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We investigate the properties of conduction electrons in single-walled armchair carbon nanotubes in the
presence of mutually orthogonal electric and magnetic fields transverse to the tube’s axis. We find that the
fields give rise to an asymmetric dispersion in the right- and left-moving electrons along the tube as well as a
band-dependent interaction. We predict that such a nanotube system would exhibit spin-band-charge separation
and a band-dependent tunneling density of states. We show that in the quantum dot limit, the fields serve to
completely tune the quantum states of electrons added to the nanotube. For each of the predicted effects, we
provide examples and estimates that are relevant to experiment.
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I. INTRODUCTION

A highlight of graphene-based nanotubes is the presence
of a band svalleyd quantum degree of freedom which offers a
new facet to a range of strongly correlated low-dimensional
phenomena. In armchair nanotubes, the bands, which owe
their existence to the two-atom basis of the underlying hon-
eycomb lattice, form a pair of gapless linearly dispersing
modes.1 While a direct consequence of their presence is the
measurable quantum conductance of 4e2 /h, richer effects can
arise, for instance, in field-induced orbital moments,2

Coulomb-blockade profiles,3 and in Kondo physics.4 An abil-
ity to precisely control the band sector would not only shed
light on these effects but also access other band-dependent
physics. For instance, in the recently reported nanotube Mott
phase,5 the nature of this ordered phase could be probed by
tuning interband interactions. In the Luttinger liquid-phase
typical of interacting one-dimensional systems, spin and
charge sectors have been shown to decouple in quantum
wires;6 nanotubes could extend such fractionalization into
yet another sector. Recently, attention has turned toward
“valleytronics” as a potential application for quantum infor-
mation and quantum devices in the parent system of
graphene;7 the ability to manipulate spin and band quantum
states in nanotubes would offer an attractive alternative.
However, save for some exceptions,2,8 the band degree of
freedom has thus far remained relatively resilient to any con-
trolled coupling.

In this work, we explore the possibility of coupling to the
band sector via applied transverse fields. Electric and mag-
netic fields individually have been shown to alter the low-
energy properties of conduction electrons.9,10 Here, building
on our prior work,11 we find that the transverse field configu-
ration shown in Fig. 1 in which both fields are present offers
a powerful means of accessing the band sector. The fields
break time-reversal, particle-hole, and band symmetries, and
in fact, render the dispersion asymmetric in the right- and
left-moving electrons. Furthermore, the effective Coulomb
interaction is modified from its field-free form to include
couplings between the charge and band sectors. As a conse-

quence, nanotubes in transverse fields could provide a real-
ization of a tunable asymmetric Luttinger liquid.12–14 Most
pertinently, the system displays spin-band-charge separation,
acts as a band selector for electrons tunneling into the nano-
tube and exhibits a variety of tunable quantum dot shell-
filling configurations.

II. MODEL

The setup of interest, as shown in Fig. 1, consists of an
armchair nanotube fa tube described by a chiral vector of the
form sn ,nd, see Ref. 1 for definitiong lying along the x-axis
subject to an applied magnetic field BW =−Bŷ and electric field
EW =Eẑ ssee Ref. 15 for a possible experimental implementa-
tiond. For a tube of diameter d=3nac /p, where ac
<0.142 nm is the carbon-carbon bond length, the effect of
the fields can be characterized by the parameters b
=Î3Bueud2 /4" and u= ueuEd /2t, where t<2.7 eV sRef. 1d is
the electron hopping strength between neighboring sites.
Near half-filling, the field-free low-energy electronic disper-

FIG. 1. sColor onlined An armchair carbon nanotube in the pres-
ence of transverse magnetic spointing in the −ŷ directiond and elec-
tric fields spointing in the ẑ directiond. The carbon atoms belonging
to the A and B sublattices are indicated by dark and light shading,
respectively.
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sion, which can be traced to bonding and antibonding states
of the underlying graphene sublattices, consists of four de-
generate gapless linear modes each having a Fermi velocity

vF=
3tac

2" <83105 m /s. These modes correspond to right and
left movers sindexed by r= 6 =R /Ld at two Fermi points
sindexed by a=6d which define the band degrees of free-
dom.

In this Hall-type setup, classically, each of the fields
causes a spiraling motion of electrons, and thus for fixed
kinetic energy, reduces their linear velocity along the tube’s
axis. Moreover, the nonvanishing Poynting vector EW 3BW af-
fects right and left movers differently. Indeed, a detailed per-
turbative band-structure calculation11 for large enough tubes
s10&n,p /ud shows that the right- and left-moving speeds
are given by vr<vFs1− 1

3b2− n2

p2 u26
n
pbud. The spectrum re-

mains gapless,16 but the two Fermi points reside at energies
differing by DF<2ptbu / sÎ3nd, indicating a mild band-
degeneracy breaking even at the band structure level. The
corresponding low-energy noninteracting asymmetric Hamil-
tonian can be expressed as

H0 = − i"o
ras
E dxrvrcras

† ]xcras, s1d

where the band shift and Zeeman term are left implicit. The
operator c denotes the annihilation of a fermion and s=6
correspond to electronic spin components. For tubes of di-
ameter d=6.78 nm sn=50d and experimentally accessible
field strengths B=6.4 T and E=0.02 V /nm, we find vR
=0.89vF and vL=0.77vF, yielding a pronounced asymmetry
in right- and left-moving velocities. For the remainder of this
work, we consider tubes of this diameter, corresponding to
ultralarge single-walled tubes.17

Transverse fields significantly alter not only the low-
energy band structure but also the nature of Coulomb inter-
actions within the tube. The usual forward scattering contri-
bution, HC1= 1

2edxVrc+
2 sxd, remains and continues to

dominate for larger tubes sn*10d.18 Here rc+sxd=rR,c+
+rL,c+ with rr,c+=oascras

† cras is the net charge density
and V< 2e2

k lns L
pd d is the effective one-dimensional

interaction,11,19 where e is the charge of an electron, k is the
dielectric constant, and L is the length of the tube. More
interestingly, a second contribution becomes manifest due to
the uneven distribution of charge in the circumferential di-
rection induced by the presence of the applied fields. A care-
ful accounting of circumferential modes shows that this ad-
ditional effective Coulomb term along the tube has the form

HC2 =
pl

4
E dxsrR,c− + rL,c−dsrR,c+ − rL,c+d , s2d

where l=4e2buh /pk and h is a numerical factor which de-
pends on the details of the geometry of the underlying
graphene lattice; for n*20 we have h<s1.46n−4.60d.11

Here, rr,c−=oasacras
† cras is the difference in charge density

between the two bands. The presence of this interaction term
has two origins: sid the magnetic field couples to the crystal
momentum, and thus the Fermi points, giving rise to the
contribution involving the charge in the c− sector and siid the

electric field couples to the net charge imbalance in bonding
and antibonding states, or alternatively, to the density differ-
ence in the right and left movers in the c+ sector. This inter-
action, which is key to the physics studied here, goes a step
beyond the usual spin-charge-separating Coulomb term by
directly coupling to the band degrees of freedom.

III. BOSONIZATION

As with the field-free case, the asymmetric gapless modes
and Coulomb interactions can be studied via
bosonization,12–14,20 which renders the total Hamiltonian for
the tube to be quadratic. The one-dimensional fermionic op-
erators can be bosonized as

cras =
hras

Î2pac

expfiakFx + iwrasg , s3d

where the hras’s are the so-called Klein factors which en-
force anticommutation relations between different
channels.19 The chiral bosonic fields satisfy the commutation
relations fwrassxd ,wr8a8s8sx8dg=−iprdrr8daa8dss8 sgnsx−x8d.
The density associated with each sector takes the form rras

=r]xwras /2p. Given the asymmetric dispersion and current
dependent interaction, we explicitly employ these chiral
fields to ensure that this algebra is preserved. It is convenient
to introduce a spin and channel decomposition for the chiral
fields, wr,as= 1

2 swr,c++awr,c−+swr,s++aswr,s−d. The total ki-
netic energy takes the bosonized form

H0 =
1

4p
o

a=c/s6
E dxfvRs]xwR,ad2 + vLs]xwL,ad2g s4d

and the total interaction term, Hint;HC1+HC2, takes the
form

Hint =
V

2p2E dxs]xwR,c+ − ]xwL,c+d2

+
l

4p
E dxs]xwR,c+ + ]xwL,c+ds]xwR,c− − ]xwL,c−d .

s5d

As discussed in previous work on asymmetric
bosonization,12–14,20 in diagonalizing the full Hamiltonian
H=H0+Hint, care needs to be taken to ensure that the diag-
onal basis preserves the chiral commutation rules respected
by the original fields, wras. Diagonalization requires care due
to the unusual commutation relations sthe so-called Kac-
Moody algebrad among chiral fields.21 Here, we circumvent
unwieldy manipulations involving Bogoliubov transforma-
tions by employing the trick of converting left-handed fields
to right-handed fields via the transformation wLa° iwLa,
which then allows for standard rotations.

This method makes it clear that as far as the diagonaliza-
tion of the Hamiltonian is concerned, the asymmetric disper-
sion simply shifts the values of the plasmon velocities but
has no effect on the eigenvectors. Consider a generic Hamil-
tonian of the form H=H0+Hint with n channels a=1, . . . ,n
with

DEGOTTARDI et al. PHYSICAL REVIEW B 82, 155411 s2010d

155411-2



H0 =
1

4p
o

a
E dxfvRs]xwR,ad2 + vLs]xwL,ad2g

=
1

4p
E dxwW TH0wW , s6d

where wW = swR,1 , . . . ,wR,n ,wL,1 , . . . ,wL,nd, H0
=diagsvR ,vR , . . . ,vL ,vL , . . . ,d, and Hint is a bilinear of the
various densities rR/L,a. Now, after the transformation
wL,a° iwL,a we have H0°H08 with

H08 = diagsvR,vR, . . . ,− vL,− vLd

= diagsv,v, . . . ,− v,− v, . . . ,d + eI , s7d

where v= svR+vLd /2, e= svR−vLd /2, and I is the 2n32n
identity matrix. It is clear from Eq. s7d that e serves to
merely shifts the resulting eigenvalues and that the eigenvec-
tors are independent of e. While this fact limits the role that
the asymmetry plays in certain bulk quantities ssuch as the
tunneling density of statesd, the asymmetry can still play a
crucial role in properties such as boundary and impurity scat-
tering and in particular quantum dot physics.

IV. PHYSICAL PROPERTIES

The coupling between the c6 sectors fEq. s2dg plays a
central role in the altered physical properties of the tube. The
plasmon modes for the coupled charge sectors c6 move with
four different velocities

vR/L,1/2 = 6 e + v1/2,

v1/2 =
v

Î2Kc+
F1 + Kc+

2 6Îs1 − Kc+
2 d2 + S2Kc+l

"v
D2G1/2

,

s8d

where v= svR+vLd /2 is the average velocity of the noninter-
acting fermions, e= svR−vLd /2 the asymmetry, and Kc+
;1 /Î1+4V /p"v is the standard Luttinger parameter. The
spin sectors s6 each retain their band structure velocities
vR/L.

The existence of the two different plasmon velocities v1/2
demonstrates that transverse fields can access the band sec-
tor, which is normally resilient to any bulk coupling. Thus
far, momentum resolved bulk tunneling experiments on
quantum wires6 have revealed two distinct plasmon disper-
sions corresponding to spin and charge modes; analogous
experiments on nanotubes in transverse fields ought to unveil
the three pairs of velocities predicted above. For example,
for a tube d=6.78 nm and experimentally accessible field
strengths B=6.4 T and E=0.02 V /nm, the plasmon veloci-
ties are given by vR,1=4.07vF, vL,1=3.95vF, vR,2=0.32vF,
and vL,2=0.20vF for the charge sectors and vR=0.89vF and
vL=0.77vF for the spin sectors. The observation of three dis-
tinct modes would reflect complete splintering of the nano-
tube electron into its spin, charge, and band sectors. Figures
2 and 3 show the plasmon velocities of a nanotube in the
presence of a 12 T magnetic field as a function of electric
field strength.

The effects of transverse fields on the low-energy nano-
tube physics, particularly in the band degree of freedom, are
prominently manifested in physical observables. The tunnel-
ing density of states, an ubiquitous, experimentally acces-
sible quantity, retains its power-law form xsEd,Eb charac-
teristic of Luttinger liquids but exhibits a modified exponent.
Using standard procedures22 that now account for field-
dependent effects, we find that the tunneling exponent, to
lowest order in l, is given by

bra =
1

8
S 1

Kc+
+ Kc+ − 2D −

l

4"v
raS1 − Kc+

1 + Kc+
D . s9d

The first part of the exponent, also present in the field-free
case, reflects the suppression in tunneling due to interactions
swhere Kc+ is now tunabled. The second part, which depends
on the tunable coupling l of HC2, further suppresses or en-
hances tunneling depending on the sign of ra. As an esti-
mate, for a d=6.78 nm tube in a 6.4 T B field and 0.02 V/nm
E field with a field-free value of Kc+=0.23 scorresponding to
a 1-mm-long tubed, we have distinctly different exponents
bR+=bL−=0.22 and bR−=bL+=0.53. The form of Eq. s9d re-
flects band svalleyd selection; for example, a right-moving
electron would preferentially tunnel into the a=+ Fermi
point for the field configuration shown in Fig. 1.
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FIG. 2. sColor onlined Plasmon velocities v1,R and v1,L and band
structure velocities vR and vL ssolid, dotted, dashed, and dotted-
dashed, respectivelyd for a 1-mm-long, 4.75-nm-diameter armchair
tube in a 12 T magnetic field as a function of electric field strength.
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FIG. 3. sColor onlined Plasmon velocities v2,R and v2,L ssolid
and dashed, respectivelyd for a 1-mm-long, 4.75-nm-diameter arm-
chair tube in a 12 T magnetic field as a function of electric field
strength. The field-free charge plasmon velocity of this tube would
be vr=4.52vF.
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A physical consequence of transverse fields yielding such
a band-dependent exponents would be the presence of two
different power-law contributions to the non-Ohmic conduc-
tance of the nanotube.23 On a related note, the presence of an
impurity would distinguish these exponents; conductance
properties would be sensitive to whether or not an electron
impinging on the impurity switched band index. Band-
dependent effects similar to those in the density-of-states ex-
ponent would be manifest in any susceptibilities involving
the sublattice degree of freedom. Tendencies toward different
orderings, such as charge or spin density waves, which are
governed by associated susceptibilities, would in turn reflect
band dependence. For instance, charge density waves have

contributions from operators ÔCDWp
6 ,orasrcras

† c−r6as, re-
flecting like s+d and staggered s−d band correlations at A and
B sublattice sites. While these operators both come on an
equal footing in the field-free case, we find that fields dis-
criminate between these two ordering tendencies. In particu-
lar, to first order in sl /vd, OCDWp

+ is unaffected by the pres-
ence of fields, whereas OCDWp

− ’s scaling dimension becomes

h− =
3 + Kc+

0

4
−

2Kc+
0

1 + Kc+
0

ulu
v

, s10d

where Kc+
0 is the field-free value of the Luttinger parameter.

Thus, the operator OCDWp
− is rendered more relevant. Fields

can thus differentiate between two types of band-dependent
ordering at the sublattice level.

V. QUANTUM-DOT PHYSICS

In the quantum-dot limit achieved by high resistance con-
tacts or sufficiently low temperatures, we find that transverse
fields enable controlled tuning of Coulomb blockade physics
and nanotube quantum states. Here, as in previous
treatments,18,24,25 we describe the dot as a finite-sized version
of the net nanotube Hamiltonian and focus on the topological
sectors as relevant for standard quantum dot experiments in-
volving adiabatic tuning. Field-induced interactions give rise
to a Coulomb blockade structure in which the charge and
band degrees of freedom are coupled. The coupling between
the c+ and c− sectors arises due to the interaction HC2 fEq.
s2dg and the unusual form of the current operators. In particu-
lar, the charge current differs from the naïve form Jc+
=vRrR,c+−vLrL,c+ due to HC2. The form of the current is
easily derived by noting that the current Ja for every sector
obeys a continuity equation ]tra=−]xJa. For the c+ sector,
we obtain

]trc+ = ifH,rR,c+ + rL,c+g

=− ]xsvRrR,c+ − vRrL,c− + lrc−d s11d

thus giving Jc+=vRrR,c+−vRrL,c−+lrc−. For a=c− ,s6 we
have Ja=vRrR,a−vLrL,a.

The Coulomb blockade Hamiltonian follows from requir-
ing ras;orrr,as=Nas /L, where the Nas’s are integers and
the no-current condition Ja=0. The channel occupation num-
bers are defined Nc6= sN+↑+N+↓d6 sN−↑+N−↓d and Ns6

= sN+↑−N+↓d6 sN−↑−N−↓d. In the presence of a gate voltage

VG, the resulting Hamiltonian characterized by quantum
numbers Na for each topological channel is given by

HT = o
a=c/s6

ea

8
Na

2 − mNc+ −
pl

4L
SvR − vL

vR + vL
DNc+Nc− +

1

2
DbNc−

− DZNs+, s12d

where ea=e0+4Ea, e0=
2p"vRvL

LsvR+vLd , and Ea is the interaction
strength in a given mode. Here, Ec+=V /L, Ec−
=−pl2 /4"vL, and Es6=0. The term m is proportional to
eVG, and DZ=mBB accounts for the Zeeman splitting. The
band splitting Db will depend on boundary conditions; in the
absence of Fermi point mixing at the tube ends, it reduces to
the band structure Fermi point mismatch DF.11 As typical
parameter values, for a 1 mm tube of diameter 6.78 nm, and
magnetic and electric field strengths of 4.93 T and 0.0242
V/nm, we find e0=1.36 meV, Ec+ /e0=5.93, Ec− /e0=−0.23,
DZ /e0=0.21, and l /Le0=0.24.

By virtue of their field dependence, several parameters in
HT can be varied to access a wide variety of shell filling
configurations of the nanotube quantum dot in Coulomb
blockade experiments. The configurations correspond to sets
of electron occupation numbers which minimize the energy
associated with Eq. s12d.11,18 While the associated parameter
space is too extensive for an exhaustive study, a few salient
characteristics of shell filling are as follows. sid In actual
experiments,3,26 the band degeneracy is often naturally bro-
ken due to physical attributes such as the confining potential
created by the leads, yielding patterns such as in Fig. 4sad.
Here, the field dependence of Db enables controlled tuning of
band degeneracy breaking as well as probing the extent of
Fermi point mixing at the tube ends.11,27 siid A fourfold pe-
riodicity has been observed in some experiments reflecting

FIG. 4. sColor onlined Examples of shell filling. Figure indicates
the order, a point, and spin of tunneled electron with increasing
chemical potential m snot drawn to scaled. sad Filling order for a
tube in the absence of fields and with DbÞ0. sbd Shell filling for
Nc+=Nc− exhibits twofold periodicity and complete polarization
into band a=+. This condition is approximately met for a 1 mm
tube of diameter 6.78 nm in the presence of magnetic and electric
fields 4.93 T and 0.0242 V/nm, respectively ssee text for specific
values of the Coulomb blockade parameters for this case and other
detailsd.
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the band and spin degeneracy of the tube.3 siiid As a direct
demonstration of band tuning, the parameter values quoted
above yield the twofold periodic shell-filling pattern in Fig.
4sbd. In particular, these values are chosen such that Eq. s12d
is minimized by the condition Nc+=Nc−, entirely restricting
the tunneling into a given a point. We remark that this con-
dition requires a fine tuning of fields, and also that other field
values can even render ec− negative, resulting in an instabil-
ity toward complete polarization into one band. sivd Period-
icity can also be entirely obliterated by choosing an irrational
ratio between two of the relevant shell-filling parameters. As
demonstrated above, transverse fields provide a precise
means of preparing and manipulating the electronic spin and
band quantum numbers of the nanotube quantum dot.

VI. CONCLUSION

We have presented transverse fields as powerful probes to
access and explore a rich range of physics in armchair nano-

tubes that directly addresses the band degree of freedom. We
have found that these fields induce an unusual interaction
that couples the charge and band sectors. We have predicted
that signatures of these field effects will be apparent in a
variety of measurements including those probing Luttinger
liquid parameters and plasmon structure, tunneling density of
states and impurity scattering. We have shown that transverse
fields can be used for controlled manipulation of nanotube
quantum-dot states, making this proposed setup a potential
building block for nanoscale quantum devices.
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