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We propose an alternative measure of quantum uncertainty for pairs of arbitrary observables in the two-
dimensional case, in terms of collision entropies. We derive the optimal lower bound for this entropic uncertainty
relation, which results in an analytic function of the overlap of the corresponding eigenbases. Besides, we obtain
the minimum uncertainty states. We compare our relation with other formulations of the uncertainty principle.
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I. INTRODUCTION

Quantum mechanics’ uncertainty principle (UP) is a fun-
damental theoretical notion, being not just a side result of
quantum mechanics but arguably one of its most important
fundamental concepts. It establishes the existence of an irre-
ducible lower bound for the uncertainty in preparing a system’s
state. The original statement made use of the dispersion in
an observable’s measurement. The concept of entropy [1]
provided a totally new perspective on UPs. So-called entropic
uncertainty relations (EURs) [2,3] are a relatively recent,
related concept, that greatly improves the original one in
the sense of allowing for nontrivial state-independent lower
bounds. The formulation of the UP in terms of EURs, besides
being more appropriate than the original statement from a
theoretical point of view, acquires significant importance in
the quantum information theory realm [2,3]. In particular,
EURs provide entanglement criteria and foundations for the
security of many quantum cryptographic protocols, among
other applications [4–17].

In this paper we are concerned with the study of uncertainty
relations between two quantum observables in the case of
two-dimensional systems. We show that a construct called
collision entropy, that is, the Rényi entropy of index 2, exhibits
significant advantages as an uncertainty measure in this case.
The paper is organized as follows. An abridged history of UP
formulations can be found in Sec. II, focusing on the concepts
that we develop further. In Sec. III, we consider the sum of
collision entropies as a UP-indicator for a pair of arbitrary
observables in two-dimensional Hilbert space. We obtain the
optimal lower bound and the minimum uncertainty states for
the proposed uncertainty measure, following the procedure by
Ghirardi et al. [18], who exploit the Bloch representation to
facilitate the associated minimization problem’s tractability.
Section IV is devoted to comparing our EUR with other
inequalities found in the relevant literature. Finally, some
conclusions are drawn in Sec. V, stressing that the use of
the collision entropy, compared to the Shannon one, allows us
to provide an analytical expression for the lower bound as well
as the minimizing states.

II. SOME HISTORIC CONSIDERATIONS

A. Entropy as an alternative uncertainty measure

The original quantitative UP formulation was proposed
in the famous paper by Heisenberg [19] and demonstrated

by Kennard [20] in the case of position and momentum
observables. Robertson [21] extended the relation for other
cases. These formulations were based on products of variances
for pairs of observables. A completely novel perspective for
the UP, in the case of canonically conjugate variables, was
introduced in the pioneering contributions by Hirschman [22],
Mamojka [23], and Bialynicki-Birula and Mycielski [24],
in the framework of information theory. Specifically, the
new proposal was to employ the sum of Shannon entropies
associated to the position and momentum distributions. In
Ref. [24] it has been shown that the entropic relation is stronger
than the Heisenberg one.

The introduction of the information-theory alternative was
inspired by the power of entropy to describe properties such us
uncertainty in connection to probability distributions. Indeed,
information entropies become much more appropriate in the
quantum, probabilistic world. Additionally, as discussed in [2],
the use of standard deviations to express indeterminacy has
some limitations. The original variance-formulation of UP has
also been criticized [25,26] on the grounds that the associated
bound, given by the expectation value of the commutator
between the two observables, depends (if the commutator is
not a c-number) on the state of the system and thus lacks
a universal character. Moreover, it can be easily seen [18]
that for bounded operators the lower bound is trivially zero,
yielding no valuable information. An alternative that has been
envisaged to circumvent this obstacle precisely consists in
using as an UP measure the Shannon or other generalized
entropies associated to the probability distributions of the two
observables’ outcomes.

De Vicente and Sanchez-Ruiz [27] provided the best lower
bound for the sum of Shannon entropies in the case of an
arbitrary pair of observables with discrete, N -level spectra (see
also Ref. [28]). This was an improvement on the Maassen-
Uffink uncertainty relation presented in Ref. [26], based on
the Landau-Pollak inequality [41]. In the particular case of
single qubit systems (N = 2), Sanchez-Ruiz [29] and Ghirardi
et al. [18], independently extracted the optimal lower bound
for the Shannon entropies’ sum. For N up to 5, a very recent
study by Jafarpour and Sabour [30] gave (numerically) a more
stringent bound.

B. Our entropic quantifier

The Rényi entropies [31] constitute a family of gener-
alized information-theoretic measures that account for the
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uncertainty or lack of information associated to a probabil-
ity distribution. In the finite-dimensional, discrete case the
definition reads as

Hq({pi}) = 1

1 − q
ln

(
N∑

i=1

p
q

i

)
, (1)

where 0 � pi � 1 and
∑N

i=1 pi = 1. N is the number of
levels, and the index q > 0 with q �= 1. When q → 1, Hq

approaches the Shannon entropy H1 ≡ H = −∑
pi ln(pi).

In the particular case q = 2 the Rényi entropy is known as
the collision entropy. This quantity is widely used in quantum
information process and quantum cryptography. The collision
entropy can be written in terms of the so-called purity of a
given probability distribution; indeed, H2({pi}) is the natural
logarithm of the inverse of the purity, which is given by∑N

i=1 p2
i . A particularly interesting scenario arises when the

entropic index q tends to infinity. Here the Rényi entropy,
known as min-entropy, becomes H∞({pi}) = − ln P , where
P = maxi(pi).

EURs using Rényi entropies as measures of uncertainty
have been recently studied in the literature [32–36]. However,
most of the concomitant EURs in these references deal
just with (i) complementary observables (i.e., those whose
eigenstates are linked by a Fourier transformation) and/or with
(ii) conjugated Rényi indices q and q ′ (i.e., when 1

q
+ 1

q ′ = 2,
which includes the Shannon case).

In the present contribution, we are not restricted in the way
mentioned above. Instead, (i) arbitrary pairs of observables
are considered, and (ii) we adopt the collision entropies’ sum
as the uncertainty quantifier. In other words, we propose and
analyze an EUR which does not make use of the Riesz’ theorem
hypothesis of indices conjugation.

III. DERIVATION OF THE OPTIMAL BOUND FOR THE
SUM OF COLLISION ENTROPIES

A. Our optimal relation in terms of collision entropies

The sum of the collision entropies for two observables
A,B ∈ C2×2 for a system prepared in the quantum pure state
|�〉 ∈ C2 is given by

U(A,B; �) ≡ H2(A) + H2(B)

= − ln
[
p2

1(A) + p2
2(A)

] − ln
[
p2

1(B) + p2
2(B)

]
, (2)

where pi(A) = |〈ai |�〉|2 and pi(B) = |〈bi |�〉|2 are the proba-
bilities for the outcomes of observables A and B, respectively,
whose eigenbases are denoted by {|a1〉,|a2〉} and {|b1〉,|b2〉},
respectively.

The minimization problem is significantly ameliorated
if one exploits the well-known Bloch representation, along
lines similar to those of Ref. [18] that deals with Shannon
UP. The most general normalized quantum pure state of a
single qubit can be written (up to an unobservable phase
factor) as |�〉 = cos θ

2 |0〉 + eiφ sin θ
2 |1〉, with 0 � θ � π and

0 � φ � 2π , where {|0〉,|1〉} is the so-called computational
basis. To each pure state |�〉 a unique point on the Bloch
sphere is assigned, represented by the unit vector 
s =
(cos φ sin θ, sin φ sin θ, cos θ ) ∈ R3. In terms of this Bloch
vector one can write the density operator associated to the

(pure) state of the system: ρ = |�〉〈�| = 1
2 (I + 
s · 
σ ), with


σ = (σX,σY ,σZ) denoting the Pauli matrices and I the 2 × 2
identity matrix. The observables in this representation acquire
the form

A = α1I + α2 
a · 
σ , (3)

B = β1I + β2 
b · 
σ , (4)

where 
a,
b ∈ R3 are unit vectors and α1, α2, β1, and β2 are real
parameters.

We want the tightest lower bound for the uncertainty
measure (2) for given observables A and B over all possible
states |�〉. This is equivalent to searching for

min
θ,φ

U(A,B; �), (5)

for αi , βi , 
a, and 
b fixed. Without loss of generality, we consider

a · 
σ instead of A (they have the same eigenbasis and then the
same Rényi entropy). Analogously, we consider 
b · 
σ instead
of B. Let us pass to the squared moduli of the inner products of
eigenstates of A and B. In terms of the scalar product between
the corresponding unit vectors 
a and 
b we have

( |〈ai |bj 〉|2 ) =
⎛
⎝ 1+
a·
b

2
1−
a·
b

2

1−
a·
b
2

1+
a·
b
2

⎞
⎠ . (6)

The greatest element is known as the overlap between
eigenbases. Hence, denoting by γ the angle formed by the

a and 
b directions, the overlap becomes

c ≡ max
i,j=1,2

|〈ai |bj 〉| = max
γ∈(0,π)

{
cos

γ

2
, sin

γ

2

}

=
{

cos γ

2 if 0 < γ � π/2,

sin γ

2 if π/2 � γ < π,
(7)

where we restrict the values of γ to the interval (0,π ).
Due to symmetry arguments, results for γ ∈ (π,2π ) can
be obtained straightforwardly. Besides, γ = 0 and γ = π

(implying c = 1) are excluded since they correspond indeed to
pairs of commuting observables. The particular case γ = π/2
gives |〈ai |bj 〉| = 1/

√
2 for all i,j = 1,2, corresponding to that

special situation in which the observables are complementary.
For the two-dimensional (2D) case, the range for the overlap
c goes from 1/

√
2 up to 1.

As our main result, we show that the uncertainty measure
(2) has as a lower bound, a function depending only on the
overlap c ∈ [1/

√
2,1), of the form

U(A,B; �) ≡ H2(A) + H2(B) � −2 ln
1 + c2

2
. (8)

Moreover, the uncertainty measure (2) exhibits an upper
bound, since U(A,B; �) � 2 ln 2. We stress that the EUR (8)
is valid for arbitrary pairs of (two-dimensional) observables,
not merely for those special ones that are complementary.

B. Derivation of the optimal bound and
minimal uncertainty states

In order to demonstrate the above result, let us first write the
uncertainty measureU(A,B; �) in terms of the scalar products
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of 
a and 
b with the Bloch vector 
s. A short calculation yields

U = U(
a,
b; 
s) = − ln
1 + (
a · 
s)2

2
− ln

1 + (
b · 
s)2

2
. (9)

Therefore, the extremization of U becomes a geometric
problem: For fixed directions 
a and 
b, we need to find the
unit vector 
s that bounds either from below or from above
the quantity (9). Trivially, the maximum of this quantity
corresponds to the case when 
s is just one of the two unit
vectors along the direction perpendicular to both 
a and 
b.
Then UMax = 2 ln 2. This happens indeed when all pi = 1/2
and then the collision entropy for each observable is separately
maximal. Let us now show that the minimum of the quantity
(9) is given when 
a, 
b, and 
s are coplanar, a fact that reduces the
number of variables in the minimization problem. Consider the
function U (x) = − ln( 1+x2

2 ) with x ∈ [0,1]. Straightforwardly,
one sees that U (x) is a strictly decreasing function in its
domain. Thus, for a value x0 ∈ [0,1] one has U (x) � U (x0)
for all x � x0. Let � be the plane determined by the fixed
vectors 
a and 
b, and let 
d be any unit vector belonging to
an arbitrary orthogonal plane �⊥. If 
d0 is one of the two
unit vectors that belong to � and �⊥, then |
a · 
d| � |
a · 
d0|
for all 
d ∈ �⊥. Thus, U (|
a · 
d|) � U (|
a · 
d0|), the equality
being satisfied when 
d = ± 
d0, that is, when 
d ∈ � as well.
An analogous result is obtained by changing 
a for 
b. This
justifies the fact that the minimum of U will be reached under
the condition that 
a, 
b, and 
s all belong to the same plane.
However, we still need to determine the direction of 
s relative
to the fixed vectors 
a and 
b.

Let us denote by χ the angle between 
a and 
s. Accordingly,
the uncertainty measure (9), expressed in terms of the angles
χ and γ , becomes

Uγ (χ ) = − ln

(
1 + cos2 χ

2

)
− ln

(
1 + cos2(γ − χ )

2

)
,

(10)

where χ can be restricted to the interval [0,π ] due to the
periodicity of this function. Thus, the minimization problem
(5) reduces to that of finding the minimum ofUγ (χ ) for γ fixed.
Equating to zero the first derivative of Uγ (χ ) with respect to χ

we arrive at the condition for a critical point, in the fashion

f (χ ) = f (γ − χ ), (11)

where we have defined f (x) = sin 2x
3+cos 2x

.
Let us solve now Eq. (11). First, for any fixed γ we have the

trivial solutions χk = γ+kπ

2 with k ∈ Z. Thus, in the interval
χ ∈ [0,π ] the two trivial solutions are

χ<(γ ) ≡ χ1 = γ

2
, (12)

χ>(γ ) ≡ χ2 = γ

2
+ π

2
. (13)

These solutions correspond to the straight lines plotted in
Fig. 1. Geometrically, the solution χ< corresponds to the
vector 
b + 
a, pointing in the direction of the interior bisector
of the angle determined by 
a and 
b directions. The solution
χ> corresponds to a different vector, pointing along the
direction of 
b − 
a and being perpendicular to the former.
The norms of these two vectors can be simply expressed in

Γ� Π
2
Γ�� Π

Γ

Π
2

Π

Χ

FIG. 1. Solutions of Eq. (11) for the angle χ between the Bloch
vector 
s and the vector 
a corresponding to observable A. Operator B

enters through the parameter γ which stands for the angle between 
a
and 
b.

terms of the overlap, since ‖
b ± 
a‖ = 2c. Therefore, the Bloch
vectors corresponding to the solutions (12) and (13) become

s≶ = 
b±
a

2c
. Notably, these solutions have also been obtained

by Ghirardi et al. in Ref. [18], where Shannon entropies have
been employed instead.

In addition to the trivial solutions, for a given range of
γ ∈ [γ ∗,γ ∗∗] it can be seen that there exist other solutions
to Eq. (11). Unfortunately, they do not possess analytical
expressions and have to be calculated numerically. The
limiting (critical) values of γ ∗ and γ ∗∗ for the existence of
two or more than two solutions satisfy

f ′(χ ) = f ′(γ − χ ),

coming from the condition that the maxima or, respectively,
the minima of f (χ ) and f (γ − χ ) coincide. We can obtain in
analytical fashion these critical values:

γ ∗ = π − arccos(−1/3), and γ ∗∗ = arccos(−1/3). (14)

We plot in Fig. 1 all solutions for χ in terms of the parameter
γ . We see that γ ∗, π/2, and γ ∗∗ are critical parameters, in the
sense that the number of solutions of Eq. (11) changes. Let us
now discuss in some detail the solutions pertaining to different
regions of the parameter γ .

(1) γ ∈ (0,γ ∗]. The only solutions of Eq. (11) are the trivial
ones χ< and χ> in Eqs. (12) and (13). Note that χ< corresponds
to the minimum of Uγ and χ> to the maximum.

(2) γ ∈ (γ ∗,π/2). χ< and χ> are still solutions of Eq. (11)
but there exist other two solutions, whose values can be
calculated numerically for each γ . The solution χ< remains the
absolute minimum of Uγ while χ> is now a relative minimum
and the other solutions yield the (same) maximum.

(3) γ = π/2. This is a special case because the observables
A and B are complementary, that is, the overlap is precisely
c = 1/

√
2. The solutions χ< = π/4 and χ> = 3π/4 yield the

same minimum uncertainty measure, while the other three ones
(0, π/2, and π ) give the maximum.

(4) γ ∈ (π/2,γ ∗∗). In this interval χ< and χ> reverse their
behaviors with respect to those of item (2). That is, χ< happens
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to be a relative minimum while χ> is the absolute minimum
of Uγ . The two other solutions correspond to maxima.

(5) γ ∈ [γ ∗∗,π ). Now χ< corresponds to the maximum of
Uγ and χ> to the minimum. No other solutions exist in this
interval.

Thus, depending on γ , the value of χ at which Uγ acquires
its minimum can be given in concise fashion using the
Heaviside function as

χmin(γ ) = γ

2
+ π

2


(
γ − π

2

)
, γ ∈

(
0,

π

2

)
∪

(π

2
,π

)
,

(15)

while χmin at γ = π/2 takes the values π/4 and 3π/4 as
discussed in item (3). Summing up, replacing the values of χ<

and χ> in the uncertainty measure (10) we obtain its minimum
as a function of γ , and finally

U(A,B; �) � Umin(A,B)

=
⎧⎨
⎩

−2 ln
(

1+cos2 γ

2
2

)
if 0 < γ � π/2,

−2 ln
(

1+sin2 γ

2
2

)
if π/2 � γ < π.

(16)

Recalling Eq. (7), we complete the proof of the uncertainty
relation proposed in (8).

For the sake of completeness we also determine the states
saturating our UP relation. As already mentioned, these states
have Bloch vectors 
s< or 
s> depending whether γ is, respec-
tively, smaller or larger than π/2. Therefore, the corresponding
minimum-uncertainty density operators become

ρ< = 1

2

(
I +


b + 
a
2 cos γ

2

· 
σ
)

if 0 < γ � π/2,

(17)

ρ> = 1

2

(
I +


b − 
a
2 sin γ

2

· 
σ
)

if π/2 � γ < π.

Notice that for each γ there exists another minimum-UP state
arising from the χ minimization of the uncertainty measure
(10) in the interval χ ∈ [π,2π ] that we did not consider due to
the periodicity of this function. The solutions are χ̃< = γ

2 + π

and χ̃> = γ

2 + 3
2π . The discussion of items (1) to (5) above

apply also, replacing χ with χ̃ . It is not difficult to see that
the optimum states ρ̃≶ have Bloch vectors 
̃s≶ = − 
b±
a

2c
for

γ ≶ π/2, respectively.
The particular case γ = π/2 (complementary observables)

deserves some comment. In this case, there exist four states
that minimize the uncertainty measure. To fix ideas, consider
as an example the pair of observables A = σx and B = σy .
Their Bloch representations correspond to 
a = ı̆ and 
b = �̆,
respectively, so that we speak of γ = π/2 and c = 1/

√
2. Our

approach prescribes that any state of the system will have a
collision-entropy uncertainty greater than or equal to 2 ln(4/3),
with equality for the states |�l〉 = 1√

2
(|0〉 + il+1/2|1〉), for l =

0, 1, 2, and 3, up to a global phase factor.
We can go beyond the case of complementary observables,

since our inequality (16) allows us to quantitatively study
the uncertainty related to the measurement of any pair of
two-dimensional observables, that is, for any value of the
overlap c ∈ [1/

√
2,1). For instance, among other interesting

situations, we can deal with the Hadamard gate and the
x (or z) spin projection. Assume A = σx+σz√

2
and B = σz.

Then their corresponding vectors 
a = (1,0,1)/
√

2 and 
b =
(0,0,1) determine an angle γ = π/4 and, consequently, c =
cos(π/8) ≈ 0.924. The following relation ensues: 2 ln 2 �
H2( σx+σz√

2
) + H2(σz) � 2 ln( 8

6+√
2
) ≈ 0.152, with saturation of

the last inequality for those qubit states that lie on the xz plane
(φ = 0) with θ = π/8 or θ̃ = 9π/8.

IV. COMPARISON WITH OTHER UNCERTAINTY
RELATIONS

We pass to discuss and compare our present results with
other formulations of the UP.

A. Heisenberg-Robertson inequality in terms
of standard deviations

We begin with the celebrated Heisenberg-Robertson (HR)
inequality. For any pair of arbitrary observables A,B and a
system described by the state |�〉 one has

��A ��B � 1
2 |〈[A,B]〉� |, (18)

where 〈O〉� = 〈�|O|�〉 is the mean value and
��O =√

〈O2〉� − 〈O〉2
� the standard deviation of the observable

O. In the 2D case, using the Bloch representation, the HR
inequality (18) reads

|α2|
√

1 − (
a · 
s)2 |β2|
√

1 − (
b · 
s)2 � |α2β2||(
a × 
b) · 
s|.
(19)

Some questions regarding (19) may be cited here. If |�〉 is
an eigenstate of one of the two observables, 
s is parallel
to the vector representing that observable and the HR-UP
becomes trivial. No UP information is gained thereby (in terms
of a standard deviation) for measuring the other observable.
Moreover, for any state whose Bloch vector 
s belongs to the
plane determined by 
a and 
b, the right-hand side of (19)
vanishes, thus representing trivial information about the bound
for the standard deviations’ product: �A�B � 0. Notice that
in the derivation of our EUR (8) we showed that the minimum
of U is attained for the case when 
a, 
b, and 
s lie in the same
plane but only for those states satisfying Eqs. (12) or (13).
Furthermore we stress that, unlike HR-UP, the bound we obtain
is strictly greater than zero. Therefore, we conclude that, in 2D,
relevant information about the uncertainty of the observables
can be obtained by recourse to the collision entropy.

B. Luis relation in terms of purities

In the appendix of Ref. [37] Luis derived, for comple-
mentary observables with discrete spectrum of N states, an
uncertainty relation following the work of Larsen [38]. In his
notation,

δA δB �
(

2N

N + 1

)2

, (20)

where δO = 1/
∑

i pi(O)2 is the inverse of the purity (or
participation ratio) associated with observable O. The ex-
pression (20) is an improvement of the certainty relations
that express the complementarity property, obtained by Luis
in Refs. [39,40] for the case of 2D systems and general
N -dimensional systems, respectively. Taking the natural
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logarithm in (20), this relation can be expressed in terms of the
sum of collision entropies: H2(A) + H2(B) � 2 ln 2N

N+1 . In the
case N = 2 (one-qubit system) that we are here considering,
the Luis bound is 2 ln(4/3). This result coincides with our
bound in (8) when c = 1/

√
2. While we extend the 2D

formulation of the UP to arbitrary observables (i.e., for any
overlap c), Luis obtains instead results that are valid only for
complementary observables, although for arbitrary (finite) N

dimensions.

C. Landau-Pollak relation in terms of maximum probabilities

The Landau-Pollak relation states that

arccos
√

PA + arccos
√

PB � arccos c, (21)

where PO = maxi pi(O) for O = A,B. This inequality is
another alternative to the UP mathematical formulation,
introduced for time-frequency analysis in [41] and adapted
to physics two decades later [26]. We have in this regard an
interesting result: The states that minimize U(A,B; �) also
saturate the inequality (21), which means that the lower bound
in the Landau-Pollak uncertainty relation is optimal in 2D.
Indeed, if we compute the maximum probabilities for the states
that minimize U , we find

PA = PB =
{

cos2 γ

4 if 0 < γ � π/2,

sin2 γ+π

4 if π/2 � γ < π,
(22)

in terms of the angle γ . Using Eq. (7), this can be simply
reformulated as

PA = PB = 1 + c

2
, (23)

in terms of the overlap c. On the other hand, when (21) becomes
an equality, the Landau-Pollak relation can be recast in the
fashion

c =
√

PAPB −
√

(1 − PA)(1 − PB). (24)

It is easy to see that replacing (22) [or equivalently (23)], in
(24), the right-hand side of this equation identically yields c

for any γ . Therefore, the Landau-Pollak relation (21) and the
EUR (8) (as well as its analogous Shannon-entropy expression
[18,29]) are equivalent for one-qubit systems.

D. Maassen-Uffink relation in terms of min-entropies

In Ref. [26], Maassen and Uffink (MU) work out an
improvement of the Shannon-entropy uncertainty relation and
advance an entropic UP for the sum of the min-entropies
H∞(O) = − ln PO associated with two observables A and
B characterized by finite, discrete spectra. The pertinent
expression reads

H∞(A) + H∞(B) � −2 ln
1 + c

2
. (25)

They encounter this relation by maximizing the product of the
maximum probabilities, PAPB , subject to the Landau-Pollak
inequality (21). It is straightforwardly seen that, replacing (22)
[or equivalently (23)], in the left-hand side of (25), we obtain
an equality. Therefore, we find that the states that saturate our
EUR (8) given in terms of collision entropies, also saturate
the MU-EUR (25) that uses min-entropies, with an equality in
the Landau-Pollak relation. One may be tempted to conjecture

that in the N = 2 case, for any entropic index q > 0, the
minimum of the sum of the q-Rényi entropies is reached
when PA = PB = 1+c

2 . Let us define the function Fq(c) ≡
2

1−q
ln[( 1+c

2 )q + ( 1−c
2 )q]. The question is whether one can

assure that Hq(A) + Hq(B) � Fq(c) for any positive q. In the
particular cases q = 2 and q → ∞, respectively, we do obtain
the lower bounds F2(c) = −2 ln 1+c2

2 and F∞(c) = −2 ln 1+c
2 ,

that in turn correspond to the right-hand sides in the EURs
(8) and (25). However, we cannot prove at this point that the
claim remains valid neither for any q nor for any arbitrary
pair of 2D observables. As a counterexample, consider, for
instance, the q → 1 Shannon case. It has been proved that the
function F1(c) = −(1 + c) ln 1+c

2 − (1 − c) ln 1−c
2 gives the

absolute minimum of H1(A) + H1(B) only when the overlap
c belongs to the interval [c∗,1), with c∗ � 0.834 (we refer
the reader to [28], where a detailed analytical study of this
point is provided). In other words, for those pairs of 2D
observables with overlap between 1/

√
2 and c∗, Eq. (23)

does not correspond to the optimal solution regarding the
minimization problem for the sum of Shannon entropies.

V. CONCLUDING REMARKS

In the one-qubit scenario we have derived an optimal lower
bound for the collision entropies’ sum associated with an
arbitrary pair of observables. Although we have dealt with
the simplest conceivable system, the relevance of our EUR
given in (8) is that

(i) we obtain a lower bound that is optimal,
(ii) we find indeed the family of states that saturate the

inequality,
(iii) we consider arbitrary pairs of observables, and
(iv) we take into account pairs of Rényi entropies where the

corresponding indices are not conjugate ones.
We emphasize that the conjunction of the last two points

has not received much attention in the literature. Previous
works were based on the Riesz theorem, which imposes the
conjugacy restriction for the entropic indices.

Another advantage of using collision entropies, as com-
pared with results given in terms of Shannon ones (see
Refs. [18,29]), is that the lower bound in our case is analytical.
This could be useful for future applications, for instance in
connection with entanglement criteria, state discrimination,
quantum cryptographic protocols, etc.

Moreover, we have shown that the states that minimize
the collision entropy UP measure defined by Eq. (2) also
saturate the EUR (25) given by Maassen and Uffink and,
additionally, saturate the Landau-Pollak relation (21). They
yield no relevant information concerning the Heisenberg-
Robertson standard-deviation formulation, which turns out to
be trivial in our scenario.

Furthermore, it can be proved that the existence of relation
(25) guarantees a nontrivial entropic uncertainty inequality for
Rényi entropies of arbitrary (positive) indices. This is done
making use of the monotonicity property of the family of
Rényi entropies Hq with respect to the index q. The present
study has allowed us to advance entropic UPs of the form

Hq(A) + Hq ′ (B) � −2 ln
1 + c2

2
(26)
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for any couple (q; q ′) ∈ R = {0 < q � 2, 0 < q ′ � 2}, where
A and B are any arbitrary 2D observables. Within the region
R of the q-q ′ plane, the relation (26) is more stringent than
the one derived following Maassen-Uffink’s prescription (25).
In order to prove the assertion (26) we just need the fact that
Rényi entropy is strictly decreasing with the entropic index.
Thus, the left-hand side in (26) becomes greater than or equal
to H2(A) + H2(B), which in turn is lower bounded as in (8).
The uncertainty relation (26) is in general nonoptimal. We
claim that at least it is optimal at the vertex (q; q ′) = (2; 2) of
the rectangular region R.

Note that the extension of our EUR to mixed states can
be easily made due to the fact that the collision entropy is
a concave function for one-qubit systems [42]. Generaliza-
tions to N -level systems are the subject of active current
research.
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