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Quantum correlations and least disturbing local measurements
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We examine the evaluation of the minimum information loss due to an unread local measurement in mixed states
of bipartite systems, for a general entropic form. Such a quantity provides a measure of quantum correlations,
reducing for pure states to the generalized entanglement entropy, while in the case of mixed states it vanishes just
for classically correlated states with respect to the measured system, as the quantum discord. General stationary
conditions are provided, together with their explicit form for general two-qubit states. Closed expressions for the
minimum information loss as measured by quadratic and cubic entropies are also derived for general states of
two-qubit systems. As an application, we analyze the case of states with maximally mixed marginals, where a
general evaluation is provided, as well as X states and the mixture of two aligned states.
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I. INTRODUCTION

There is currently a great interest on new measures of
quantum correlations for mixed states, different from the en-
tanglement measures [1]. Quantum entanglement is essential
for quantum teleportation [2,3] and also for pure state quantum
computation, where its increase with system size is necessary
to achieve an exponential speedup over classical computation
[4,5]. However, the computation model proposed by Knill and
Laflamme [6] has shown that for mixed states, such speedup
can in principle be achieved without entanglement [7]. This
suggests the subsistence of useful quantum correlations in
some separable mixed states, which, we recall, are defined
as convex mixtures of product states [8]. While a separable
pure state is a product state, separable mixed states comprise
product states, mixtures of commuting products, and also
mixtures of noncommuting product states. The latter can
possess entangled eigenstates and give rise to nonclassical
capabilities.

Consequently, measures such as the quantum discord [9–
12] have recently received much attention. While coinciding
with the entanglement entropy in pure states, the quantum
discord can be nonzero in mixed separable states, vanishing
just for full or one-way classically correlated states, i.e.,
states diagonal in a standard or conditional product basis.
The circuit of [6] was in fact shown in [13] to exhibit a
non-negligible discord. Other measures with similar properties
include the one-way information deficit [14,15], the geometric
discord [16], based on the standard Hilbert-Schmidt norm,
and the general entropic measures which we defined in [17],
based on generalized entropic forms. The latter contain the
two previous measures as particular cases, embedding them
in a unified picture. Since they are applicable with entropic
forms complying with minimum requirements, they offer, like
the geometric discord, the possibility of easier evaluations,
allowing at the same time the identification of some universal
features exhibited by all these measures [17]. Related gener-
alized measures vanishing just for full classically correlated
states, like those of [18] and [19], were also considered [17].
Let us remark that important quantum capabilities of separable
states with nonzero discord, and hence nonzero values of the
previous measures, were recently unveiled [15,20–23]. Other
relevant properties of quantum discord and its evaluation in
specific states and scenarios were discussed in [24–35].

The aim of this work is to analyze the explicit evaluation of
the generalized measures of [17] in some important general
cases. We first provide in Sec. II the general stationary
condition that the least disturbing local measurement should
satisfy, including conditions for its independence from the
entropy employed (universality), together with its explicit form
for general two-qubit states. Here we show that in addition to
the quadratic case (geometric discord), the measure based on a
cubic function of the density matrix (“cubic” discord) can also
be exactly evaluated for any state of two qubits. Moreover, for
two-qubit states this measure shares with the geometric discord
the same pure state limit, where they are both proportional to
the square of the concurrence [36,37]. As specific applications,
we provide in Sec. III the general expression for two-qubit
states with maximally mixed reduced states, valid for any
entropic form, analyzing its main features. We also examine
their evaluation in the so-called X states [32], where explicit
expressions for the quadratic and cubic cases are provided, and
for the important case of a mixture of two aligned states [33],
which represents in particular the exact state of a pair in the
ground state of a finite XY ferromagnetic spin 1/2 chain in
the vicinity of the factorizing field [38]. Differences with the
quantum discord, related in particular with the minimizing
measurement, are also discussed. Conclusions are finally
drawn in Sec. IV.

II. FORMALISM

A. Information loss by unread local measurement

Let us consider a bipartite system A + B initially in a
state ρAB . After an unread local von Neumann measure-
ment in system B, defined by orthogonal one-dimensional
projectors P B

j = I ⊗ Pj , with Pj = |jBihjB | (
P

j Pj = I ,
PjPj 0 = δjj 0Pj ), the joint state becomes

ρ 0
AB =

X
j

P B
j ρABP B

j =
X

j

pjρAB/j , (1)

where pj = Tr ρABP B
j is the probability of outcome j and

ρAB/j = P B
j ρABP B

j /pj the state after such outcome. The
state (1) is just the diagonal of ρAB in a conditional product
basis formed by the states |ij j i ≡ |ijAi|jBi, with |ijAi the
eigenstates of ρA/j = TrBρAB/j . The loss of information due
to such measurement, i.e., the information contained in the
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off-diagonal elements of the original ρAB in the previous basis,
can be quantified by the quantity [17]

I
MB

f (ρAB) = Sf (ρ 0
AB) − Sf (ρAB) , (2)

where Sf (ρ) denotes a generalized entropy of the form

Sf (ρ) = Tr f (ρ) , (3)

with f : [0,1] → R, a smooth strictly concave function
[f 00(p) < 0 for p ∈ (0,1)] satisfying f (0) = f (1) = 0 [39,
40]. This ensures Sf (ρ) > 0 for any state ρ, with Sf (ρ) =
0 if and only if ρ is a pure state (ρ2 = ρ), and Sf (ρ)
maximum, at fixed dimension n, for the maximally mixed
state ρ = I/n. Equation (2) is then non-negative for any
Sf of the previous form, vanishing only if the original ρAB

remains unchanged by such measurement. This positivity
follows from the majorization relation [3,40,41] ρ 0

AB ≺ ρAB

(ρ 0
AB more mixed than ρAB) satisfied by the post-measurement

state, which implies Sf (ρ 0
AB) > Sf (ρAB) for all such Sf [17].

Moreover, the previous entropic inequality implies in fact
majorization when valid for all Sf of the previous form [42].

The minimum of I
MB

f among all local measurements,

IB
f (ρAB) = Min

MB

I
MB

f (ρAB) , (4)

provides a measure of the quantum correlations between A

and B present in the original state and destroyed by local
measurement [17]. It vanishes only if ρAB is already of the
“classical” (with respect to B) form of Eq. (1). For such states
there is an unread local measurement in B (MB) which leaves
the state invariant. Equation (4) is obviously not affected by
local unitary transformations.

In the case of pure states (ρ2
AB = ρAB), it can be shown that

Eq. (4) becomes the generalized entanglement entropy

IB
f (ρAB) = Ef (A,B) ≡ Sf (ρA) = Sf (ρB), (5)

where ρA = TrB ρAB and ρB are the reduced states of each
subsystem [17]. Hence, pure state entanglement can be seen
as the minimum information loss due to a local measurement.
In this case IB

f (ρAB) = IA
f (ρAB), an identity which does not

hold in general for mixed states.
In the von Neumann case Sf (ρ) = S(ρ) ≡ −Trρ log ρ,

Eq. (2) can be also written as [17]

IMB (ρAB) = S(ρ 0
AB) − S(ρAB) = S(ρAB ||ρ 0

AB) , (6)

where S(ρ||ρ 0) = −Tr ρ(log ρ 0 − log ρ) is the relative entropy
[3,40,43] (a non-negative quantity), since ρ 0

AB is the diagonal
of ρAB in a certain basis. The minimum IB of Eq. (6) coincides
with the one-way information deficit [14,15] and also with one
of the measures discussed in [18]. In the case of pure states,
IB reduces to the standard entanglement entropy E(A,B) =
S(ρA) = S(ρB).

In the case of the so-called linear entropy

S2(ρ) = 2(1 − Tr ρ2) , (7)

which is a quadratic function of ρ and corresponds to f (ρ) =
2ρ(1 − ρ) in Eq. (3), Eq. (2) can be written as [17]

I
MB

2 (ρAB) = S2(ρ 0
AB) − S2(ρAB) = 2||ρ 0

AB − ρAB ||2 , (8)

where ||O||2 = Tr O†O is the squared Hilbert-Schmidt norm.
The ensuing minimum of Eq. (4), to be denoted here as IB

2 ,
becomes then equivalent [17] to the geometric discord of
Ref. [16], defined as the minimum Hilbert-Schmidt distance
between ρAB and any classically correlated state of the
form (1). In the case of pure states, IB

2 reduces to the
square of the pure state concurrence (i.e., the tangle), C2

AB =
2(1 − Tr ρ2

A) [37].
In the same way we may define the q information loss as

IMB

q (ρAB) = Sq(ρ 0
AB) − Sq(ρAB) , (9)

Sq(ρ) = (1 − Trρq)/(1 − 21−q) , q > 0 , (10)

where Sq(ρ) is the so-called Tsallis entropy [44], which
corresponds to f (ρ) = (ρ − ρq)/(1 − 21−q) in Eq. (3) and
is a function of the Renyi entropy. Equation (10) reduces
to the linear entropy of Eq. (7) for q = 2 and to the von
Neumann entropy for q → 1, with log = log2 for the present
normalization [chosen such that Sq(ρ) = 1 for a maximally
mixed single-qubit state, i.e., 2f (1/2) = 1]. Equation (9)
allows one to, in particular, switch continuously from the von
Neumann case (6) to the quadratic case (7).

On the other hand, the original quantum discord [9–12]
is based on the von Neumann entropy and can be written
(considering von Neumann measurements) as

DB(ρAB) = Min
MB

[IMB (ρAB) − IMB (ρB)] . (11)

It contains an additional term IMB (ρB) = S(ρ 0
B) − S(ρB)

related to the local information loss and was actually defined
in [9] as the minimum difference between the initial mutual
information

I (A : B) = S(ρA ⊗ ρB) − S(ρAB) , (12)

where S(ρA ⊗ ρB) = S(ρA) + S(ρB), and that after the local
measurement, IMB (A : B) = S(ρ 0

A) + S(ρ 0
B) − S(ρ 0

AB). Since
ρ 0

A = ρA, such difference reduces to Eq. (11).
The information loss of Eq. (2) can be regarded in fact as

a type of generalized mutual information. Equation (12) is
a measure of the total correlations between A and B in the
original state, absent in the product state ρA ⊗ ρB . The latter
is the state which maximizes the von Neumann entropy subject
to the constraint of providing just all local averages hO ⊗ I i
and hI ⊗ Oi, i.e., the correct reduced states ρA and ρB . This
is in fact what is expressed by the positivity of Eq. (12): any
other state ρAB with the same local reduced states has a smaller
entropy.

On the other hand, the post-measurement state (1) can be
seen as the more mixed state providing the same averages
as ρAB of all observables of the form

P
j αjOj ⊗ Pj ,

diagonal in the local basis defined by MB (as Tr ρAB O ⊗
Pj = Tr ρ 0

AB O ⊗ Pj ), such that Sf (ρ 0
AB) > Sf (ρAB) ∀ Sf .

The difference I
MB

f is then a measure of the correlations
hO ⊗ |jBihkB |i, k 6= j , contained in the original state ρAB

and absent in ρ 0
AB . In particular, if MB is a measurement in

a basis where ρB is diagonal, ρ 0
AB reproduces not only ρA

(ρ 0
A = TrB ρ 0

AB = ρA ∀ MB) but also ρB (ρ 0
B = TrA ρ 0

AB = ρB

for this measurement), as well as all averages hO ⊗ Pj i, being
the more mixed state with such property. Notice that in contrast
to ρ 0

AB , the state ρA ⊗ ρB is in general not more mixed than
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the original state (ρA ⊗ ρB ≺/ ρAB), so that the positivity of
Eq. (12) cannot be extended to a general entropy.

B. General stationary condition

Let us now derive the equations determining the least
disturbing local measurement defined by Eq. (4).

Theorem 1. For a given entropic function f , the least
disturbing local measurement satisfies the equation

TrA[f 0(ρ 0
AB),ρAB] = 0 , (13)

where f 0 is the derivative of f and ρ 0
AB the post-measurement

state (1).
Proof. The generalized entropy of the state (1) is

Sf (ρ 0
AB) =

X
i,j

f
¡
pi

j

¢
, pi

j = hij j |ρAB |ij j i , (14)

where hij j |ρAB |kj j i = δikp
i
j . Considering a small unitary

variation of the local measurement basis, such that δ|jBi =
(eiδh − 1)|jBi ≈ iδh|jBi, with δh a small local Hermitian
operator, we have δpi

j ≈ ihij j |[ρAB,δhB]|ij j i up to first order
in δh, with δhB = I ⊗ δh. Hence,

δI
MB

f =
X
i,j

f 0¡pi
j

¢
δpi

j = iTr [f 0(ρ 0
AB),ρAB]δhB

= iTrB {TrA[f 0(ρ 0
AB),ρAB]}δh .

The condition δI
MB

f = 0 ∀ δh leads then to Eq. (13). ¥
Equation (13) implies explicitly

P
i f

0(pi
j )hij j |ρAB |ij ki =P

i f
0(pi

k)hikj |ρAB |ikki ∀ k,j , and determines a certain set of
feasible local bases {|jBi}. The corresponding states |ij i of A

depend in general on j .
The minimizing basis {|jBi} will not diagonalize, in gen-

eral, the reduced state ρB . Nonetheless, the local eigenstates
will be optimum in some important situations: If in a standard
product basis {|ij i = |iAi|jBi} formed by eigenstates of ρA

and ρB the only off-diagonal elements of ρAB are hij |ρAB |kli
with i 6= k and j 6= l, such that

hij |ρAB |iki = δjkp
i
j , hij |ρAB |lj i = δilp

i
j , (15)

then Eq. (13) will be trivially satisfied ∀ Sf for a measurement
in the basis {|jBi}. Such basis would then provide a universal
stationary point of IB

f . This is precisely the case of a pure state,
written in the Schmidt basis as |9ABi = P

k

√
pk|kAkBi, and

also of a mixture of |9ABi with the maximally mixed state,

ρAB = x|9ABih9AB | + 1 − x

n
I, x ∈ [0,1],

where Eq. (15) and hence Eq. (13) will be satisfied ∀ f

for a measurement in the basis {|kBi}. It was shown in [17]
that such basis provides the universal least disturbing local
measurement for these states, minimizing I

MB

f ∀ Sf .
In the case of the linear entropy, f 0(ρ 0

AB) ∝ I − 2ρ 0
AB and

Eq. (13) becomes just TrA[ρ 0
AB,ρAB] = 0, indicating that the

post-measurement state ρ 0
AB should locally (in B) commute

with the original state.

In the case of the original discord of Eq. (11), the additional
local term leads in the variation to the modified equation

TrA[f 0(ρ 0
AB),ρAB] − [f 0(ρ 0

B),ρB] = 0 , (16)

where here f 0(ρ) can be replaced by − log ρ.

C. Two-qubit case

Let us now examine in detail the case of two qubits. Any
state of a two-qubit system can be written as

ρAB = 1
4

¡
I + rA · σA + rB · σB + σ t

AJσB

¢
, (17)

where σA ≡ σ ⊗ I , σB ≡ I ⊗ σ , with σ t = (σx,σy,σz) the
Pauli operators and I the identity (in the corresponding space).
The basic traces tr σμ = 0, tr σμσν = 2δμν for μ,ν = x,y,z,
ensure that

rA = hσAi , rB = hσBi , J = 
σAσ t

B

®
,

i.e., Jμν = hσAμ σBνi, where hOi = Tr ρAB O.
Any complete local projective measurement in B can be

considered as a spin measurement along the direction of
a unit vector k, represented by the orthogonal projectors
P±k = 1

2 (I ± k · σ ). This leaves just those elements of ρAB

proportional to k · σ , leading to the post-measurement state

ρ 0
AB = 1

4

£
I + rA · σA + (rB · k)k · σB + ¡

σ t
AJ k

¢
(k · σB)

¤
,

(18)

which corresponds to rB → kkt rB and J → J kkt in Eq. (17).
The information loss due to this measurement will be denoted
as I k

f ≡ Sf (ρ 0
AB) − Sf (ρAB).

We now show, using Eq. (13), that the general stationary
condition for the measurement direction k in B reads

α1rB + α2J
t rA + α3J

tJ k = λk , (19)

i.e., k × (α1rB + α2J
t rA + α3J

tJ k) = 0, where λ is a pro-
portionality factor and the coefficients αi are given by

(α1,α2,α3)=1

4

X
μ,ν=±1

f 0¡pμ
ν

¢ µ
ν,

νμ

|rA + νJ k| ,
μ

|rA + νJ k|
¶

,

(20)

with pμ
ν (μ,ν = ±1) the eigenvalues of Eq. (18):

pμ
ν = 1

4 (1 + νrB · k + μ|rA + νJ k|) . (21)

Proof. The state (18) is diagonal in the conditional product
basis formed by the eigenstates of k · σB and (rA + νJ k) · σA,
with ν = ±1 the eigenvalues of k · σB , which leads to the
eigenvalues in Eq. (21). We can then write

f 0(ρ 0
AB)

= 1

4

X
ν,μ

f 0¡pμ
ν

¢ µ
I + μ

rA + νJ k
|rA + νJ k| · σA

¶
(I + νk · σB) .

Using now the basic trace relations and [r · σ ,s · σ ] = 2i(r ×
s) · σ , we obtain TrA [(r · σA)(s · σB),σ t

AJσB] = 4i(s ×
J t r) · σB and hence

TrA [f 0(ρ 0
AB),ρAB] = i[k×(α1rB + α2J

t rA + α3J
tJ k)] · σB ,

with αi given by Eq. (20). Equation (13) leads then to
Eq. (19). ¥
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We can check Eq. (19) directly. From Eq. (21), we
have δpμ

ν = ν
4 (rB + μJt (rA+νJ k)

|rA+νJ k| ) · δk for small changes δk
in the measurement direction, with k · δk = 0 since k is a
unit vector. The condition δI k

f = P
ν,μ f 0(pμ

ν )δpμ
ν = 0 then

implies (α1rB + α2J
t rA + α3J

tJ k) · δk = 0, which leads to
Eq. (19) since δk is orthogonal to k.

Writing k = (sin γ cos φ, sin γ sin φ, cos γ ), Eq. (19) leads
to a transcendental system for γ,φ [tan γ = dz/

√
d2

x +d2
y ,

tan φ = dy/dx , with d the left-hand side of Eq. (19)]. Equa-
tion (19) can be also seen as a self-consistent eigenvalue
equation for the matrix (α1rB + α2J

t rA)kt + α3J
tJ .

Let us remark that the initial reduced local state ρB =
TrA ρAB = 1

2 (I + rB · σ ) becomes

ρ 0
B = 1

2 [I + (rB · k)(k · σ )] (22)

after the local measurement. The minimizing direction k will
depend on the matrix J and may obviously deviate from rB ,
changing the local state. A “transition” in the direction of
the least disturbing k, from rB to the direction of the main
eigenvector of J tJ , can then be expected from Eq. (19) as J

increases from 0, whose details will in general depend on the
choice of entropy (see Sec. III).

In the case of the original quantum discord [Eq. (11)],
the extra local contribution in Eq. (16) leads to the modified
stationary condition (see also [34])

(α1 − η)rB + α2J
t rA + α3J

tJ k = λk , (23)

where η = 1
2

P
ν=± νf 0(pν) = 1

2 log(p−/p+), with pν =P
μ pμ

ν = 1
2 (1 + νrB · k) the eigenvalues of ρ 0

B . The extra
term −ηrB will tend to diminish the effect of rB , favoring
the direction determined by J tJ .

D. Quadratic and cubic information measures

While the evaluation of a general entropy Sf (ρ) requires
the determination of the eigenvalues of ρ, those choices of f

involving just low integer powers of ρ allow one to determine
Sf (ρ) without their explicit knowledge. For instance, using
just the basic trace relations tr σμ = 0 and tr σμσν = 2δμν , the
linear entropy (7) of any two-qubit state can be evaluated as

S2(ρAB) = 3
2 − 1

2 (|rA|2 + |rB |2 + ||J ||2) , (24)

where ||J ||2 = tr J tJ and |r|2 = r · r = r t r . For the post-
measurement state (18), Eq. (24) becomes

S2(ρ 0
AB) = 3

2 − 1
2 |rA|2 − 1

2 ktM2k, (25)

M2 = rB r t
B + J tJ , (26)

where M2 is a positive semidefinite symmetric matrix.
The information loss becomes therefore

I k
2 = 1

2 (|rB |2 + ||J ||2 − ktM2k) = 1
2 (tr M2 − ktM2k) . (27)

The minimum I k
2 is just twice the geometric discord, defined

and evaluated for two qubits in [16]. It corresponds then to k
directed along the eigenvector with the largest eigenvalue of
the matrix M2:

IB
2 (ρAB) = Min

k
I k

2 = 1
2 (tr M2 − λ1) = 1

2 (λ2 + λ3), (28)

where (λ1,λ2,λ3) are the eigenvalues of M2 sorted in decreas-
ing order. A state ρAB which is already of the form (18) leads
to IB

f (ρAB) = 0 ∀ Sf and is then characterized by a matrix
M2 of rank 1 (such that λ2 = λ3 = 0). It is verified that for
f 0(pμ

ν ) ∝ 1 − 2pμ
ν , Eq. (19) reduces to the present eigenvalue

equation M2k = λk, since (α1,α2,α3) ∝ (rB · k,0,1).
Another entropy and quantum correlation measure which

can be evaluated in closed form for any state of two qubits are
those obtained for the q = 3 case in Eq. (10),

S3(ρ) = 4
3 (1 − Tr ρ3) . (29)

Theorem 2. The entropy S3(ρAB) of the general two-qubit
state (17), and the ensuing minimum information loss IB

3 (ρAB)
due to a local measurement in B, are given by

S3(ρAB) = 1
2

£
S2(ρAB) + 1 − ¡

r t
A J rB − det J

¢¤
, (30)

IB
3 (ρAB) = Min

k
I k

3 = 1
4 (tr M3 − 2 det J − λ1)

= 1
4 (λ2 + λ3) − 1

2 det J , (31)

where S2(ρAB) is the entropy in Eq. (24) and (λ1,λ2,λ3) are
the eigenvalues sorted in decreasing order of the matrix

M3 = rB r t
B + J tJ + rB r t

AJ + J t rAr t
B , (32)

which is positive semidefinite.
Proof. Applying the basic trace relations together with

tr σμσνστ = 2i²μντ , with ² the fully antisymmetric tensor
(μ,ν,τ ∈ {x,y,z}), the only terms with nonzero trace in ρ3

are Tr(σ t
AJσB)3 = 3!(2i)2det J , Tr(r t

AσA)(σ t
AJσB)(r t

BσB) =
4r t

AJ rB (and the same for its 3! permutations) and the
quadratic terms appearing already in Trρ2. This leads to
Eq. (30).

Using Eq. (30), the cubic entropy of the post-measurement
state (18) can be written as

S3(ρ 0
AB) = 5

4 − 1
4 (|rA|2 + ktM3k) , (33)

where M3 is the matrix (32), since r t
AJ rB = tr rB r t

AJ =
tr J t rAr t

B and det(J kkt ) = 0. The matrix M3 is clearly
symmetric and also positive semidefinite, as ktM3k > (|k ·
rB | − |J k|)2 > 0 ∀ k if |rA| 6 1. The information loss I k

3 =
S3(ρ 0

AB) − S3(ρAB) is therefore

I k
3 = 1

4 (tr M3 − 2 det J − ktM3k) , (34)

where tr M3 = |rB |2 + ||J ||2 + 2r t
AJ rB . Its minimum cor-

responds then to k along the eigenvector with the largest
eigenvalue of M3, which leads to Eq. (31). ¥

It is verified that Eq. (19) leads in the present case to
the same eigenvalue equation M3k = λk, since (α1,α2,α3) ∝
(r t

B k + r t
AJ k,r t

B k,1) for f 0(pμ
ν ) ∝ 1 − 3(pμ

ν )2. As opposed
to I k

2 , the minimizing measurement can now depend also on
rA through the last terms of M3. A state of the form (18) is
then characterized by matrices M3 and J of rank 1, such that
Eq. (31) vanishes.

Let us notice that under arbitrary local rotations σ α →
Rασ α for α = A,B (RαRt

α = I , det Rα = +1), we have rα →
Rt

α rα and J → Rt
AJRB in Eq. (17), such that M2 → Rt

BM2RB

and M3 → Rt
BM3RB . Their eigenvalues remain therefore

invariant. Of course, det J and all other terms in Eqs. (24)
and (30) remain also unaltered.
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Equations (24) and (30) provide in fact strict bounds on
these invariants. As S2(ρAB) > 0 ∀ ρAB , Eq. (24) implies

|rA|2 + |rB |2 + ||J ||2 6 3 , (35)

with |rA|2 + |rB |2 + ||J ||2 = 3 if and only if ρAB is pure
[ρ2

AB = ρAB , S2(ρAB) = 0]. Moreover, as Tr ρq 0 6 Tr ρq if
q 0 > q > 0, for the present normalization we have S3(ρ) >
2
3S2(ρ), which for a two-qubit state implies

r t
AJ rB − det J 6 1 − 1

3S2(ρAB) , (36)

with r t
AJ rB − det J = 1 if and only if ρAB is pure. We can

verify these results by writing a pure state of two qubits
in the Schmidt basis, |9ABi = √

p |00i + √
1 − p |11i, with

p ∈ [0,1], which leads to |rA| = |rB | = |2p − 1|, ||J ||2 =
1 + 8p(1 − p), r t

AJ rB = (2p − 1)2 and det J = −4p(1 −
p), and hence to equality in Eqs. (35) and (36).

An important final remark concerning the quadratic and
cubic entropies is that for an arbitrary single-qubit state ρA =
1
2 (I2 + rA · σ ) they are identical, since trσm

μ = 0 for m odd:

S2(ρA) = S3(ρA) = 1 − |rA|2 . (37)

This entails that the corresponding entanglement monotones
[45] for a two-qubit state are also identical [17], coinciding
with the square of the concurrence CAB [36,37]. Both quanti-
ties IB

2 and IB
3 reduce then to the squared concurrence C2

AB in
the case of a pure two-qubit state.

This last result can be directly verified using the pre-
vious Schmidt decomposition. Both matrices M2 and M3

become diagonal in the ensuing z basis, their two lowest
eigenvalues being identical: λ2 = λ3 = 4p(1 − p) = −det J .
Equations (28) and (31) lead then to IB

2 = IB
3 = 4p(1 − p),

which is just the square of CAB = 2
√

p(1 − p).

III. APPLICATION

A. States with maximally mixed reduced states

As a first example, let us consider rA = rB = 0 in Eq. (17),
such that ρA = ρB = 1

2I and

ρAB = 1
4

¡
I + σ t

AJσB

¢
. (38)

We will show the following for the state given in Eq. (38):
(a) The measurement direction k in system B minimizing

IB
f is universal, i.e., the same for any entropy Sf , and given

by that of the eigenvector with the largest eigenvalue of the
matrix J tJ .

(b) The ensuing minimum information loss is given by

IB
f (ρAB) = 2f

µ
p1 + p2

2

¶
+ 2f

µ
p3 + p4

2

¶
− f (p1) − f (p2) − f (p3) − f (p4) , (39)

where (p1,p2,p3,p4) are the eigenvalues of Eq. (38) sorted in
decreasing order.

(c) IA
f = IB

f ∀ f , the minimizing direction in A being that
of the eigenvector with the largest eigenvalue of JJ t .

Proof of (a). For rA = rB = 0, the eigenvalues in
Eq. (21) of ρ 0

AB become pμ
ν (k) = 1

4 (1 + νμ|J k|), be-
ing two-fold degenerate. If km is the normalized
eigenvector with the largest eigenvalue (J 2

m) of J tJ ,

we have |J k| =
√

kt J tJ k 6
√

kt
mJ tJ km = |Jm| for any

unit vector k, and hence pμ
μ(k) 6 pμ

μ(km). This im-
plies that the distribution {pν

μ(k)} is majorized [41] by
{pν

μ(km)}, i.e.,

ρ 0
AB(k) ≺ ρ 0

AB(km) = 1
4 [I + Jm(k̃m · σA)(km · σB)] , (40)

where k̃m = J km/Jm is the corresponding eigenvector of JJ t ,
entailing Sf (ρ 0

AB(k)) > Sf (ρ 0
AB(km)) and hence I k

f > I
km

f ∀
k and Sf . The state ρ 0

AB(km) is thus the least mixed classical
state associated with ρAB , and measurement along km the least
disturbing local measurement (in B) for any Sf . Accordingly,
the general stationary condition (19) leads in this case to the
eigenvalue equation J tJ k = λk ∀ f , with M2 = M3 = J tJ

in Eqs. (26) and (32). ¥
This result is apparent. The local axes can be always chosen

such that the matrix J is diagonal. This can be achieved
through its singular value decomposition J = UAJ dUt

B , where
J d

μν = Jμδμν , with J 2
μ the eigenvalues of J tJ (the same as

those of JJ t ) and UA, UB orthonormal matrices (UαUt
α = I ).

The signs of the Jμ should be chosen such that Uα are rotation
matrices (det Uα = +1). Replacing σ α → Uασ α in Eq. (38),
we then obtain

ρAB = 1

4

µ
I +

X
μ=x,y,z

JμσAμσBμ

¶
. (41)

Since |Jm| = Max[|Jx |,|Jy |,|Jz|], the universal least disturb-
ing measurement is, therefore, along the maximally correlated
direction, leaving the largest term of Eq. (41) in the post-
measurement state of Eq. (40). Note that Eq. (41) satisfies
Eqs. (15) in a product basis formed by the eigenstates of
σAμσBμ, for any μ = x,y,z.

Proof of (b). Equation (41) is diagonal in the Bell
basis {|91,2i = |00i±|11i√

2
, |93,4i = |01i±|10i√

2
}, i.e., ρAB =P

i pi |9iih9i |, with eigenvalues

p1,2 = 1 + Jz ± (Jx − Jy)

4
, p3,4 = 1 − Jz ± (Jx + Jy)

4
.

Without loss of generality we may always choose the local
axes x,y,z such that |Jm| = |Jz| > |Jx | > |Jy |, with Jz > 0
and Jx > 0 (rotations of angle π around one of the axes in
A or B lead to Jμ → −Jμ for the other axes). In such a case
p1 > p2 > p3 > p4, and the least disturbing measurement is
along z, such that Eq. (40) becomes

ρ 0
AB(km) = 1

4 (I + JzσAzσBz) , (42)

having degenerate eigenvalues

1 + Jz

4
= p1 + p2

2
,

1 − Jz

4
= p3 + p4

2
.

The minimum information loss IB
f = Sf (ρ 0

AB(km)) − Sf (ρAB)
becomes therefore Eq. (39), where (p1,p2,p3,p4) are
in general the eigenvalues of ρAB sorted in decreasing
order. ¥

Proof of (c). Since Eq. (39) is fully determined by the sorted
eigenvalues of ρAB , we have obviously IA

f = IB
f , a result which

is apparent from the symmetric representation (41). From
Eq. (40) it is seen that the minimizing measurement in A is
along k̃m. ¥
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Let us now discuss the main features of Eq. (39). It is
verified that the strict concavity of f ensures IB

f (ρAB) > 0 ∀
Sf , with IB

f (ρAB) = 0 only if p1 = p2 and p3 = p4, in which
case ρAB = ρ 0

AB = p1(|00ih00| + |11ih11|) + p3(|01ih01| +
|10ih10|) is a classically correlated state.

In the von Neumann case f (p) = −p log2 p, Eq. (39) is
just the quantum discord DA = DB of the state, coinciding
with the result of Ref. [29]. For the states (38), ρ 0

B = ρB = 1
2I

for any MB , entailing that the quantum discord of Eq. (11)
reduces to the information deficit, i.e., to the present quantity
IB
f for the von Neumann choice of f .

In the quadratic case of Eq. (7), Eqs. (28) or (39) lead to

IB
2 (ρAB) = 1

2

¡
J 2

x + J 2
y

¢ = (p1 − p2)2 + (p3 − p4)2 , (43)

which is just twice the geometric discord of the state, whereas
in the cubic case [Eq. (30)], Eqs. (31) or (39) lead to

IB
3 (ρAB) = 1

4

¡
J 2

x + J 2
y

¢ − 1
2JxJyJz, (44a)

= (p1 − p2)2(p1 + p2) + (p3 − p4)2(p3 + p4),

(44b)

which is just the average of the terms in Eq. (43) and implies
IB

3 (ρAB) 6 IB
2 (ρAB).

Let us notice that for small Jμ, Eq. (39) becomes in fact
proportional to Eq. (43) for any Sf : Setting Jm = Jz,

IB
f (ρAB) ≈ 1

2cf

¡
J 2

x + J 2
y

¢ + O(J 3) = cf IB
2 (ρAB) + O(J 3),

(45)

with cf = − 1
4f 00( 1

4 ) > 0. This implies a universal quadratic
behavior in the vicinity of the maximally mixed state I/4, in
agreement with the general results of [17].

Relation with entanglement. It is well known that the
state (38) is entangled if and only if its largest eigenvalue
p1 satisfies p1 > 1/2. Its concurrence [36] is given by

CAB = Max[2p1 − 1,0] , (46)

with 2p1 − 1 = p1 − p2 − p3 − p4. This implies

IB
2 > C2

AB, IB
3 > C2

AB , (47)

with equality for CAB > 0 valid in both cases only
if p3 = p4 = 0 [C2

AB 6 (p1 − p2)2 − (p1 − p2)(p3 + p4) 6
(p1 − p2)2(p1 + p2) if p3 + p4 6 p1 − p2]. Equation (47)
means that for the states (38), IB

2 and IB
3 are both upper

bounds to their corresponding entanglement monotone. This
is not a general property. For instance, it is not valid in
the von Neumann case f (ρ) = −ρ log2 ρ, where Eq. (39)
can be lower than the entanglement of formation EAB =P

ν=± f (
1+ν

√
1−C2

AB

2 ) [36] for the present states.
Figure 1 depicts the maximum and minimum values reached

by IB
2 and IB

3 in the states (38) for fixed values of the maximum
eigenvalue p1. The common minimum is just the squared
concurrence C2

AB , reached for p3 = p4 = 0 if p1 > 1/2 (and
p2 = p1, p3 = p4 if p1 6 1/2). The maximum is reached for
p2 = p3 = p4 if p1 > 7/13 ≈ 0.54 for I2 and p1 & 0.44 for
I3, and for p2 = p3, p4 = 0, if p1 lies below the previous
values and above 1/3. As a result, the maximum values for
zero concurrence of I2 and I3 within these states are 1/8 and
2/27, respectively, obtained at p1 = 1/2.

0.25 0.5 0.75 1.0
p1

0.5

1.0

I qB

q 2
q 3
CAB

2

0.25 0.5 0.75 1.0p

0.5

I q =1
EAB

FIG. 1. (Color online) Maximum and minimum values reached
by the quantum correlation measures IB

2 (ρAB ) and IB
3 (ρAB ) in the

state (38), Eqs. (43)–(44), as a function of its maximum eigenvalue p1.
The common minimum is just the squared concurrence C2

AB , whereas
the respective maxima are indicated by the dashed and dashed-dotted
lines. The inset depicts the maximum and minimum values reached
in this state by IB

f in the von Neumann case (q = 1), where it
coincides with the quantum discord, with the solid line depicting
the entanglement of formation. The least disturbing measurement is
here the same for all entropies, and along the direction of the main
principal axis of J tJ (see text). Quantities plotted are dimensionless
in all figures.

In contrast, in the von Neumann case the minimum (again
obtained for p3 = p4 = 0 if p1 > 1/2) lies clearly below EAB

∀ p ∈ (1/2,1), and even the maximum (attained at p2 = p3 =
p4 if p & 0.86 and p2 = p3, p4 = 0 if 1/3 6 p1 . 0.86) lies
below EAB if p1 & 0.91. If p 6 1/3 the maximum in these
three measures is reached for p2 = p3 = p1.

B. States with parity symmetry

Let us now consider the case where both rA and rB are
directed along the same principal axis, i.e., rB along k and rA

along J k, with k an eigenvector of J tJ (and hence, J k an
eigenvector of JJ t ). Choosing these axes as the local z axes,
such that rA = rAkz, rB = rB kz, and Jμν = Jμδμν , such state
can be written as

ρAB = 1

4

Ã
I + rAσAz + rBσBz +

X
μ=x,y,z

JμσAμσBμ

!

= 1

4

⎛
⎜⎝

a+ 0 0 α+
0 c+ α− 0
0 α− c− 0

α+ 0 0 a−

⎞
⎟⎠ ,

a± = 1 + Jz ± (rA + rB)
c± = 1 − Jz ± (rA − rB)
α± = Jx ∓ Jy

,

(48)

where the matrix is the representation in the standard basis of
σAzσBz eigenstates. This state commutes with the spin-parity
[38] Pz = − exp[iπ (σAz + σBz)/2]. It is also denoted as an X

state [32].
We will now show that a measurement of σB along any

of the principal axes x,y,z will provide a stationary point of
I k
f ∀ Sf .

Proof: For a measurement along the z axis (k = kz), rA,
rB , and J tJ kz = J 2

z kz are all along this axis and Eq. (19) is
trivially satisfied ∀ αi . It is a particular case of Eq. (15), which
here holds in the standard basis.
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For a measurement along the x axis (k = kx), J tJ kx =
J 2

x kx while rB · kx = 0 and |rA + νJ kx | =√
r2
A+J 2

x . Hence
pμ

ν = 1
4 (1 + μ|rA + νJ kx |) is independent of ν. This leads

to α1 = α2 = 0 in Eq. (20), in which case Eq. (19) is again
satisfied. For k = ky the argument is similar. We also remark
that these arguments also apply to the quantum discord
[Eq. (11)], as η = 0 in Eq. (23) for k = kx or ky . ¥

While other stationary directions may also exist, the
principal axes are strong candidates for minimizing I k

f .
Typically, the minimum will be attained for measurements
along z if Max[|Jx |,|Jy |] is sufficiently small, while otherwise
measurements along x or y can be preferred. A transition
between these two regimes will arise as Jx or Jy increases,
whose details will depend on the entropic function and may
involve intermediate directions k.

Writing k = (sin γ cos φ, sin γ sin φ, cos γ ), these inter-
mediate solutions can be found from Eq. (19), which leads here
to φ = 0 or φ = π/2 (if |Jx | > |Jy |, the minimum corresponds
to φ = 0 for any Sf , as the ensuing distribution majorizes that
for φ = π/2) and to γ = 0 or

cos γ = α1rB + α2JzrA

α3
¡
J 2

x − J 2
z

¢ , (49)

where we have assumed |Jx | > |Jy | such that φ = 0. The
intermediate solutions |γ | ∈ (0,π/2) of Eq. (49), if existent,
are degenerate, as both choices ±γ lead to the same I k

f . Just
the principal axes solutions are nondegenerate.

The final expression for IB
f is formally

IB
f (ρAB) =

X
μ,ν=±

f
¡
pμ

ν

¢ − f
¡
λμ

ν

¢
, (50)

where pμ
ν = 1

4 (1 + νrBkz + μ
p

(rA + νJzkz)2 + J 2
x k2

x) are the
eigenvalues [Eq. (21)] of ρ 0

AB , and λμ
ν those of ρAB :

λμ
ν = 1

4 [1 + νJz + μ

q
(rA + νrB)2 + (Jx − νJy)2] . (51)

We can verify the previous results in the quadratic and cubic
cases. For an X state, both matrices M2 and M3 [Eqs. (26)
and (32)] are diagonal in the principal axes basis:

M2μν
= δμν

¡
J 2

μ + δμzr
2
B

¢
,

M3μν
= δμν

£
J 2

μ + δμz

¡
r2
B + 2rBrAJz

¢¤
.

Hence, the optimum measurement will be along the axis with
the maximum diagonal value and no intermediate solutions
will arise (for nondegenerate eigenvalues), as opposed to
the general case. Assuming |Jy | < |Jx |, a “sharp” z → x

transition for the least disturbing measurement will then take
place, the x axis preferred for

J 2
x > J 2

z + r2
B, q = 2, (52)

J 2
x > J 2

z + r2
B + 2rBrAJz, q = 3, (53)

in the quadratic and cubic cases, respectively, such that

IB
2 (ρAB) = 1

2

©
J 2

y + Min
£
J 2

x ,r2
B + J 2

z

¤ª
, (54)

IB
3 (ρAB) = 1

4

©
J 2

y − 2JxJyJz

+ Min
£
J 2

x ,r2
B + J 2

z + 2rArBJz

¤ª
. (55)

These expressions are in general no longer upper bounds to
the squared concurrence, which for these states is CAB =
1
2 Max[|α+| − √

c+c−,|α−| − √
a+a−,0]. Nonetheless, IB

2 re-
mains an upper bound to C2

AB in the “z phase”, as C2
AB 6

1
4 (|Jx | + |Jy |)2 6 1

2 (J 2
x + J 2

y ).

C. Mixture of aligned states

As a particular relevant example of Eq. (48), we will
consider the mixture of two states with spins aligned along
different directions. Choosing the z axis as the bisector, such
state can be written as

ρAB = 1
2 (|θθihθθ | + | − θ − θih−θ − θ |), (56a)

= 1

4

⎛
⎜⎝

a+ 0 0 c

0 c c 0
0 c c 0
c 0 0 a−

⎞
⎟⎠ ,

a± = (1 ± cos θ )2

c = sin2 θ
, (56b)

which corresponds to (Jx,Jy,Jz) = (sin2 θ,0, cos2 θ ) and rA =
rB = cos θ in Eq. (48). Here

|θi = exp

·
−i

θ

2
σy

¸
|0i = cos

θ

2
|0i + sin

θ

2
|1i (57)

is the state with the spin forming an angle θ with the z axis
in the (x,z) plane. The relevance of this state was discussed
in [33]. It represents, roughly, the state of a spin pair in the
definite parity ground state of a finite n spin ferromagnetic type
XY spin chain in a transverse field for |B| < Bc, and the exact
state of any pair at the immediate vicinity of the factorizing
field [38] (neglecting small coherence terms ∝ cosn−2 θ ).

This state is separable, i.e., it is a convex mixture of product
states [8], and the concurrence CAB accordingly vanishes ∀
θ . Nonetheless, it has nonzero discord [33] if θ ∈ (0,π/2).
It will then have nonzero values of any IB

f in this interval,
with IB

f = IA
f ∀ Sf due to the symmetry of the state. For

θ = 0 it is obviously a pure product state, while for θ = π/2
it is a classically correlated state, i.e., diagonal in a standard
product basis, implying IB

f (θ ) ≡ IB
f (ρAB(θ )) = 0 for θ = 0 or

π/2 ∀ Sf .
It can be expected that as θ increases, the least disturbing

measurement will change from z to x. In the quadratic and
cubic cases, the transition is sharp. We obtain, according to
Eqs. (52)–(55),

IB
2 = 1

2

½
sin4 θ θ < θc2

cos2 θ + cos4 θ θ > θc2
, (58)

IB
3 = 1

4

½
sin4 θ θ < θc3

cos2 θ + 3 cos4 θ θ > θc3
, (59)

where cos2 θc2 = 1/3 (θc2 ≈ 0.61π/2) and cos2 θc3 = (
√

17 −
3)/4 (θc3 ≈ 0.64π/2), with the minimizing measurement
changing from z to x for θ > θci . These two quantities exhibit
then a cusplike maximum at θ = θci , i.e., slightly above π/4,
as seen in Fig. 2.

On the other hand, for other entropies a smooth transition
from z to the x direction can arise. For instance, in the von
Neumann case, z is preferred exactly for θ 6 π/4, but x is
minimum only for θ & 0.64π/2. In between, the optimum
measurement is obtained for an intermediate angle γ , as
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B
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0 π/4 π/2
θ

0

π/4

π/2

γ

I1
B

I2
B

I3
B
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FIG. 2. (Color online) Top: Quantum correlation measures
IB
q (ρAB ) in the state (56), as a function of angle θ for q = 1 (von

Neumann case), 2, and 3. DB denotes the quantum discord. Bottom:
Least disturbing measurement angle γ vs θ for the same cases
depicted above. It is seen that γ exhibits a sharp transition from 0 to
π/2 (i.e., from z to the x axis) in the quadratic (q = 2) and cubic (q =
3) cases, whereas in the von Neumann case (q = 1) the transition is
smooth. No transition arises in the case of the quantum discord.

determined by Eq. (49), which varies continuously from 0
to π/2, as seen in Fig. 2. This leads to a smooth maximum,
located closer to π/4. In the case of the quantum discord, the
minimizing angle is γ = π/2 ∀ θ , exhibiting then a different
behavior due to the effect of the local term. In this case a
relative entropy, rather than a total entropy, is minimized.

For the present state there is no least mixed state ρ 0
AB , and

the least disturbing measurement depends, therefore, on the
entropic function. To appreciate previous results from a more
general perspective, the behavior of the minimizing angle for
different q in the measures of Eq. (9) is depicted in Fig. 3. The
sharp transition z → x (i.e., 0 → π/2) occurs for 2 6 q 6 3,
indicating a special critical behavior at these two values. A

0 π/4 π/2
θ

0

π/4

π/2

γ

0 0.3 0.5 0.7 1 1.5 2 3

5 10

FIG. 3. (Color online) Least disturbing measurement angle γ vs
θ determined by IB

q (θ ), for different values of q.

smoothed transition like that encountered in the von Neumann
case arises for 1/2 < q < 2 and also q > 3, where γ varies
continuously from 0 to π/2 within some window of θ values,
which narrows for q close to 2 or 3.

For 0 < q 6 1/2, the minimizing angle changes sharply
from 0 to an intermediate value γ ≈ θ , increasing then almost
linearly with θ (γ ≈ θ ). This is due to the fact that for low
q, Sq(ρ 0

AB) is minimized when the lowest eigenvalue of ρ 0
AB

vanishes, and this occurs precisely for γ = θ . On the other
hand, for high q, Sq(ρ 0

AB) is minimized when the largest
eigenvalue of ρ 0

AB is maximum, which occurs for γ = 0
if θ 6 θc ≈ 0.66π/2 and for an intermediate γ if θ > θc,
which varies continuously from 0 to π/2 for θc < θ < π/2.
Accordingly, for high but finite q, γ = 0 for θ . θc, increasing
then with θ and reaching π/2 at an increasingly higher θ .
Different disorder criteria lead then to different least disturbing
measurements in this case, in contrast with the state (38).

IV. CONCLUSIONS

We have analyzed the determination of the minimum infor-
mation loss IB

f associated with an unread local measurement
in a bipartite system, for a general entropy Sf . Such a quantity
is a measure of the quantum correlations lost in the local
measurement, and reduces to the information deficit and the
geometric discord when Sf is chosen as the von Neumann and
linear entropy, respectively. A general stationary condition was
derived, together with its explicit form for an arbitrary mixed
state of two qubits. Explicit expressions for the cubic entropy
and the associated measure IB

3 were in this case obtained,
which require, as in the quadratic case (geometric discord),
just the eigenvalues of a 3 × 3 matrix.

As an application, we first examined two-qubit mixed
states with maximally mixed marginals, where the minimum
information loss IB

f for any entropy was shown to be a
simple function of the eigenvalues of ρAB . The minimizing
measurement is in this case universal. Moreover, in this case
IB

2 and IB
3 were shown to be strict upper bounds of the squared

concurrence, which is the associated entanglement monotone
for both entropies. We have also analyzed the case of X states,
providing explicit expressions for IB

2 and IB
3 and showing that

spin measurements along the principal axes of the matrix J tJ

are universal stationary points of IB
f for any Sf .

Finally, the special case of a mixture of aligned states
was examined in detail. Here the least disturbing local
measurement changes, for all measures Sf , from the z (bisector
axis) to the x axis as the angle 2θ between both directions
changes from 0 to π , being then different from that optimizing
the original quantum discord (which stays constant), although
the type of transition depends on the information measure
employed. The least disturbing measurement according to IB

f

is thus more sensible to the strength of the correlation, and
reflects the “transition” experienced by the state. Application
of the present formalism to more complex systems is currently
under investigation.
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[16] B. Dakić, V. Vedral, and C. Brukner, Phys. Rev. Lett. 105,
190502 (2010).

[17] R. Rossignoli, N. Canosa, and L. Ciliberti, Phys. Rev. A 82,
052342 (2010).

[18] K. Modi et al., Phys. Rev. Lett. 104, 080501 (2010).
[19] S. Luo, Phys. Rev. A 77, 022301 (2008).
[20] V. Madhok and A. Datta, Phys. Rev. A 83, 032323 (2011).
[21] D. Cavalcanti et al., Phys. Rev. A 83, 032324 (2011).

[22] M. Piani et al., Phys. Rev. Lett. 106, 220403 (2011).
[23] L. Roa, J. C. Retamal, and M. Alid-Vaccarezza, Phys. Rev. Lett.

107, 080401 (2011).
[24] A. Shabani and D. A. Lidar, Phys. Rev. Lett. 102, 100402 (2009).
[25] A. Ferraro et al., Phys. Rev. A 81, 052318 (2010).
[26] F. F. Fanchini, M. F. Cornelio, M. C. de Oliveira, and A. O.

Caldeira, Phys. Rev. A 84, 012313 (2011).
[27] B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G. White,

Phys. Rev. Lett. 101, 200501 (2008).
[28] A. Datta and S. Gharibian, Phys. Rev. A 79, 042325 (2009).
[29] S. Luo, Phys. Rev. A 77, 042303 (2008).
[30] M. S. Sarandy, Phys. Rev. A 80, 022108 (2009).
[31] T. Werlang, S. Souza, F. F. Fanchini, and C. J. Villas Boas, Phys.

Rev. A 80, 024103 (2009).
[32] M. Ali, A. R. P. Rau, and G. Alber, Phys. Rev. A 81, 042105

(2010); 82, 069902(E) (2010).
[33] L. Ciliberti, R. Rossignoli, and N. Canosa, Phys. Rev. A 82,

042316 (2010).
[34] D. Girolami and G. Adesso, Phys. Rev. A 83, 052108 (2011).
[35] Y-C. Li and H-Q. Lin, Phys. Rev. A 83, 052323 (2011).
[36] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[37] P. Rungta and C. M. Caves, Phys. Rev. A 67, 012307 (2003);

P. Rungta et al., ibid. 64, 042315 (2001).
[38] R. Rossignoli, N. Canosa, and J. M. Matera, Phys. Rev. A 77,

052322 (2008); 80, 062325 (2009).
[39] N. Canosa and R. Rossignoli, Phys. Rev. Lett. 88, 170401 (2002).
[40] H. Wehrl, Rev. Mod. Phys. 50, 221 (1978).
[41] R. Bhatia, Matrix Analysis (Springer-Verlag, New York, 1997).
[42] R. Rossignoli and N. Canosa, Phys. Rev. A 67, 042302 (2003);

66, 042306 (2002).
[43] V. Vedral, Rev. Mod. Phys. 74, 197 (2002).
[44] C. Tsallis, J. Stat. Phys. 52, 479 (1988); Introduction to Non-

extensive Statistical Mechanics (Springer, New York, 2009).
[45] G. Vidal, J. Mod. Opt. 47, 355 (2000).

052329-9

http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.76.722
http://dx.doi.org/10.1098/rspa.2002.1097
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.81.5672
http://dx.doi.org/10.1103/PhysRevA.72.042316
http://dx.doi.org/10.1103/PhysRevA.72.042316
http://dx.doi.org/10.1103/PhysRevA.40.4277
http://dx.doi.org/10.1103/PhysRevLett.88.017901
http://dx.doi.org/10.1088/0305-4470/34/35/315
http://dx.doi.org/10.1103/PhysRevLett.90.050401
http://dx.doi.org/10.1103/PhysRevA.67.012320
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevLett.100.050502
http://dx.doi.org/10.1103/PhysRevA.71.062307
http://dx.doi.org/10.1103/PhysRevLett.89.180402
http://dx.doi.org/10.1103/PhysRevLett.106.160401
http://dx.doi.org/10.1103/PhysRevLett.106.160401
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1103/PhysRevLett.105.190502
http://dx.doi.org/10.1103/PhysRevA.82.052342
http://dx.doi.org/10.1103/PhysRevA.82.052342
http://dx.doi.org/10.1103/PhysRevLett.104.080501
http://dx.doi.org/10.1103/PhysRevA.77.022301
http://dx.doi.org/10.1103/PhysRevA.83.032323
http://dx.doi.org/10.1103/PhysRevA.83.032324
http://dx.doi.org/10.1103/PhysRevLett.106.220403
http://dx.doi.org/10.1103/PhysRevLett.107.080401
http://dx.doi.org/10.1103/PhysRevLett.107.080401
http://dx.doi.org/10.1103/PhysRevLett.102.100402
http://dx.doi.org/10.1103/PhysRevA.81.052318
http://dx.doi.org/10.1103/PhysRevA.84.012313
http://dx.doi.org/10.1103/PhysRevLett.101.200501
http://dx.doi.org/10.1103/PhysRevA.79.042325
http://dx.doi.org/10.1103/PhysRevA.77.042303
http://dx.doi.org/10.1103/PhysRevA.80.022108
http://dx.doi.org/10.1103/PhysRevA.80.024103
http://dx.doi.org/10.1103/PhysRevA.80.024103
http://dx.doi.org/10.1103/PhysRevA.81.042105
http://dx.doi.org/10.1103/PhysRevA.81.042105
http://dx.doi.org/10.1103/PhysRevA.82.069902
http://dx.doi.org/10.1103/PhysRevA.82.042316
http://dx.doi.org/10.1103/PhysRevA.82.042316
http://dx.doi.org/10.1103/PhysRevA.83.052108
http://dx.doi.org/10.1103/PhysRevA.83.052323
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevA.67.012307
http://dx.doi.org/10.1103/PhysRevA.64.042315
http://dx.doi.org/10.1103/PhysRevA.77.052322
http://dx.doi.org/10.1103/PhysRevA.77.052322
http://dx.doi.org/10.1103/PhysRevA.80.062325
http://dx.doi.org/10.1103/PhysRevLett.88.170401
http://dx.doi.org/10.1103/RevModPhys.50.221
http://dx.doi.org/10.1103/PhysRevA.67.042302
http://dx.doi.org/10.1103/PhysRevA.66.042306
http://dx.doi.org/10.1103/PhysRevA.66.042306
http://dx.doi.org/10.1103/RevModPhys.74.197
http://dx.doi.org/10.1007/BF01016429
http://dx.doi.org/10.1080/09500340008244048

