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We discuss the necessity of using nonstandard boson operators for diagonalizing quadratic bosonic forms
which are not positive definite and its convenience for describing the temporal evolution of the system. Such
operators correspond to non-Hermitian coordinates and momenta and are associated with complex frequencies.
As application, we examine a bosonic version of a BCS-like pairing Hamiltonian, which, in contrast with the
fermionic case, is stable just for limited values of the gap parameter and requires the use of the present
extended treatment for a general diagonal representation. The dynamical stability of such forms and the
occurrence of nondiagonalizable cases are also discussed.
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Quadratic bosonic forms arise naturally in many areas of
physics at different levels of approximation. Starting from
the basic example of coupled harmonic oscillators, their
ubiquity is testified to by their appearance in standard treat-
ments of quantum optics f1g, disordered systems f2g, Bose-
Einstein condensates f3–6g, and other interacting many-body
boson and fermion systems f7,8g. In the latter they constitute
the core of the random-phase approximation sRPAd, which
arises as a first-order treatment in a bosonized description of
the system excitations or, alternatively, from the linearization
of the time-dependent mean-field equations of motion ftime-
dependent Hartree, Hartree-Fock sHFd, or HF-Bogoliubov
sHFBd f7,8gg. The ensuing forms are quite general and may
contain all types of mixing terms sqipj, qiqj, and pipjd when
expressed in terms of coordinates and momenta. Although
the standard situation—i.e., that where the RPA is con-
structed upon a stable mean field sthe Hartree, HF or HFB
vacuumd—corresponds to a positive form, in more general
treatments the RPA can also be made on top of unstable
mean fields, as occurs in the study of instabilities in binary
Bose-Einstein condensates f3–6g, and even around nonsta-
tionary running mean fields, as in the case of the static
path+RPA treatment of the partition function f9,10g, derived
from its path integral representation. In these cases the ensu-
ing forms may not be positive and may lead, as is well
known, to complex frequencies. Quadratic bosonic forms are
also relevant in the study of dynamical systems f11–13g, pro-
viding a basic framework for investigating diverse aspects
such as integrals of motion and semiclassical limits.

Now, a basic problem with such forms is that while in the
fermionic case they can always be diagonalized by means of
a standard Bogoliubov transformation f7g, in the bosonic
case they may not admit a similar diagonal representation in
terms of standard boson operators or in terms of the usual
Hermitian coordinates and momenta. These cases can of
course only arise in unstable forms which are not positive
definite. The aim of this work is to discuss the diagonal
representation of such forms in terms of nonstandard boson-
like quasiparticle operators sor, equivalently, non-Hermitian
coordinates and momentad, associated with complex normal
modes. This requires the use of generalized Bogoliubov
transformations since the usual one leads to a vanishing
norm in the case of complex frequencies. The present treat-

ment allows one then to identify the operators characterized
by an exponentially increasing or decreasing evolution, pro-
viding a precise description of the dynamics and of the qua-
dratic invariants in the presence of instabilities. It will also
become apparent that an analysis of the dynamical stability
based just on the Hamiltonian positivity may not be suffi-
cient.

As an application, we will discuss a bosonic version of a
BCS-type pairing Hamiltonian, which, in contrast with the
fermionic case, exhibits a complex behavior, losing its posi-
tive definite character above a certain threshold value of the
gap parameter and becoming dynamically unstable above a
second higher threshold. In the presence of a perturbation it
may even lead to a reentry of dynamical stability after an
initial breakdown. This example illustrates the existence of
simple quadratic forms which cannot be written in diagonal
form in terms of standard boson operators or coordinates and
momenta. Moreover, it also shows the existence of nondi-
agonalizable cases which do not correspond to a zero fre-
quency sand hence to a free-particle term, in contrast with
standard Goldstone or zero-frequency RPA modes arising
from mean fields with broken symmetries f7gd and which are
characterized by equations of motions which cannot be fully
decoupled.

A general Hermitian quadratic form in boson annihilation
and creation operators bi and bi

†, can be written as

H = o
i,j

AijSbi
†bj +

1

2
dijD +

1

2
sBijbi

†bj
† + Bij

* bibjd s1ad

=
1

2
Z†HZ, H = S A B

B* At D, Z = S b

b† D , s1bd

where A is a Hermitian matrix, B is symmetric, and Z†

= sb† ,bd, with b and b† arrays of components bi and bi
†. The

extended matrix H is Hermitian and satisfies in addition

H̄ ; THtT = H, T = S0 1

1 0
D . s2d

The boson commutation relations fbi ,bjg= fbi
† ,bj

†g=0 and
fbi ,bj

†g=dij can be succinctly expressed as
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ZZ† − sZ†tZtdt = M, M = S1 0

0 − 1
D . s3d

It is well known that if the matrix H possesses only
strictly positive eigenvalues, the quadratic form s1d can be
diagonalized by means of a standard linear Bogoliubov
transformation for bosons preserving Eqs. s3d f7g. This is the
standard situation where s1d represents a stable system with a
discrete positive spectrum, such as a system of coupled har-
monic oscillators. In general, however, and in contrast with
the fermionic case, it is not always possible to represent Eqs.
s1d as a diagonal form in standard boson operators. The
physical reason is obvious. If H is not strictly positive, Eq.
s1d may represent the Hamiltonian of systems like a free
particle or a particle in a repulsive quadratic potential sH
~ p2−q2d when expressed in terms of coordinates and mo-
menta, which do not possess a discrete spectrum. Nonethe-
less, one may still attempt to write s1d as a convenient diag-
onal form in suitable operators, such that the ensuing
equations of motion become decoupled and trivial to solve.

Let us consider for this aim a general linear transforma-
tion f7,8g

Z = WZ8, Z8 = Sb8

b̄8
D , s4d

where b̄i8 is not necessarily the adjoint of bi8, although bi8 and

b̄j8 are still assumed to satisfy the same boson commutation

relations—i.e., Z8Z̄8− sZ̄8tZ8tdt=M, where Z̄8;sb̄8 ,b8d
=Z8tT. Since Z†= Z̄8W̄, with W̄;TWtT, the matrix W
should then fulfill

WMW̄ = M , s5d

implying W−1=MW̄M. No conjugation is involved in Eq.

s5d. Note that Z̄;ZtT=Z† while in general Z̄8ÞZ8†

= Z̄8W̄sW†d−1. If b̄8=b8†, then W̄=W† sand vice versad and
Eq. s4d reduces to a standard Bogoliubov transformation for
bosons f7,8g. Equations s4d allow one to rewrite H as

H =
1

2
Z̄8H8Z8, H8 = W̄HW = SA8 B8

B̄8 A8tD , s6d

where relation s2d is preserved sH̄8=H8, implying B8 , B̄8
symmetricd, although in general H8†ÞH8. Finding a repre-
sentation where H8 is diagonal implies then an eigenvalue
equation with “metric” M—i.e., HW=MWMH8—which
can be recast as a standard eigenvalue equation for a non-

Hermitian matrix H̃:

H̃W = WH̃8, H̃ ; MH = S A B

− B* − At D . s7d

This matrix is precisely that which determines the tempo-
ral evolution of the system when H is the Hamiltonian, as the
Heisenberg equation of motion for b and b† is

i
dZ

dt
= − fH,Zg = H̃Z . s8d

Its solution for a time-independent H̃ is therefore

Zstd = UstdZs0d, Ustd = expf− iH̃tg s9d

(or in general Ustd=T expf−ie0
t H̃st8ddt8g, where T denotes

time ordering). The eigenvalues of H̃ characterize then the
temporal evolution and can be complex in unstable systems.

Nevertheless, since H̃†=HM=MH̃M and fEq. s2dg

TH̃tT = − MH̃M , s10d

it is easily verified that the commutation relations s3d are

always preserved ∀tPR, as Ūstd;TUtT=U†std and

UstdMŪstd=M. Moreover, the last identity remains valid

also for complex times falthough in this case ŪstdÞU†stdg, so
that Eq. s9d is a particular example of the general transfor-
mation s4d, becoming a standard Bogoliubov transformation
for bosons for tPR.

Equation s10d implies that DetfH̃t−lg=DetfH̃+lg, so

that the eigenvalues of H̃ sthe same as those of H̃td always
come in pairs sli ,līd of opposite sign slī=−lid. Equation
s10d also entails that the corresponding eigenvectors Wi scol-

umns of Wd satisfy the orthogonality relations W̄jMWi=

−W̄iMWj =0 if liÞ−l j, with W̄i;Wi
tT, which are those re-

quired by Eq. s5d sthe required norm is W̄īMWi=1d. In ad-

dition, for H Hermitian, DetfH̃−lg*=DetfH̃†−l*g=DetfH̃
−l*g, so that if l is an eigenvalue, so is l*. Combined with
Eq. s10d this implies that if Wi is an eigenvector with eigen-
value li, Wī* ;TWi

* is an eigenvector with eigenvalue −li
*.

For li real, the required norm can then be reduced to the
usual one for bosons f7g, Wi

†MWi=1. However, for li com-

plex, the usual norm vanishes sWi
†MWi=W̄ī*MWi=0 as li

Þ−lī* =li
*d while the present one does not in general. Note

finally that the eigenvalues of H̃ are the same as those of

H̃s;ÎHMÎH. When those of H are all non-negative, ÎH
and hence H̃s are Hermitian, so that all eigenvalues of H̃ are
real.

Let us assume now that the matrix H̃ is diagonalizable,
such that a nonsingular matrix W of eigenvectors exists.

Then W̄MW will be nonsingular, and due to the orthogo-
nality relations can be set equal to M if eigenvectors are

ordered and chosen such that W̄j̄MWi=dij. The ensuing W
will then satisfy Eqs. s5d and s7d with H̃8 diagonal. Through

the relation H8=MH̃8 and Eq. s6d we obtain finally the
diagonal representation

H = o
i

liSb̄i8bi8 +
1

2
D , s11d

where bi8=W̄īMZ and b̄i8=Z†MWi, with Wi and Wī the
eigenvectors with eigenvalues li and −li satisfying the

present norm sW̄īMWi=1d. If li is real, we may choose Wī
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=TWi
* such that W̄ī=Wi

† swith Wi
†MWi=1d and hence b̄i8

=bi8
†. Nonetheless, for complex li, b̄i8Þbi8

†. Equation s11d
remains, however, physically meaningful, as the eigenvalues
li determine the temporal evolution. We immediately obtain
from Eqs. s11d and s9d the decoupled evolution

bi8std = e−ilitbi8s0d, b̄i8std = eilitb̄i8s0d , s12d

in all cases, together with the quadratic invariants b̄i8bi8

=Z†MWiW̄īMZ. If all eigenvalues li are real and positive

swith b̄i8=bi8
†d, we have the standard case of a positive-

definite quadratic form. If all li are real but some of them are

negative swith b̄i8=bi8
†d, the system is unstable in the sense

that H is no longer positive and does not possess a minimum
energy, but the spectrum is still discrete and the temporal
evolution s9d remains stable. Finally, when some of the li are
complex, the evolution becomes unbounded, with
bi8stdfbi8stdg increasing fdecreasingg exponentially for Imslid
.0 and increasing t. In these cases the sign of li in Eqs. s12d
depends on the choice of operators and can be changed with

the transformation bi8→−b̄i8, b̄i8→bi8 swhich preserves the

commutation relationsd such that b̄i8bi8+ 1
2 →−sb̄i8bi8+ 1

2
d sfor

li real the sign can be fixed by the additional condition b̄i8

=bi8
†d. Cases where H̃ is not diagonalizable swhich may arise

when its eigenvalues are not all differentd are also dynami-
cally unbounded as the temporal evolution determined by
Eq. s9d will contain terms proportional to some power of t
stimes some exponential; see exampled.

We may also express s1d in terms of hermitian coordinates
q= sb+b†d /Î2 and momenta p= sb−b†d / sÎ2id, satisfying
fpi , pjg= fqi ,qjg=0, fqi , pjg= idij, as

H =
1

2o
i,j

Tijpipj + Vijqiqj + Uijqipj + Uij
t piqj s13ad

=
1

2
RtHcR, Hc = S V U

Ut T
D, R = Sq

p
D , s13bd

where V ,T=ResA±Bd and U=ImsB−Ad, with T, V, and Hc

symmetric. The corresponding transformation is

Z = SR, Hc = S†HS , s14d

where

S =
1
Î2

S1 i

1 − i
D

is unitary and satisfies S†=StT. The commutation relation for
R reads

RRt − sRRtdt = Mc, Mc = S†MS = S 0 i

− i 0
D , s15d

and the transformation s4d becomes

R = WcR8, WcMcWc
t = Mc, s16d

where Wc=S†WS and R8= s q8
p8

d satisfies Eq. s15d. Note that
q8 , p8 will not be Hermitian if Wc is complex. Standard lin-

ear canonical transformations among Hermitian coordinates
and momenta correspond to Wc real, which is equivalent to

the condition W̄=W† in Eq. s5d.
We may now rewrite Eqs. s13d as H= 1

2R8tHc8R8, where
Hc8=Wc

t HcWc is symmetric although not necessarily real.
Finding a representation with Hc8 diagonal implies then the
nonstandard eigenvalue problem

H̃cWc = WcH̃c8, H̃c = McHc = iS Ut T

− V − U
D , s17d

with U8=0 and V8 ,T8 diagonal in H̃c8=McHc8, which leads

to the coupled equations H̃cWci=−iVi8Wcī and H̃cWcī

= iTi8Wci, for the columns of Wc. The required norm fEqs.

s16dg is again W̄cīMWci=1. The matrix H̃c determines the

evolution of q , p, as idR /dt=H̃cR, and its eigenvalues are of

course the same as those of H̃, as H̃c=S†H̃S. If a matrix Wc
sreal or complexd satisfying Eqs. s16d and s17d exists, we
obtain the diagonal form

H =
1

2o
i

sTi8pi8
2 + Vi8qi8

2d, Ti8Vi8 = li
2, s18d

where pi8=−W̄ciMR, qi8=W̄cīMR, and li are the eigenval-

ues of H̃ or H̃c. For liÞ0 we may always set Ti8=Vi8=li by
a scaling pi8→sipi8, qi8→qi8 /si, where si=Î4 Vi8 /Ti8 can be
complex, in which case we may choose Wci=S†sWi

+Wīd /Î2 and Wcī= iS†sWi−Wīd /Î2, with Wi and Wī the

eigenvectors of H̃ with eigenvalues ±li satisfying W̄īMWi

=1, such that pi8
2+qi8

2=2b̄i8bi8+1. The ensuing operators
pi8 ,qi8 will not be Hermitian when li is complex, but their
evolution will still be given by the usual expressions qi8std
=qi8s0dcosslitd+ pi8s0dsinslitd and pi8std= pi8s0dcosslitd
−qi8s0dsinslitd.

When H̃ is diagonalizable, Eq. s18d is obviously equiva-
lent to Eq. s11d swith Z8=SR8 for T8=V8d. However, Eq. s18d
is more general since it may also contain free-particle terms
1
2Ti8pi8

2 when li=0, which cannot be written in the form s11d.
In these cases the matrix H̃ is not diagonalizable, as easily
recognized from the ensuing linear evolution pi8std= p8s0d
and qi8std=qi8s0d+ tTi8pi8s0d, having a degenerate eigenvalue
0. Nonetheless, it should be emphasized that it is not always
possible to represent Eq. s13d in the diagonal form s18d, as

nondiagonalizable cases where no eigenvalue of H̃ vanishes
also exist ssee exampled. Let us also remark that if one con-
siders just Hermitian qi8 and pi8 in Eq. s18d, with Ti8 and Vi8

real, the eigenvalues li of H̃ are either real sTi8Vi8ù0d or
purely imaginary sTi8Vi8,0d. Thus, quadratic forms whose

matrix H̃ possesses full complex eigenvalues ssee exampled
cannot be written in the diagonal form (18) unless non-
Hermitian coordinates and momenta q8 , p8 are admitted.

The following example clearly illustrates the previous
situations. Let us consider the Hamiltonian

H = o
n=±

«nSbn
†bn +

1

2
D + Dsb+b− + b+

†b−
†d s19ad
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=
1

2 o
n=±

«nspn
2 + qn

2d + Dsq+q− − p+p−d , s19bd

which represents two boson modes interacting through a
BCS-like pairing term. We assume «+.«−.0, and write
«±=«±g, with «.0, 0,g,«. The eigenvalues of the ensu-
ing matrix H sor Hcd, twofold degenerate, are

s± = « ± Îg2 + D2, s20d

which are both positive only for uDu,Î«2−g2=Î«+«− fthe
condition for a positive mass and potential tensor in Eq.

s19bdg. However, the four eigenvalues of H̃=MH are

ln
± = ± fng + Î«2 − D2g, n = ± , s21d

which are real for uDuø«= s«++«−d /2. Thus, if Î«2−g2

, uDu,«, H is no longer positive definite ss−,0d, but all
eigenvalues ln

± remain real sand distinctd, implying that the
temporal evolution is still bounded squasiperiodicd. How-
ever, for uDu.«, all eigenvalues are complex swith nonzero
real part if gÞ0d and the evolution becomes unbounded.

Let us obtain now the diagonal representation of H. It is
sufficient to consider in Eq. s5d a BCS-like transformation
for bosons of the form

bn = ubn8 − vb̄−n8 , bn
† = ub̄n8 − vb−n8 , s22d

which correspond to qn=uqn8−vq−n8 and pn=upn8+vp−n8 . The

commutation relations are preserved if u2−v2=1sWMW̄
=Md and the inverse transformation sMW̄Md is obtained

for v→−v sbn8=ubn+vb−n
† , b̄n8=ubn

†+vb−nd. Now, for

Su

v
D =Î« ± a

2a
, a = Î«2 − D2, s23d

where we assume aÞ0 suDuÞ«d and signs in square roots
are to be chosen such that 2auv=D, we may express H as a
sum of two independent modes,

H = o
n=±

lnSb̄n8bn8 +
1

2
D =

1

2 o
n=±

lnspn8
2 + qn8

2d , s24d

where ln;ln
+. If uDu,«, u and v are both real, so that b̄n8

=bn8
†, with qn8 and pn8, Hermitian, while if uDu.«, u and v are

complex, implying b̄i8Þbi8
† and qi8 , pi8 no longer Hermitian.

Instead, slnd*=−l−n and u*= iv fwith Imsad.0 for D.0g,
entailing bn8

†= ib−n8 , b̄n8
†= ib̄−n8 and qn8

†= iq−n8 , pn8
†=−ip−n8 . Note

that in this case the usual norm vanishes suuu2− uvu2=0d but
the present one remains unchanged su2−v2=1 still holdsd.

If uDu,Î«2−g2, l±.0, so that both modes have a dis-
crete positive spectrum. However, if Î«2−g2, uDu,«, l+
.0 but l−,0, so that the spectrum of the lowest mode,
though still discrete, becomes negative, implying that H has
no longer a minimum energy. Care should be taken here to

select the correct eigenvalue in Eq. s21d, as H̃ still has two
positive eigenvalues sl−

−.0d. Note also that for uDu
=Î«2−g2, l−

±=0, reflecting the onset of the instability, but H̃
is still diagonalizable, as u and v remain finite. The lowest
mode in Eq. s24d has here a single degenerate eigenvalue 0.

Finally, for uDu.«, the operators bn8 and b̄n8 represent com-
plex modes with an exponentially increasing or decreasing
evolution. The evolution of the original operators bn and bn

†

for any uDuÞ« can be immediately obtained from Eqs. s12d
and s22d and is given by

bnstd = e−ilntfbn + vs1 − e2iatdsvbn + ub−n
† dg , s25d

where bn;bns0d and bn
†;bn

†s0d, with bn
†std= fbnstdg†. It be-

comes clearly unbounded for uDu.«.

For uDu=«, H̃ is not diagonalizable, even though its ei-
genvalues ln

± are in this case all real and nonzero sbut de-
generated, and H cannot be written in the form s24d. How-
ever, the time evolution can still be obtained from Eq. s25d
taking the limit a→0, which leads to

bnstd = e−ingtfs1 − it«dbn − itDb−n
† g . s26d

The factor t confirms that the evolution equations cannot be
fully decoupled in this case, while the exponential multiply-
ing this factor shows that they do not arise from a free-
particle term either. We may, however, rewrite H in this case
sassuming, for instance, D=«d as

H = gsb̄+
s b+

s − b̄−
s b−

s d + 2Db̄−
s b̄+

s , s27d

where bn= sbn
s + b̄−n

s d /Î2 and bn
†= sb̄n

s −b−n
s d /Î2, with bn

s†=

−b−n
s , b̄n

s†= b̄−n
s , also satisfy boson commutation relations. In

the form s27d, H is “maximally decoupled,” in the sense that

the evolution equations for b̄n
s are fully decoupled, while

those of bn
s are coupled just to b̄−n

s . This leads to b̄n
sstd

=eingtb̄n
s and bn

sstd=e−ingtsbn
s −2itDb̄−n

s d. Equation s26d can
also be obtained from these expressions. The associated in-

variants in this case are b̄−
s b̄+

s and b̄+
s b+

s − b̄−
s b−

s —i.e., the two
terms in Eq. s27d—which are mutually commuting.

If bn and bn
† were fermion operators, Eq. s19ad would

represent essentially a generic term of the standard BCS ap-
proximation to a pairing Hamiltonian f7g fHBCS
=ok,n«knbkn

† bkn+SkDksbk+bk−+bk−
† bk+

† d, where k± denote
time-reversed states, Dk the BCS gap, bkn and bkn

† fermion
operators, and the splitting between «k± may represent the
effect of a Zeeman coupling to a magnetic fieldg. In the fer-
mionic case, Eq. s19ad swith 1

2 →− 1
2 d can be written as

onlnsbn8
†bn8− 1

2
d∀D, where ln=ng+a, with a=Î«2+D2, are

the quasiparticle energies and bn8 ,bn8
† quasiparticle fermion

operators defined by bn=ubn8+nvb−n8
†, with u ,v

=Îsa±«d /2a. The analogous boson problem is, in contrast,
stable just for limited values of D, as the latter decreases
srather than increasesd the “quasiparticle energies” ln. The
onset of complex frequencies occurs finally when l−=−l+.

Let us also mention that in general, when H is not posi-
tive regions of dynamical stability may also arise between
fully unstable regions. For instance, if a perturbation
ksb+

†b−+b−
†b+d is added to Eq. s19d, the eigenvalues of H and

H̃ become sn
±=«+nÎg2+ sD±kd2 and ln

±

= ±Îl̃n
2−k2s«2 /g2−1d, with l̃n=ng+ÎDc

2−D2 and Dc=«2s1
+k2 /g2d. Those of H are split, and assuming k small such
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that H is positive at D=0, the two lowest ones s−
± become

negative at different values Dc±=Î«2−g2± uku. In such a case
l−

± becomes imaginary for Dc−, uDu,Dc+, but returns again
to real values for Dc+, uDu,Dc if uku,g2 /Î«2−g2, exhibit-
ing a reentry of dynamical stability. Finally, both l± become
fully complex for uDu.Dc. A diagonal representation of the
general form s24d is feasible except at the critical values Dc±
and Dc.

In summary, we have extended the standard methodology
employed for diagonalizing an Hermitian quadratic bosonic
form, employing generalized quasiparticle-boson-like opera-
tors for describing unstable cases with arbitrary complex fre-
quencies. In this way the operators exhibiting an exponen-
tially increasing or decreasing temporal evolution are
explicitly identified, together with the associated quadratic
invariants, allowing for a precise characterization of the sys-
tem evolution in the presence of general instabilities. While
positive- definite forms can be considered completely stable,

those which are not positive, but whose matrix H̃ is diago-
nalizable and has only real eigenvalues, can still be consid-
ered dynamically stable, as the temporal evolution remains

quasiperiodic, in contrast with the case where H̃ has com-
plex eigenvalues or is nondiagonalizable. Finally, we have
seen that a BCS-like Hamiltonian for bosons can be com-
pletely stable, just dynamically stable, or unstable depending
on the values of the gap parameter and requires the general-
ized approach for a diagonal representation valid for large

gaps. Moreover, it also shows that cases where H̃ is nondi-
agonalizable are not necessarily associated with zero fre-
quencies or free-particle terms and may arise even if all its
eigenvalues are nonzero. For such cases the evolution equa-
tions cannot be fully decoupled.
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