVur18r28&52d~R82R!E dQ
~2p!3

dq
~2p!3

3exp@ i~Q•x1q•X!#t~q,Q!. ~3.7!

To carry out the integration on q and Q we make use of the
result

E dQ
~2p!3

dq
~2p!3 q

ei~Q•x1q•X!

mM
2 1q2 52id~r82r!fM

~2 !~r !,

E dQ
~2p!3

dq
~2p!3 Q

ei~Q•x1q•X!

mM
2 1q2 5

i
2 d~r82r!fM

~1 !~r !,

E dQ
~2p!3

dq
~2p!3 ~s1•q!~s2•q!

ei~Q•x1q•X!

mM
2 1q2

52d~r82r!@ f M
S ~r !~s1•s2!1 f M

T ~r!S12~ r̂ !# ,

E dQ
~2p!3

dq
~2p!3 ~s13q!~s23q!

ei~Q•x1q•X!

mM
2 1q2 f

52d~r82r!@2 f M
S ~r !~s1•s2!2 f M

T ~r !S12~ r̂ !# ,

~3.8!

where
9-5
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TABLE I. Isoscalar (t50) and isovector (t51) coupling constants in units of GFmp
2 52.2131027.

M AM AM8 BM BM8

t50

h Ah

gNNh

2M
Bh

2M

gNNh

2M̄

K AK0

gLNK

2M

BK0

2M

gLNK

2M̄

v Av

gNNv
V 1gNNv

T

2M 2Av

gNNv
V

2M
Bv

V1Bv
T

2M̄

gNNv
V 1gNNv

T

2M
Bv

VgNNv
V

K* AK0*
gLNK*

V
1gLNK*

T

2M 2AK0*
gLNK*

V

2M

BK0*
V

1BK0*
T

2M

gLNK*
V

1gLNK*
T

2M̄
BK0*

V gLNK*
V

t51

p Ap

gNNp

2M
Bp

2M

gNNp

2M̄

K 2AK1

gLNK

2M

BK1

2M

gLNK

2M̄

r Ar

gNNr
V 1gNNr

T

2M 2Ar

gNNr
V

2M
Br

V1Br
T

2M̄

gNNr
V 1gNNr

T

2M
Br

VgNNr
V

K* AK1*
gLNK*

V
1gLNK*

T

2M 2AK1*
gLNK*

V

2M

BK1*
V

1BK1*
T

2M

gLNK*
V

1gLNK*
T

2M̄
BK1*

V gLNK*
V

S12~ r̂ !53~s1• r̂ !~s2• r̂ !2~s1•s2!

5A24p

5 Y 2~ r̂ !•@s13s2#2 , ~3.9!

is the tensor operator and the radial dependence is contained
in

f M
~2 !~r !5@“ , f M~r !#5“ f M~r ![ r̂

]

]r f M~r !5 r̂ f M8 ~r !,

f M
~1 !~r !5$“ , f M~r !%5“ f M~r !12 f M~r !“ ,

f M
S ~r !5

1
3 @mM

2 f M~r !2d~r!# ,

f M
T ~r !5

mM
2

3 F11
3

mMr 1
3

~mMr !2G f M~r !, ~3.10!

with “[“125“152“2 , and

f M~r !5
e2mMr

4pr , r5ur12r2u,

f M8 ~r !52mMS 11
1

mMr D f M~r !. ~3.11!
05520
Thus Eq. ~3.7! reads

^r1r2uVur18r28&5d~r82r!d~R82R!V~r!, ~3.12!

where the transition potential for the p1r model is

Vp1r~r!

5tL•tN$~sL•sN!@Bp f p
S ~r !12Br f r

S~r !#1SLN~ r̂ !

3@Bp f p
T ~r !2Br f r

T~r !#1Br8 f r~r !2iApsN•f p
~2 !~r !

2iAr8sL•f r
~1 !~r !1Ar~sL3sN!•f r

~2 !~r !%. ~3.13!

The complete potential can now be cast in the form
~2.12!, with the isoscalar ~h, v! and isovector ~p, r! mesons
giving rise to V0 and V1 , respectively, while the strange me-
sons (K ,K*) contribute to both. We get

V 0
PV~r,s1s2!52isN•@Ahf h

~2 !~r !2AK0*
8 f K*

~1 !
~r !#

1isL•@AK0
f K

~2 !~r !2Av8 f v
~1 !~r !#

1~sL3sN!•@Avf v
~2 !~r !1AK08

f K*
~2 !

~r !# ,
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V 1
PV~r,s1s2!52isN•@Apf p

~2 !~r !2AK1*
8 f K*

~1 !
~r !#

1isL•@AK1
f K

~2 !~r !2Ar8f r
~1 !~r !#

1~sL3sN!•@Arf r
~2 !~r !1AK1*f K*

~2 !
~r !# ,

~3.14!

for the PV potential, and

V 0
PC~r,s1s2!5~sL•sN!@Bh f h

S ~r !1BK0
f K

S ~r !12Bv f v
S ~r !

12BK0* f K*
S

~r !#1SLN~ r̂ !@Bh f h
T~r !

1BK0
f K

T ~r !2Bv f v
T ~r !2BK0* f K*

T
~r !#

1Bv8 f v~r !1BK0*
8 f K*~r !,

V 1
PC~r,s1s2!5~sL•sN!@Bp f p

S ~r !1BK1
f K

S ~r !12Br f r
S~r !

12BK1* f K*
S

~r !#1SLN~ r̂ !@Bp f p
T ~r !

1BK1
f K

T ~r !2Br f r
T~r !2BK1* f K*

T
~r !#

1Br8 f r~r !1BK18
8 f K*~r !, ~3.15!

for the PC potential. The overall coupling constants AM ,
AM8 , BM , and BM8 are listed in Table I, with the weak cou-
plings for kaons defined as

AK0
5

CK
PV

2 1DK
PV , AK1

5
CK

PV

2 ,

BK0
5

CK
PC

2 1DK
PC , BK1

5
CK

PC

2 ,

AK0*5
CK*

PV

2 1DK*
PV , AK1*5

CK*
PV

2 ,

BK0*
V

5
CK*

PC,V

2 1DK*
PC,V , BK1*

V
5

CK*
PC,V

2 ,

BK0*
T

5
CK*

PC,T

2 1DK*
PC,T , BK1*

T
5

CK*
PC,T

2 . ~3.16!

The C’s and D’s are given in Ref. @13#. The operators that
have been habitually omitted in V PV (r,s1s2) are those that
are proportional to AM8 .
05520
IV. NUCLEAR MODELS AND MULTIPOLE EXPANSION

A. Extreme particle-hole model

The simplest nuclear shell model is the EPHM, in which
the hypernucleus L

A Z is described as a L hyperon in the
single-particle state u jL& and a hole state u ja

21& relative to the
AZ core, while the residual A22Z and A22(Z21) nuclei are
represented by the two-hole states u ja

21 jb
21& with respect to

the same core. As illustrated in Fig. 1, uJI&→u jL ja
21;JI&,

uJF&→u ja
21 jb

21;JF&, and uJC&→u ja
21&. The parentage coeffi-

cients Eq. ~2.17! read

^JCia jbmtb

† iJF&5~2 !JF1 ja1 jbA11dabĴF . ~4.1!

In particular, for L
12C the initial state is

~a jL
† ā ja

!JI
u0&[u jL ja

21;JI&5u1s1/2L ,1p3/2n21;1&,
~4.2!

and the final states are

FIG. 1. Diagramatic representation of the hypernuclear NM
weak decay, from the one-particle–one-hole ~1p1h! state u jL ja

21;JI&
to the 2h state u ja

21 jb
21JF&, while two nucleons with momenta p1

and p2 are emitted into the continuum. S and W are the strong and
weak vertices, respectively, and M is a nonstrange meson.
~ ā ja
ā jb

!JF
u0&[u ja

21 jb
21;JF&

5 H u~1p3/2n21!2;0,2& ,u1p3/2n211s1/2n21;1,2&,
u~1p3/2n211p3/2p21!;0,1,2,3&,u1p3/2n211s1/2p21;1,2&

~4.3!
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for Ln→nn and Lp→np , respectively. Here u0& is the 12C
particle vacuum. As there is only one hole state for each
parity, the parentage coefficients with different jb5 jN do not
interfere among themselves. After summing up the final
states the integrand ~2.17! can be cast in the form

Imtb
~p ,P !

5(
jbJ

Fmtb
J

jb ~p3/2! (
SllLT

M2~pPlLlSJT; jL jb ,mtb
!,

~4.4!

where

Fmtb
J

jb 5 Ĵ2 (
JF5u ja2 jbu

ja1 jb

@11~2 !JFd ja jb
dmtb

mta
#

3 ĴF
2 H ja jb JF

J JI jL
J 2

~4.5!

are geometrical factors which come from the Pauli principle.
Their explicit values for the 1s1/2 , 1p3/2 , and 1p1/2 are listed
in Table II.

B. Beyond the extreme particle-hole model

The EPHM can be straightforwardly improved by going
to the quasiparticle representation. In fact, for all even-mass
hypernuclei the initial and final states can be expressed as

uJI&5 (
jL ja

C jL ja
~a jL

† b ja
† !JI

uBCS&,

uJF
a&5(

ja jb
C ja jbJF

a ~b ja
† b jb

† !JF
uBCS&, ~4.6!

where b j
†5u ja j

†2v ja j̄ is the quasiparticle creation operator
@48# and uBCS& is the proton-neutron BCS vacuum. Note
that ja is always a neutron state, while jb can be both a
neutron and proton orbital. Note that because of the lack of

TABLE II. Geometrical factors ĵ b
2Fmtb

j
jb ( ja).

ja jb J Neutrons Protons

1p3/2 1s1/2 0 1 1
1 3 3

1p1/2 1s1/2 0 1 1
1 3 3

1p3/2 1p3/2 1 7 6
2 5 10

1p1/2 1p3/2 1 6 6
2 10 10

1p3/2 1p1/2 0 1 1
1 3 3

1p1/2 1p1/2 0 0 1
1 2 3
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hyperon-hole states, the backward-going RPA contributions
do not appear and one has to work within the QTDA. From
Eq. ~2.13! we get

Imtb
~p ,P !5 (

lLlSJJF
aT

Ĵ2ĴF
2 U (

jL ja jb
~2 ! ja1 jbA11dab

3C ja jbJF
a C ja jL

v jb
M~pPlLlSJT; jL jb ,mtb

!

3H ja JI jL

J jb JF
J U2

. ~4.7!

The residual interaction in the final nuclei redistributes the
transition rates among the states with the same spin and par-
ity. But as the NM decay is an inclusive process—i.e., the
partial transition rates are summed up coherently over all
final states—such a rearrangement plays only a very minor
role on the total rates. ~The same happens, for instance, in the
neutrino-nucleus reactions and in m-meson capture @51#.!
Therefore, it is justifiable to approximate the final wave
functions by their unperturbed forms, i.e., uJF

a&
[(b ja

† b jb
† )JF

uBCS& and C ja jbJF
a [da , ja jb

. If, in addition, one
assumes that the hyperon is always in the lowest 1s1/2 state,
the last equation takes the form of Eq. ~4.4!, i.e.,

Imtb
~p ,P !5 (

ja jbJ
Fmtb

jb ~ ja!C ja jL

2 v jb
2

3 (
SllLT

M2~pPlLlSJT; jL jb ,mtb
!. ~4.8!

Only the orbitals 1s1/2 , 1p3/2 , and 1p1/2 will be used. In this
case, as seen from Table II, FpJ

jb (p1/2)5FpJ
jb (p3/2), which im-

plies that in the case of protons the summation on ja can be
performed analytically. Thus, as S ja

C ja jL

2 51, one finds out
that Gp does not depend at all on the initial wave function.
From the same table one also finds out that FnJ

jb ( ja)
5FpJ

jb ( ja), except when jb5 ja . So one can expect as well
only a weak dependence of Gn on uJI& . This fact is verified
numerically later on.

In summary, we end up with a very simple result for the
transition rates:

Gmtb
5(

jbJ
v jb

2 Fmtb
J

jb ~ ja!Rmtb
J

jb , ~4.9!

where

Rmtb
J

jb 5
16M N

3

p E
0

D jbdeAe~D jb
2e!

3 (
SlLlT

M2~pPlLlSJT; jL jb ,mtb
!. ~4.10!

Clearly, the EPHM is contained in Eq. ~4.9! with the occu-
pation numbers v jb

equal to 1 for the occupied states and to
0 for the empty states.
9-8
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C. Multipole expansion

The EPHM is particularly suitable for performing the
multipole expansion of the integrands Imtb

. Thus we carry
out both the Racah algebra in Eq. ~2.15! and the summations
indicated in Eq. ~4.4!, keeping in mind that the allowed
quantum numbers $lL% are $00% for the s1/2 state and $01% and
$10% for the p3/2 state. To simplify the results we take advan-
tage of the relations

~P0u10!5S p

2 D 1/4

b3/2e2~Pb !2/4,

~P1u11!5
1

)
S p

2 D 1/4

b5/2Pe2~Pb !2/4, ~4.11!

for the radial integrals (PLuNL) defined in Eq. ~A2! and
introduce the ratio

R5
~bP !2

3 [F ~P1u11!

~P0u10!G
2

, ~4.12!

which allows us to work only with the L50 overlap
(P0u10). Thus, from now on, the label L will be disregarded,
and to identify the s1/2 and p3/2 pieces of the l50 strength we
will use the ratio R, which appears only in the last term of
Eq. ~4.4!. The results of the multipole expansion for both PC
and PV potentials are displayed below.

1. Parity-conserving contributions

The matrix elements of the PC operators f M(r), f M
S (r)

3(sL•sN), and f M
T (r)SLN( r̂), given by Eq. ~A1!, can be

expressed by means of the radial matrix elements ~A2! and
~A3! or, more precisely, through the moments

CM
l ~p ,P !5BM8 ~p lu f Mu1 l!~P0u10!,
05520
SM
l ~p ,P !5BM~p lu f M

S u1 l!~P0u10!H 1 for p ,h ,K ,
2 for r ,v ,K*,

TM
l l ~p ,P !5BM~plu f M

T u1 l!~P0u10!3H 1 for p ,h ,K ,
21 for r ,v ,K*.

~4.13!

Introducing the notation
t50 t51
C05Cv1CK0

, C15Cr1CK1*,
S05Sh1Sv1SK0

1SK0*, S15Sp1Sr1SK1
1SK1*,

T05Th1Tv1TK0
1TK0*, T15Tp1Tr1TK1

1TK1*, ~4.14!

for the isoscalar (t50) and the isovector (t51) matrix el-
ements, one gets

Ip52~11R !@3~S0
0!219~S1

0!21~C0
0!217~C1

0!216~3T1
20

2T0
20!224C0

0C1
0112C1

0S1
026C0

0S1
026C1

0S0
0#16~S0

1!2

142~S1
1!2224S0

1S1
112~C0

1!216~C1
1!2224C1

1S1
1

112C1
1S0

1112C0
1S1

11
6
5 ~T0

111T1
11!21

54
5 ~T0

311T1
31!2,

~4.15!

for the decay Lp→np , and

In5S 11
7R
3 D ~3S0

013S1
02C0

02C1
0!21

11
6 ~S0

11C0
11S1

1

1C1
1!21

38
15 ~T0

111T1
11!21

54
5 ~T0

311T1
31!2, ~4.16!

for the decay Ln→nn .
2. Parity-violating contributions

The PV matrix elements ~A5! are reduced to the nuclear moments

PM
l l ~p ,P !5AM~plu f M

~2 !u1 l!~P0u10!,

QM
l l ~p ,P !5AM8 ~plu f M

~1 !u1 l!~P0u10!, ~4.17!

where the radial integrals (plu f M
(6)u1 l) are defined in Eq. ~A8!. Using the notation

P̃h5Ph2QK0*, P̃K0
5PK0

2Qv , P̃K0*5PK0*1Pv ,

P̃p5Pp2QK1*, P̃K1
5PK1

2Qr , P̃K1*5PK1*1Pr , ~4.18!

we obtain
9-9
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Ip52~11R !@3~P̃p
10!21~P̃h

10!213~P̃K1
10 !21~P̃K0

10 !2110~P̃K1*
10

!212~P̃K0*
10

!222P̃h
10P̃K1

10 12P̃p
10~2P̃K1

10 2P̃K0
10 14P̃K1*

10
22P̃K0*

10
!

14P̃K1
10 ~2P̃K1*

10
2P̃K0*

10
!24P̃K1*

10 P̃K0*
10

#114~P̃p
21!212~P̃h

21!218~P̃K1
21 !21

4
3 ~P̃K0

21 !2114~P̃K1*
21

!21
10
3 ~P̃K0*

21
!214P̃h

21P̃K1
21

24P̃p
21~2P̃K0*

21
12P̃K1

21 2P̃K0
21 14P̃K1*

21
22P̃K0*

21
!14P̃K1

21 ~P̃h
212P̃K1*

21
1P̃K0*

21
!14P̃K1*

21
~2P̃h

212P̃K0*
21

!1
4
3 P̃K0*

21 P̃K0
21 1

2
3 ~P̃K0

01 !2

16~P̃K1
01 !21

2
3 ~P̃K0*

01
!216~P̃K1*

01
!224P̃K0

01 P̃K1
01 2

4
3 P̃K0*

01
~P̃K0

01 23P̃K1
01 13P̃K1*

01
!14P̃K1*

01
~P̃K0

01 23P̃K1
01 !, ~4.19!

for the Lp→np decay, and

In5S 31
43R
18 D @~P̃p

101P̃h
10!21~P̃K0

10 1P̃K1
10 !2#1S 41

14R
3 D ~P̃K0*

10
1P̃K1*

10
!22S 21

R
9 D ~P̃p

101P̃h
10!~P̃K0

10 1P̃K1
10 !2S 41

14R
3 D ~P̃K0*

10

1P̃K1*
10

!~P̃p
101P̃h

101P̃K0
10 1P̃K1

10 !1
1
2 ~P̃p

211P̃h
211P̃K0

21 1P̃K1
21 !212~P̃K0*

21
1P̃K1*

21
!~P̃K0*

21
1P̃K1*

21
1P̃p

211P̃h
211P̃K0

21 1P̃K1
21 !, ~4.20!
for the Ln→nn decay.

V. NUMERICAL RESULTS AND DISCUSSION

The numerical values of the parameters, defined in Table I
and necessary to specify the transition potential, are summa-
rized in Table III. For the sake of comparison all cutoffs
appearing in Eqs. ~5.1!, as well as all coupling constants,
were taken from Ref. @13#, where, in turn, the strong cou-
plings have been taken from Refs. @28,29# and the weak ones
from Ref. @12#. The energy difference D jNmtN

in Eq. ~2.20! is
evaluated from the experimental single-nucleon and hyperon
energies, quoted in Ref. @8#.

The finite nucleon size ~FNS! effects at the interaction
vertices are gauged by the monopole form factor FM

(FNS)

3(q2)5(LM
2 2mM

2 )/(LM
2 1q2), which implies that the

propagators in Eqs. ~3.10! and ~3.11! must be replaced by

f M~r !→ f̄ M~r !5 f M~r !2 f LM
~r !2

r~LM
2 2mM

2 !

2LM
f LM

~r !,
055209
f M
S ~r !→ f̄ M

S ~r !5 f M
S ~r !2 f LM

S ~r !

2
1
6 ~LM

2 2mM
2 !~LMr22 ! f LM

~r !,

f M
T ~r !→ f̄ M

T ~r !5 f M
T ~r !2 f LM

T ~r !

2
1
6 ~LM

2 2mM
2 !~LMr11 ! f LM

~r !,

f M8 ~r !→ f̄ M8 ~r !5 f M8 ~r !2 f LM
8 ~r !1

r~LM
2 2mM

2 !

2 f LM
~r !,

~5.1!

where f LM
(r) has the same structure as f M(r) but with

mM→LM .
The initial and final short-range correlations ~SRCs! are

taken into account, respectively, via the correlation functions
@13#
TABLE III. Parameters used in the calculations: masses ~in MeV!, cutoffs ~in GeV!, and the isoscalar
(t50) and isovector (t51) coupling constants ~in units of 10211 MeV22).

M mM L AM /mM AM8 /mM BM BM8 /mM
2

t50

h 548.6 1.3 0.247 20.525
K 495.8 1.2 20.828 0.228
v 783.4 1.5 20.274 20.420 20.923 21.395
K* 892.4 2.2 0.376 0.237 0.632 1.016

t51

p 140.0 1.3 1.175 20.546
K 495.8 1.2 20.127 0.764
r 775.0 1.4 0.273 0.105 20.907 20.407
K* 892.4 2.2 0.514 0.324 1.072 0.274
-10
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gi~r !5~12e2r2/a2
!21br2e2r2/g2

,

g f~r !512 j0~qcr !, ~5.2!

with a50.5 fm, b50.25 fm22, g51.28 fm, and qc
53.93 fm21.

It is a general belief nowadays that, in any realistic evalu-
ation of the hypernuclear NM decay, the FNSs and SRCs
have to be included simultaneously. Therefore, in the present
paper we will discuss only the numerical results, in which
both of these renormalization effects are considered. Under
these circumstances and because of the relative smallness of
pion mass, the transition is dominated by the OPE @13#.

The major part of the numerical calculations were done in
the EPHM where the only free parameter is the harmonic
oscillator length b. The most commonly used estimate is b
5A1/6 fm @49,48#, which corresponds to the oscillator energy
\v541A21/3 MeV and gives b51.51 fm. For light nuclei it
is sometimes preferred to employ \v545A21/3

225A22/3 MeV, which yields b51.70 fm. Moreover, a L
particle in a hypernucleus is typically less bound than the
corresponding nucleon and hence bL could be larger than
bN . For instance, in Ref. @13# b5(bL1bN)/251.75 fm was
used, which comes from bN51.64 fm and bL51.87 fm. As
there is no deep motivation for preferring one particular
value of b, the numerical results will be exhibited for both
b51.51 and 1.75 fm.

First, a few illustrative results, obtained in the EPHM @Eq.
~4.4!# and the simplified version of the QTDA @Eq. ~4.8!#, are
displayed in the Table IV. The hyperon-nucleon interaction

TABLE IV. Parity-conserving ~PC! and parity-violating ~PV!
nonmesonic decay rates for L

12C , in units of G052.5031026 eV.
All coupling constants and the cutoff parameters are from Table III
and b51.51 fm. All calculations were done within the EPHM, ex-
cept for a few results which were evaluated in the QTDA and are
shown parenthetically.

Mesons Gn
PC Gn

PV Gp
PC Gp

PV

p 0.009 0.151 0.734 0.383
~0.016! ~0.153! ~0.732! ~0.373!

h 0.003 0.004 0.006 0.003
K 0.008 0.069 0.097 0.043
r 0.005 0.003 0.109 0.008
v 0.004 0.007 0.066 0.004
K* 0.025 0.034 0.056 0.028

p1h 0.013 0.204 0.630 0.383
p1K 0.013 0.258 0.325 0.512
p1r 0.009 0.133 0.583 0.461
p1v 0.015 0.176 0.902 0.406
p1K* 0.044 0.075 1.020 0.455
p1h1K 0.008 0.318 0.259 0.505

~0.011! ~0.330! ~0.258! ~0.516!

p1h1K1K* 0.052 0.268 0.486 0.602
All mesons 0.037 0.240 0.347 0.714

~0.039! ~0.250! ~0.346! ~0.702!
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in the latter approach was taken to be a simple d force, which
has been recently used with success as the nucleon-nucleon
interaction to explain the weak decay processes in 12C @51#.
The resulting pairing BCS factors were vs1/2

50.9868, vp3/2
50.8978 and vp1/2

50.6439. Although we have expected to
obtain small differences between the EPHM and QTDA, it
came as a surprise that they turned out to be so tiny. Thus,
henceforth, only the first one will be used.

Next, we combine results from Table IV with the multi-
pole expansion done in the previous section to find out the
roles played by different mesons. Note that formulas ~4.19!
and ~4.20! depend on the ratio ~4.12!, and it was found nu-
merically that the approximation

R51 ~5.3!

reproduces fairly well the exact calculations. This estimate
helped us to formulate the following comments.

PC potential. The dominant contributions to Gp and Gn
come from the l50 matrix elements, while the l51 wave
contributes relatively little: >2% to Gp and >10% to Gn .
On the other hand, for the parametrization displayed in Table
III, one finds that ~1! the v and K* mesons mainly cancel out
in C0

0, as the r and K* mesons do in C1
0, and ~2! the matrix

elements S0
0 and S1

0 are small in comparison with (3T1
20

2T0
20), which makes Gp large in relation to Gn . Thus, using

the estimate ~5.3!, one ends up with the following approxi-
mate result for the PC contributions:

Ip1In>Ip>2Ip
s1/2>24~3T1

202T0
20!2. ~5.4!

From Table III and Eq. ~4.14! one can also see that ~i! the v
and K* mesons contribute coherently with the pion, while
the remaining three mesons contribute out of phase, and ~ii!
the different vector meson contributions have the tendency to
cancel among themselves. As shown in Table IV, the overall
effect is a reduction of the pion transition rate by approxi-
mately a factor of 2.

PV potential. As in the PC case, the dominant PV transi-
tion strengths come from the l50 wave, through the P̃M

10

moments. The l51 wave from the p3/2 state gives rise to l
50 and l52 outgoing channels. The first one can always be
neglected, while the second one contributes with 15% to Gp
and with 2% to Gn , when only the p meson is considered.
After including all mesons these percentages drop to 6% and
1%, respectively. Also here the partial s1/2 and p3/2 contribu-
tions are approximately equal for all mesons in the proton-
induced channel and notably different in the neutron-induced
channel.

From Table IV it is easily found that the most important
PV contributions arise from the Pp

10 moment and from its
interference with the Ph

10 , PK
10 , and PK*

10 moments. Thus,
retaining only the most relevant terms in Eqs. ~4.19! and
~4.20!, the following rough estimates are obtained:
-11
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Ip>2Ip
s1/2>4@3~Pp

10!213~PK1
10 !21~PK0

10 !2#

18Pp
10~2PK1

10 2PK0
10 14PK1*

10
22PK0*

10
23QK1*

10
!

~5.5!

and

In>
97
18 @~Pp

10!21~PK1
10 1PK0

10 !2#2
19
9 Pp

10~PK1
10 1PK0

10 !

1
97
9 Pp

10~Ph
102QK1*

10
2QK0*

10
!2

78
9 Pp

10~PK1*
10

1PK0*
10

!.

~5.6!

These relations are notably more complicated than Eq. ~5.4!.
Nevertheless, it can be concluded that ~1! the h meson is
only significant for Gn and ~2! the K and K* mesons increase
both transition rates, but in a different way.

Before proceeding it is worth saying a few words on the
‘‘new’’ nuclear moments QM

10 and compare them with the
well-known moments PM

10 . As seen from Eqs. ~4.17! and
~A8!–~A10!, they basically differ in the radial dependence.
Specifically, we discuss the radial matrix element

~p ,1u f K*
~1 !u10!5~p ,1u f K*

L u10!1~p ,1u f K*
R u10!, ~5.7!

which appears in QK*
10 , together with the usual matrix ele-

ment

~p ,1u f K*
~2 !u10!5~p ,1u f K*

L u10!2~p ,1u f K*
R u10!, ~5.8!

which is contained in PK*
10 . The overbar indicates that both

the FNSs and SRCs are included, as explained in the Appen-
dix.

As can be seen from Fig. 2, the matrix elements of f K*
L

and f K*
R have opposite signs, and as a consequence, the ma-

trix element of f K*
(2) is larger in magnitude than that of f K*

(1) .
A rough approximation for the mean values is

u^~p1u f K*
~1 !u10!&u>

1
2 u^~p1u f K*

~2 !u10!&u. ~5.9!

As AK**AK*8 ~see Table III!, we end up with the estimate

u^QK*
10 &u>0.3u^PK*

10 &u. ~5.10!

Thus Eqs. ~5.5! and ~5.6! show that the K* meson mainly
contributes through the moments PK*

10 , augmenting the mag-
nitude of Gp

PV and diminishing that of Gn
PV . The matrix ele-

ments QK*
10 , in contrast, reduce both transition rates.

Furthermore, Eq. ~4.18! indicates that each vector mo-
ment Qr ,v ,K*

10 is accompanied by a pseudoscalar moment
Pp ,h ,K

10 . Both integrals (p1u f M
(6)u10) are negative for all me-

sons. Then, using the values of the coupling constants Ap ,h ,K
and Ar ,v ,K*8 listed in Table III, it can be inferred that Qr ,v ,K*

10

and Pp ,h ,K
10 moments mostly add incoherently.
055209
The experimental results for the total transition rate GNM ,
the proton partial width Gp , and the ratio Gn/p in L

12C are
displayed in Table V. In the same table the theoretical esti-
mates are also shown, grouped as follows.

~1! Calculation A. All the parametrization is taken from
Table III, and the following cases are shown and commented
on:

~i! ~p!: The simple OPE model accounts for GNM , but it
badly fails regarding Gp and Gn/p .

~ii! ~PS!: When h and K mesons are included, the total
transition rate is only slightly modified, while Gp and Gn/p
change significantly, coming somewhat closer to the mea-
sured values.

~iii! (PS1K*): The incorporation of the K* meson in-
creases GNM and Gp , decreases Gn/p , and in this way wors-
ens the agreement with the data.

~iv! (PS1V): The results are not drastically modified
when all vector mesons are built in.

~v! „PS1V(P)…: All six mesons are included, but only the
PV moments PM are considered. The importance of the new
moments QM is evident from the comparison with the previ-
ous case.

The main conclusion is that it is not possible to reproduce
simultaneously the data for all three observables GNM , Gp ,
and Gn/p , when the BBM coupling are constrained by the
SU~3! and SU(6)w symmetries.

~2! Calculation B. We discuss now what happens when
the just-mentioned constraints are relaxed, and the FNS and
SRC parametrizations, as well as the pion couplings, are kept
unchanged. That is, the transition potential is considered to
be given by a series of Yukawa-like potentials with different

FIG. 2. Matrix elements of the radial operators f K*
L , f K*

R , f K*
(1) ,

and f K*
(2) , as a function of the energy.
-12
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spin and isospin dependences. The simple increase of the K
coupling does not solve the problem by itself. For instance,
for AK→2AK and BK→2BK , the contribution of all three
pseudoscalar mesons is ~when b51.51 fm): GNM
51.404G0, Gp50.815G0, and Gn/p50.723, and when the
vector mesons are added one gets GNM51.714G0, Gp
51.130G0, and Gn/p50.518. Namely, GNM turns out to be
too large. But from the previous discussion, in relation to
Eqs. ~5.4!, ~5.5!, and ~5.6!, we have learned that it could be
possible to reproduce at the same time the data for all three
observables by ~i! making the total tensor interaction in Gp

PC

small and simultaneously ~ii! decreasing Gp
PV and increasing

Gn
PV , without modifying GNM too much. The first goal can be

accomplished, for instance, through the modifications Bh
→3Bh and BK→2BK and the second one with Ah→3Ah
and AK1

→5AK1
. The following cases are illustrated in Table

V:
~i! (PS8): Only the pseudoscalar mesons are included

with the above changes in h and K meson couplings.
~ii! (PS82K*): The K* meson potential is incorporated,

but with the inverted sign.
~iii! (PS82V): All vector meson potentials are included

with the inverted signs.

TABLE V. Parity-conserving ~PC! and parity-violating ~PV!
nonmesonic decay rates for L

12C , in units of G052.5031026 eV.
The data are taken from Refs. @39–43#, and large experimental
errors are due to the low efficiencies and large backgrounds in
neutron detection. The calculations were performed for both b
51.51 and 1.75 fm, the latter being given parenthetically. In calcu-
lation A all parameters are from Table III, and PS and V stand,
respectively, for the pseudoscalar (p1h1K) and the vector (r
1v1K*) mesons, while the label ~P! indicates that only the mo-
ments PM are considered @see Eq. ~4.17!#. In calculation B the
coupling constants listed in Table III are modified as Ah→3Ah ,
AK1

→5AK1
, Bh→3Bh , and BK→2BK , and the signs of all vector

meson potentials are inverted.

GNM5Gn1Gp Gp Gn/p5Gn /Gp

Measurements
Ref. @39# 0.7060.3
Ref. @39# 0.5260.16
Ref. @40# 1.1460.2 1.3320.81

11.12

Ref. @41# 0.8960.1560.03 0.3120.11
10.18 1.8760.5921.00

10.32

Ref. @42# 1.1460.08
Ref. @43# 1.1720.0820.18

10.0910.22

Calculation A
p 1.277~1.006! 1.116~0.885! 0.143~0.137!

PS 1.100~0.851! 0.774~0.601! 0.420~0.416!

PS1K* 1.408~1.091! 1.088~0.846! 0.294~0.290!

PS1V 1.338~1.038! 1.061~0.825! 0.261~0.259!

PS1V(P) 1.539~1.190! 1.196~0.927! 0.287~0.284!

Calculation B
PS8 1.145~0.874! 0.555~0.419! 1.064~1.089!

PS82K* 1.273~0.971! 0.540~0.407! 1.355~1.384!

PS82V 1.297~0.989! 0.542~0.408! 1.394~1.423!
055209
No best fit to data has been attempted. Yet it is clear that
there are many other set of parameters that reproduce reason-
ably well the data. We wish to stress as well that, when the
vector mesons are considered, the correct values of Gn/p are
obtained only by overturning the signs of the vector meson
potentials.

VI. SUMMARY AND CONCLUSIONS

A novel shell model formalism for the nonmesonic weak
decay of the hypernuclei has been developed. It involves a
partial wave expansion of the emitted nucleon waves and
preserves naturally the antisymmetrization between the es-
caping particles and the residual core. The general expres-
sion ~2.13! is valid for any nuclear model and it shows that
the NM transition rates should depend, in principle, on both
~i! the weak transition potential, through the elementary tran-
sition amplitudes M(pPlLlSJT; jL jN ,mtN

), and ~ii! the
nuclear structure, through the two-particle NL parentage co-
efficients ^JIi(a jNmtN

† a jL

† )JiJF&. The explicit evaluation of

the matrix elements M is illustrated as well.
Two nuclear models for even-mass hypernuclei—namely,

the EPHM and QTDA—were worked out in detail, and Eqs.
~4.4! and ~4.7! were derived. The last one explicitly depends
on the initial and final wave functions. But because of ~i! the
inclusive nature of the nonmesonic decay and ~ii! the pecu-
liar properties of the coefficients Fmtb

J
jb ( ja), this dependence

is totally washed out for all practical purposes. In this way
we have arrived at a very simple result for the transition
rates, given by Eq. ~4.9!, which except for the BCS pairing
factors v jb

2 agrees with the EPHM result. Thus it can be
stated that the two-particle correlations in the initial and final
states are only of minor importance if of any. With some
additional effort higher-order nuclear structure effects such
as the four quasiparticle excitations, collective vibrations, ro-
tations, etc., can also be incorporated. Yet it is hard to imag-
ine a scenario where the latter could be relevant at the same
time that the former are not. Therefore, we conclude that the
nuclear structure manifests basically through the factor
Fmtb

J
jb ( ja), which is engendered by the Pauli principle; ja

stands for the hyperon partner in the initial state, and jb runs
over all proton and neutron occupied states in the initial
nucleus. It is amazing to notice that Eq. ~4.9! is valid for any
even-mass system, which can be so light as L

4 H and L
4 He are

or so heavy as L
208Pb is. ~A quite similar result is also ob-

tained for the odd-mass hypernuclei, and this issue will be
discussed elsewhere.! One should also add that the last equa-
tion contains the same physics as Eq. ~5! in Ref. @13# or Eq.
~30! in Ref. @27#, with the advantage that we do not have to
deal with spectroscopic factors. Of course, neither the initial
and final wave functions are needed.

Attention has been given to the nonrelativistic approxima-
tion, used to derive the weak effective hypernuclear one-
meson-exchange potentials ~3.14! and ~3.15!. Errors and
misprints that appear in some recent papers @13,19,24# have
been corrected, and additional parity-violating vector meson
operators sN•f(1)(r) and sL•f(1)(r), usually neglected,
-13
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have been considered as well. The matrix elements of these
new terms were fully discussed, and it was found that they
are quite important quantitatively and therefore should not be
omitted.

With the OMEM parametrization from the literature @13#
and keeping the treatment of the FSIs at the simple Jastrow-
like level @g(r)512 j0(qcr)# , we reproduced satisfactorily
the data for the total transition rate (GNM

th >G0), but the n/p
ratio (Gn/p

th &0.42) and the proton partial width (Gp
th

*0.60G0) are not well accounted for. More elaborate treat-
ments of the FSIs increase sensibly the n/p ratio, but they
are unable to solve the puzzle @13,24#, especially after the
last experimental result for this observable @43#. We have
found that the new vector meson operators are not of much
help in this regard either.

Finally, bearing in mind the phenomenological nature of
the OMEM, we have also tried to reproduce all three data
simultaneously by varying the coupling strengths in a signifi-
cant way. As the only guide, the simple formulas ~5.6!, ~5.7!,
and ~5.8! were used, which come out from the multipole
expansion done within the EPHM. Such an attempt was suc-
cessful, and we get 0.87&GNM

th /G0&1.30, 1.06&Gn/p
th

&1.42, and 0.41&Gp
th/G0&0.55. We are conscious that

changing a coupling by up to a factor of 5, with the sole
justification of accounting for the data, is a rather a desperate
way out of the Gn/p puzzle. No profound physical signifi-
cance is attached to the ‘‘new’’ parameters, and it even can
be said that such a procedure is not physical. However, after
having acquired full control of the nuclear structure involved
in the process and after having convinced ourselves that the
nuclear structure correlations cannot play a crucial role, we
firmly believe that the currently used OMEM should be radi-
cally changed. Either its parametrization has to be modified
or additional degrees of freedom have to be incorporated,
such as the correlated 2p from Ref. @27# or the four-baryon
point interaction from Ref. @26#, avoiding clearly double
counting. In fact, it would be very nice to see the outcomes
of such studies.
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APPENDIX: NUCLEAR MATRIX ELEMENTS

Here we evaluate the transition matrix elements that ap-
pear in Eq. ~2.15! for the potentials V(r,s1s2) defined in Eqs.
~3.14! and ~3.15!.

The PC potential contains the operators f M(r), f M
S (r)
055209
(sL•sN), and f M
T (r)SLN( r̂), and the corresponding matrix

elements read

~pPlLlSJu f M~r !u1 lNLl8S8J !

5d l ldll8dSS8dLL~PLuNL!~plu f M~r !u1 l!,

~pPlLlSJu f M
S ~r !~sL•sN!u1 lNLl8S8J !

5d l ldll8dSS8dLL~PLuNL!

3~plu f M
S ~r !u1 l!@2S~S11 !23# ,

~pPllSJu f M
T ~r !SLN~ r̂ !u1 lNLl8S8J !

5~2 !L1l1J11dSS8dLLdS1A120l̂l̂8 l̂~PLuNL!

3~plu f M
T ~r !u1 l!H l8 1 J

1 l 2J H l l 2
l8 l LJ

3~ l020u l0 !, ~A1!

with

~PLuNL!5dLLE R2dR jL
~PR !RNL~R ! ~A2!

and

~plu f Mu1 l!5E r2dr j l~pr ! f M~r !R1 l~r !, etc. ~A3!

The PV potentials are of the form

VPV~r,s1 ,s2!;S•f~6 !~r ! with S5H sL ,
sN ,
isL3sN ,

~A4!

and we obtain

~pPlLlSJuV M
PVunINLl8S8J8!

5dLLl̂ l̂8 Î~ l010ul0 !H l L l8
l 1 l J H l8 S8 J

S l 1J
3~2 !J1S1l1L^SiSMiS8&~plu f M

~6 !unl!~PLuNL!.

~A5!

The spin-dependent matrix elements are

^SisNiS8&5A6 Ŝ Ŝ8~2 !SH 1/2 1/2 S8

1 S 1/2J
5~2 !S1S8^SisLiS8& ~A6!

and
-14
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^Si i~sL3sN!iS8&5A12~dS0dS811dS1dS80!

52^Si i~sN3sL!iS8& . ~A7!

The matrix elements (plu f M
(6)unI) are easily evaluated, and

one obtains

~plu f M
~6 !unI!5~plu f M

L unI!6~plu f M
R unI!, ~A8!

with

~plu f M
R unI![E r2dr j l~pr ! f M~r !

3S 1
r

d
dr r1

l~ l11 !2l~ l11 !

2r DRnI~r !

~A9!

and

~plu f M
L unI![2E r2drRnI~r ! f M~r !S 1

r
d
dr r

1
l~ l11 !2 l~ l11 !

2r D j l~pr !. ~A10!

Note that the ‘‘sum rule’’

~plu f M
L unI!2~plu f M

R unI!5~plu f M8 unI!

5E r2dr j l~pr ! f M8 ~r !RnI~r !

~A11!

should always be obeyed.
The radial integral ~A10! can be expressed as

~plu f M
L unI!52pE r2drRnI~r ! f M~r !

3H ~ l12 !~ l11 !2 l~ l11 !

2~2l11 !
j l21~pr !

1
l~ l21 !2 l~ l11 !

2~2l11 !
j l11~pr !J , ~A12!

which immediately leads to

~plu f M
L unI!57pE r2dr j l~pr ! f M~r !RnI~r ! for l5 l61.

~A13!
055209
We are interested here only in

R1l5~pb2!21/4A l!
~2l11 !! S 2

b D l11

rl expS 2
r2

2b2D ,

~A14!

and, in order to simplify the integral ~A9!, the following
relationship can be used:

1
r

d
dr rR1l5S l11

r 2
r

b2DR1l . ~A15!

We obtain

~plu f M
R u1 l!52

1
b2 5

*r3dr j l~pr ! f M~r !R1 l~r !

for l5 l11,

*~r22 l̂2b2!rdr j l~pr ! f M~r !R1 l~r !

for l5 l21.
~A16!

It should be remembered that the radial wave functions
RnI(r) and RNL(R) have to be evaluated with harmonic os-
cillator parameters b5&b and b5b/& , respectively, b be-
ing the oscillator length for the harmonic mean-field poten-
tial.

As indicated in Eq. ~5.1! the FNS effects are incorporated
directly into the radial integrals through the replacements
f M(r)→ f̄ M(r), etc. At variance, the SRCs, given by Eq.
~5.2!, are added by the substitutions

u1 lm&→u1 lm&5gi~r !u1 lm&, uplm&→uplm&5g f~r !uplm& ,
~A17!

in Eqs. ~A1! and ~A3!, and when the FNSs and SRCs are
included simultaneously, the radial integrals ~A3! become

~plu f Mu1 l!5E r2dr j l~pr !g f~r ! f̄ M~r !gi~r !R1 l~r !.
~A18!

Thus it is equivalent to comprise the SRCs either through the
wave functions, as done in Eq. ~A17!, or by renormalizing
the radial form factor f̄ M(r)→g f(r) f̄ M(r)gi(r). The same is
valid for f M8 (r), f M

S (r), and f M
T (r). On the contrary, for the

integrals ~A9! and ~A10!, which contain derivatives, from
Eq. ~A17! one has
~plu f M
L u1 l!52E r2dr@ j l~pr !g f8~r !6p j l~pr !g f~r !# f̄ M~r !gi~r !R1 l~r ! for l5 l61,

~plu f M
R u1 l!5H *r2dr j l~pr !g f~r ! f̄ M~r !@gi8~r !2rb22gi~r !#R1 l~r ! for l5 l11,

*r2dr j l~pr !g f~r ! f̄ M~r !@gi8~r !2~rb222 Î2r21!gi~r !#R1 l~r ! for l5 l21,
~A19!
-15
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being g8(r)[dg(r)/dr . In this case it is no longer possible
to include the SRCs via the form factor, which is a direct
consequence of the fundamental difference between the FNS
effects and SRCs. Namely, while the SRCs modify the
nuclear wave functions, the FNS renormalization is done di-
rectly on the vertices of the Feynman diagrams that deter-
mine the one-meson-exchange transition potential.

Finally, the isospin matrix elements needed in the calcu-
lation are
055209
K 1,21uT0u2
1
2,2

1
2 L 51, K 1,21uT1u2

1
2,2

1
2 L 51,

K 0,0uT0u2
1
2,

1
2 L 52

1

&
, K 1,0uT0u2

1
2,

1
2 L 5

1

&
,

K 0,0uT1u2
1
2,

1
2 L 5

3

&
, K 1,0uT1u2

1
2,

1
2 L 5

1

&
. ~A20!
@1# H. Park et al., Phys. Rev. C 61, 054004 ~2000!.
@2# M. M. Block and R. H. Dalitz, Phys. Rev. Lett. 11, 96 ~1963!.
@3# J. B. Adams, Phys. Rev. 156, 1611 ~1967!.
@4# B. H. J. McKellar and B. F. Gibson, Phys. Rev. C 30, 322

~1984!.
@5# K. Takeuchi, H. Takaki, and H. Bandō, Prog. Theor. Phys. 73,
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