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The emergence of the seeds of cosmic structure, from a perfect isotropic and homogeneous Universe, has
not been clearly explained by the standard version of inflationary models as the dynamics involved preserve
the homogeneity and isotropy at all times. A proposal that attempts to deal with this problem, by
introducing “the self-induced collapse hypothesis,” has been introduced by D. Sudarsky and collaborators
in previous papers. In all these works, the collapse of the wave function of the inflaton mode is restricted to
occur during the inflationary period. In this paper, we analyze the possibility that the collapse happens
during the radiation era. A viable model can be constructed under the condition that the inflaton field
variable must be affected by the collapse while the momentum variable can or cannot be affected. Another
condition to be fulfilled is that the time of collapse must be independent of k. However, when comparing
with recent observational data, the predictions of the model cannot be distinguished from the ones provided
by the standard inflationary scenario. The main reason for this arises from the requirement that primordial
power spectrum obtained for the radiation era matches the amplitude of scalar fluctuations consistent with
the latest cosmic microwave background observations. This latter constraint results in a limit on the
possible times of collapse and ensures that the contribution of the inflaton field to the energy-momentum
tensor is negligible compared to the contribution of the radiation fields.

DOI: 10.1103/PhysRevD.90.083525 PACS numbers: 98.80.Cq, 98.70.Vc, 98.80.-k

I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) radiation are one of the most powerful tools to
study the early Universe; also they can provide precise
measurement of the cosmological parameters. Starting with
COBE’s groundbreaking detection, in the past two decades
there has been a major improvement in the measurement
of microwave background temperature fluctuation. On the
other hand, recent observations of the CMB power spec-
trum, e.g. the release of Planck data [1] and the recent claim
about the detection of B-modes originated by primordial
gravitational waves [2], have strengthened the theoretical
status of inflationary scenarios among cosmologists.
In the standard (and the simplest) inflationary scenario,

the origin of structures in our Universe like galaxies and
clusters of galaxies is explained by assuming a stage
described by an accelerating (nearly de Sitter) expansion
driven by the potential of a single scalar field, and from its
quantum fluctuations characterized by a simple vacuum
state. In particular, the quantum fluctuations transform into
the classical statistical fluctuations that represent the seeds
of the current cosmic structure. However, the usual account
for the origin of cosmic structure is not fully satisfactory as
it lacks a physical mechanism capable of generating the

inhomogeneity and anisotropy of our Universe, from an
exactly homogeneous and isotropic initial state associated
with the early inflationary regime. This issue has been
analyzed in previous papers [3–5] and one key aspect of the
problem is that there is no satisfactory solution within the
standard physical paradigms of quantum unitary evolution
because this kind of dynamics is not capable of breaking
the initial symmetries of the system. To handle this
shortcoming, a proposal has been developed by D.
Sudarsky and collaborators [3,5–12]. In this scheme, a
new ingredient is introduced into the inflationary scenario:
the self-induced collapse hypothesis. The main assumption
is that, at a certain stage in the cosmic evolution, there is an
induced jump from the original quantum state character-
izing the particular mode of the quantum field; after the
jump, the quantum state is inhomogeneous and anisotropic
or more precisely it must not be an eigenstate of the linear
and angular momentum operators. This process is similar
to the quantum mechanical reduction of the wave function
associated with a measurement. However, in our scheme,
there is no external measuring device or observer (as there
is nothing in the situation we are considering that could be
called upon to play such a role). The hypothesis concerning
an observer independent collapse of the wave function has
been proposed and analyzed in the community working on
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quantum foundations: The continuous spontaneous locali-
zation (CSL) model [13], representing a continuous version
of the Ghirardi-Rimini-Weber model [14], and the propos-
als of Penrose [15] and Diósi [16,17] addressing gravity as
the main agent for triggering the reduction of the wave
function, are among the main schemes attempting to model
the physical mechanism of a self-induced collapse (for
more recent examples see Refs. [18,19]).
Therefore, by considering a self-induced collapse (in

each mode) of the inflaton wave function, the inhomoge-
neities and anisotropies arise at each particular length scale.
As a consequence of this modification of the inflationary
scenario, the predicted primordial power spectrum is
modified and also the CMB fluctuation spectrum.
Previous works [3–5,10] have extensively discussed both
the conceptual and formal aspects of this new proposal, and
we refer the reader to the references. However, we com-
ment on an important point, namely the characteristics of
the state into which such a jump occurs. As mentioned
previously, the quantum state must not be a homogeneous
and isotropic state. One could then assume a particular
collapse mechanism, which would lead to such a post-
collapse state, and then calculate the corresponding observ-
ables in that state. The question now would be the
following: which are the appropriate observables for the
problem at hand that emerge from the quantum theory?
One possible approach would be to assume that both

metric and matter perturbations are well characterized by a
quantum field theory constructed on a classical unperturbed
background; in the context of inflation, this approach
corresponds to the quantization of the so-called
Mukhanov-Sasaki variable, which then is used to yield
predictions for the observational quantities (e.g. the spec-
trum of the temperature anisotropies). Therefore, if one
assumes a particular collapse mechanism, which somehow
modifies the standard unitary evolution given by
Schroedinger’s equation, then the dynamic of the observ-
ables, in terms of the Mukhanov-Sasaki variable, would
be modified directly; this scheme was developed in
Refs. [20,21] for the inflationary Universe.
Another possible approach to relate the quantum degrees

of freedom (DOF) with the observational quantities is to
rely on the semiclassical gravity picture; within this
framework, the metric perturbations are always described
in a classical way, while the matter degrees of freedom are
modeled by a quantum field theory in a curved classical
background. Then, by using Einstein’s semiclassical equa-
tions Gab ¼ 8πGhT̂abi, one relates the quantum matter
perturbations with the corresponding ones from the
classical metric. Nevertheless, assuming a particular col-
lapse mechanism, which once again can be thought as a
modification of standard Schroedinger’s equation, would
not affect the dynamics of the metric perturbation; indeed,
the dynamics of the modes characterizing the quantum field
would be modified, but since the metric perturbation is

always a classical object, its dynamics is not given by the
modified Schroedinger’s equation. Assuming a particular
collapse mechanism would only modify the initial con-
ditions of the motion equation for the metric perturbation,
which again is always described at the classical level; in the
context of inflation, this was analyzed in Ref. [12].
In this work, we will take the semiclassical gravity

approach, since (as will be argued in the paper) it presents
a clear picture of how the inhomogeneities and anisotropies
are born from the quantum collapse. Moreover, since the
considerationof a particular collapsemechanismwill not alter
the dynamics of the classical quantities, we can characterize
the postcollapse state in a generic way. In particular, we will
follow the pragmatical approach first proposed in [3] inwhich
one describes the collapse by characterizing the expectation
values of the quantum field variable and its momentum in
the postcollapse state. In Refs. [3,7,11] two schemes were
considered; one in which, after the collapse, both expectation
values are randomly distributedwithin their respective ranges
of uncertainties in the precollapsed state, and another one in
which it is only the conjugate momentum that changes its
expectation value from zero to a value in its corresponding
range as a result of the collapse. In this paper, we will also
consider the possibility that only the field variable changes its
expectation value after the collapse.
On the other hand, in all previous works [3,7,10,12] the

self-induced collapse of the inflaton wave function is
restricted to happen at the inflationary stage of the
Universe. However, there is no reason for this restriction,
apart from the observational limits imposed by the CMB
data. As a matter of fact, the idea of generating the primordial
curvature perturbation after the inflationary era has ended is
not a new proposal; earlier works based on the curvaton
scenario deal with such a picture [22–24], and even in recent
works [25] the curvaton model is still, under certain
assumptions, considered as a viable option for generating
the curvature perturbations. Moreover, in a model by R.M.
Wald [26], the density perturbations can be achieved even
if there was no inflationary regime at all. The aim of the
present paper is to analyze the possibility that the primordial
curvature perturbation can be generated by a self-induced
collapse of the wave function of the inflaton field, but with
the additional hypothesis that such collapse occurs during
the radiation dominated epoch. We analyze three different
possibilities for the postcollapse state of the wave function in
a radiation dominated background. As we will show, it is
possible to obtain a viable model, i.e. a nearly scale-invariant
power spectrum. Nevertheless, when comparing the model’s
prediction with recent data from the CMB temperature and
temperature-polarization spectra, the predictions of the
collapse model are essentially indistinguishable from the
ones given by the traditional slow-roll inflationary scenario
provided by a single scalar field.
The paper is organized as follows: In Sec. II, we present

the action of the model and solve Einstein’s semiclassical
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equations. In Sec. III, we perform the quantization of the
inflaton field in a radiation dominated background. In
Sec. IV, we introduce the collapse hypothesis for three
different choices of the postcollapse state: (i) the collapse
affects only the field variable, (ii) the collapse affects only
the momentum variable, and (iii) the collapse affects both
the field and momentum variable. In Sec. V, we relate the
CMB observational quantities with the primordial spectrum
modified with the collapse hypothesis. In Sec. VI, we
analyze, from the theoretical point of view, the viability
of the power spectrum obtained from each one of three
proposed collapse schemes. In Sec. VII, we present an
analysis where recent observational data are used to
examine the validity of the predicted power spectrum.
Finally, in Sec. VIII, we end with a brief discussion of our
conclusions. Regarding notation and conventions, we will
work with signature ð−;þ;þ;þÞ for the metric; primes
over functions will denote derivatives with respect to the
conformal time η, and we will use units where c ¼ ℏ ¼ 1
but keep the gravitational constant G.

II. CLASSICAL ANALYSIS

The background space-time will be described by a
spatially flat Friedmann-Robertson-Walker (FRW) radia-
tion dominated universe. The action of the theory is

S ¼ Srad þ SG þ Sinf ; ð1Þ
with SG being the standard action describing the gravity
sector; Srad represents the action of the dominant type of
matter, which in our case would be radiation type matter,
and Sinf is the action of a single scalar field ϕ minimally
coupled to gravity and with an appropriate potential
representing the inflaton:

Sinf ¼
Z

d4x
ffiffiffiffiffiffi−gp �

− 1

2
∇aϕ∇bϕgab − V½ϕ�

�
: ð2Þ

Varying the action (1) with respect to the metric yields
Einstein’s equations,

Gab ¼ 8πGðTrad
ab þ T inf

abÞ: ð3Þ

The energy-momentum tensor for the inflaton can be
written as

Ta inf
b ¼ gac∇cϕ∇bϕþ δab

�
1

2
gcd∇cϕ∇dϕ − V½ϕ�

�
: ð4Þ

Since we will work in a radiation dominated universe, the
contribution of T inf

ab to the total energy-momentum tensor
should be negligible, i.e. T inf

ab ≪ Trad
ab . We separate the fields

into a background part and perturbations; the background
corresponds to a FRW radiation dominated universe instead
of the traditional quasi–de Sitter (inflaton) driven universe.

In this way, the metric and the energy-momentum tensor
field are written as g ¼ g0 þ δg and Tab ¼ Tð0Þ

ab þ δTab.
One can then apply perturbation theory to Einstein’s
equations. Nevertheless, we will assume that the dominant
contribution to the perturbations in the matter sector is
mainly due to the inhomogeneities of the inflaton field. In
other words, δTrad

ab should be negligible compared to δT inf
ab .

We remind the reader that, at this point, we are not
indicating that there are inhomogeneities of any definite
size in the Universe, but merely we are considering what
would be the dynamics of any such small inhomogeneity
if it existed. The issue of their presence and magnitude
is dealt with at the quantum level; as a matter of fact, if
there has been no collapse of the wave function at this
point, δTab ¼ h0jδT̂ inf

ab j0i þ h0jδT̂rad
ab j0i ¼ 0, consequently

δGab ¼ 0, and the space-time is perfectly homogeneous
and isotropic; it is only after the collapse that generically
hΘjδT̂ inf

ab jΘi ≠ 0 and hΘjδT̂rad
ab jΘi ≠ 0; thus, δTab ≠ 0. This

will be made more clear in the next section. For now, we
will just continue with the classical analysis and deal with
the quantum treatment in the next section.
Einstein’s equations for the background Gð0Þ

00 ¼
8πGTð0Þ

00 ¼ 8πGa2ρ yield Friedmann’s equations. Since
we are assuming that the Universe is dominated by
radiation, the energy contribution of the inflaton to the
total energy density ρ will be negligible; therefore, the
equation of state is to a good approximation P ¼ ρ=3.
Given the previous equation of state, one can find the
explicit expression for the scale factor, this is

aðηÞ ¼ Cðη − ηrÞ þ ar; ð5Þ

where η is the conformal time, C is a constant, ηr is the
conformal time at the beginning of the radiation era,
and ar ¼ aðηrÞ. Normalizing the scale factor today
as a0 ¼ 1 and by assuming that inflation ends at an
energy scale of 1015 GeV, one can find the numerical
values ηr ≃−1.2 × 10−22 Mpc, ar ≃ 2.4 × 10−28, and
C≃ 1.6 × 10−6 Mpc−1.
Furthermore, we will ignore for the most part the

treatment of the reheating era. In other words, we will
assume that the inflationary regime ends at a conformal
time ηei ≃−10−22 Mpc and for all practical pur-
poses ηei ≃ ηr.
Now we will focus on the perturbations. The perturbed

space-time will be represented by the line element

ds2 ¼ aðηÞ2½−ð1þ 2ΦÞdη2 þ ð1 − 2ΨÞδijdxidxj�; ð6Þ

where we have focused only on the scalar perturbations and
have chosen to work in the longitudinal gauge.
As we have said, the contribution from δTrad

ab to the
perturbations of the matter sector is negligible compared to
δT inf

ab . Thus,
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δGab ¼ 8πGδT inf
ab : ð7Þ

Furthermore we can write the scalar field as follows: ϕð~x; ηÞ ¼ ϕ0ðηÞ þ δϕð~x; ηÞ, where δϕ ≪ ϕ0.
Einstein’s equations at first order in the perturbations, δG0

0 ¼ 8πGδT0
0, δG

0
i ¼ 8πGδT0

i and δGi
j ¼ 8πGδTi

j, are given
respectively by

∇2Ψ − 3HðHΦþΨ0Þ ¼ 4πG½−ϕ02
0 Φþ ϕ0

0δϕ
0 þ ∂ϕVa2δϕ�; ð8Þ

∂iðHΦþΨ0Þ ¼ 4πG∂iðϕ0
0δϕÞ; ð9Þ

½Ψ00 þHð2Ψþ ΦÞ0 þ ð2H0 þH2ÞΦþ 1

2
∇2ðΦ −ΨÞ�δij − 1

2
∂i∂jðΦ −ΨÞ

¼ 4πG½ϕ0
0δϕ

0 − ϕ02
0 Φ − ∂ϕVa2δϕ�δij: ð10Þ

It is easy to see that the case i ≠ j in Eq. (10), together with
appropriate boundary conditions (more easily seen in the
Fourier transformed version), leads toΨ ¼ Φ; from now on
we will use this result.
By combining Eqs. (8)–(9), one obtains

∇2Ψþ 4πGϕ02
0 Ψ ¼ 4πG½ϕ0

0δϕ
0 þ ða2∂ϕV þ 3Hϕ0

0Þδϕ�:
ð11Þ

After decomposing Ψ and ϕ in Fourier modes, the above
equation yields

Ψ~kðηÞ ¼
4πGϕ0

0ðηÞ
−k2 þ 4πGϕ0

0ðηÞ2

×

�
δϕ0

~k
ðηÞ þ

�
3Hþ a2∂ϕV

ϕ0
0ðηÞ

�
δϕ~kðηÞ

�
: ð12Þ

The energy density of the scalar field is ρϕ ¼ T inf
00 . Since

the Universe is radiation dominated and the inflationary era
has ended, the scalar field is now rapidly oscillating around
the minimum of its potential; this is ∂ϕV ≃ 0; therefore,
we can approximate the energy density of the inflaton as
ρϕ ≃ ϕ02

0 =2a
2 ≪ ρrad. Thus, Eq. (12) is rewritten as

Ψ~kðηÞ ¼
ffiffiffiffiffi
ρϕ

p
ffiffiffi
2

p
M2

Pð−k2 þ ρϕa2=M2
PÞ

× ½aδϕ0
~k
ðηÞ þ 3Haδϕ~kðηÞ�; ð13Þ

where we used the definition of the reduced Planck’s mass
M2

P ≡ ð8πGÞ−1. Equation (13) relates the perturbations in
the inflaton field with the perturbations of the metric.
Moreover, Eq. (13) was obtained by combining

Eqs. (8)–(9) which correspond to Einstein’s equations with
components δG0

0 ¼ 8πGδT0
0 and δG0

i ¼ 8πGδT0
i ; it is a

well-known result [27] that these particular equations are
not actual motion equations but rather constraint equations.
The motion equation is the one given by δGi

j ¼ 8πGδTi
j

[Eq. (10)]; from this equation (with i ¼ j) one can derive
the metric perturbation motion equation; for the epoch
corresponding to a radiation dominated universe, the
motion equation for the modes Ψk takes the form

Ψ00
~k
ðηÞ þ 4

η − ηr þ ar=C
Ψ0

~k
ðηÞ þ k2

3
Ψ~kðηÞ ¼ 0: ð14Þ

The analytical solution to Eq. (14) is

Ψ~kðηÞ ¼
3

ðkη− δkÞ2
�
C1ð~kÞ

� ffiffiffi
3

p

kη− δk
sin

�
kη− δkffiffiffi

3
p

�

− cos

�
kη− δkffiffiffi

3
p

��
þC2ð~kÞ

� ffiffiffi
3

p

kη− δk
cos

�
kη− δkffiffiffi

3
p

�

þ sin
�
kη− δkffiffiffi

3
p

���
; ð15Þ

with δk ≡ kηr − kar=C. Once the collapse has created all
modes Ψk (as will be argued in more detail in Sec. IVA),
we can divide them into two types:

(i) Modes with an associated proper wavelength bigger
than the Hubble radius; we will call these the
superhorizon modes.

(ii) Modes with an associated proper wavelength
smaller than the Hubble radius; we will call these
the subhorizon modes.1

If ðkη − δkÞ ≫ 1 the general solution, Eq. (15),
approaches zero; in other words, for subhorizon modes
Ψ~k → 0. On the other hand, the dynamics of the super-
horizon modes, i.e. those that satisfy ðkη − δkÞ ≪ 1, is
given by

1The condition that modes are smaller than the horizon is
given by k ≫ aH ¼ H; by using the exact expression for H
during the radiation dominated epoch H≡ a0ðηÞ=aðηÞ ¼
1=ðη − ηr þ ar=CÞ, one checks that the latter condition is
equivalent to ðkη − δkÞ ≫ 1. Alternatively, modes that are super-
horizon during radiation satisfy ðkη − δkÞ ≪ 1.
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Ψ~kðηÞ ¼
C1ð~kÞ
3

þ 33=2C2ð~kÞ
ðkη − δkÞ3

: ð16Þ

The second mode is known as the decaying mode which we
shall neglect hereafter. Since subhorizon modes decay as
1=ðkη − δkÞ2 ∝ 1=aðηÞ2, they cannot account for the modes
of interest in the angular power spectrum; conversely,
superhorizon modes are constant until they enter the
horizon. Therefore, we will only focus on superhorizon
modes,

Ψ~kðηÞ≃
C1ð~kÞ
3

: ð17Þ

The constant C1ðkÞ can be obtained from Eq. (13), which,
as we said, corresponds to a constraint equation, evaluated
at some particular time, say ηc~k

(later in the paper we will
argue in more detail that this corresponds to the time of
collapse), before the modes enter the horizon; thus,

Ψ~k≃
ffiffiffiffiffi
ρϕ

p
ffiffiffi
2

p
M2

Pð−k2þρϕa2=M2
PÞ
½aδϕ0

~k
ðηÞþ3Haδϕ~kðηÞ�jη¼ηc

~k

with kηc~k−δk≪ 1: ð18Þ

We want to emphasize that at this point the analysis has
been done in a classical manner; the quantum aspects will
be analyzed in the next section. Nevertheless, we have
shown that the superhorizon modes for the curvature
perturbation are constant during the radiation era, if Ψ~k
is classical, and, thus, follow a dynamical evolution given
by Einstein’s (classical) equations.

III. QUANTUM ANALYSIS OF
THE PERTURBATIONS

In this section we proceed to establish the quantum
theory of the inflaton perturbations. The difference with
previous works [3,7,9,10] is that, in the case of the present
work, the scale factor of the background metric is given by
Eq. (5), which corresponds to a radiation dominated
universe; while in the cited works, the scale factor
corresponds to a (quasi) de Sitter type of universe.
Consequently, we will construct the quantum theory of a
scalar field in a radiation FRW background universe.
We start by writing the action:

Sinf ¼
Z

d4x
ffiffiffiffiffiffi−gp �

− 1

2
∇aϕ∇bϕgab − V½ϕ�

�
: ð19Þ

Our fundamental quantum variable will be the fluc-
tuation of the inflaton field, δϕð~x; ηÞ; however, it will be
easier to work with the rescaled field variable y ¼ aδϕ.
Next we expand the action (19) up to second order in the
rescaled variable (i.e. up to second order in the scalar field
fluctuations),

δSð2Þ ¼
Z

d4xδLð2Þ

¼
Z

d4x
1

2

�
y02 − ð∇yÞ2 þ

�
a0

a

�
2

y2 − 2

�
a0

a

�
yy0

�
:

ð20Þ

The canonical momentum conjugated to y is
π ≡ ∂δLð2Þ=∂y0 ¼ y0 − ða0=aÞy ¼ aδϕ0. The field and
momentum variables are promoted to operators satisfying
the equal time commutator relations ½ŷð~x; ηÞ; π̂ð~x0; ηÞ� ¼
iδð~x − ~x0Þ and ½ŷð~x; ηÞ; ŷð~x0; ηÞ� ¼ ½π̂ð~x; ηÞ; π̂ð~x0; ηÞ� ¼ 0.
We expand the momentum and field operators in Fourier
modes,

ŷðη; ~xÞ ¼ 1

L3

X
~k

ŷ~kðηÞei
~k·~xπ̂ ðη; ~xÞ ¼ 1

L3

X
~k

π̂~kðηÞei
~k·~x;

ð21Þ

where the sum is over the wave vectors ~k satisfying
kiL ¼ 2πni for i ¼ 1; 2; 3 with ni integer and ŷ~kðηÞ≡
ykðηÞâ~k þ y�kðηÞâ†−~k and π̂~kðηÞ≡ gkðηÞâ~k þ g�kðηÞâ†−~k.
From the previous expression it is clear that we are
taking the quantization on a finite cubic box of length
L; at the end of the calculations we will go to the continuum
limit (L → ∞, k → cont). The equation of motion for ykðηÞ
derived from action (20) is

y00k þ
�
k2 − a00

a

�
yk ¼ 0: ð22Þ

It is worthwhile to mention that the scale factor a
corresponds to the radiation dominated era. In such case,
the scale factor is given as in Eq. (5); consequently the
motion equation (22) is written as

y00k þ k2yk ¼ 0; ð23Þ

which is the motion equation of a harmonic oscillator. The
solutions are, thus,

ykðηÞ ¼ Akeikη þ Bke−ikη; ð24aÞ

gkðηÞ ¼ −Akk

�
H
k
− i

�
eikη − Bkk

�
H
k
þ i

�
eikη; ð24bÞ

where Ak and Bk are constants that are fixed by the
canonical commutation relations between ŷ and π̂, which
give ½â~k; â†~k0 � ¼ L3δ~k;~k0 ; thus ykðηÞ must satisfy ykg�k −
y�kgk ¼ i for all k at some time η; however, this condition
alone does not completely fix the constants Ak and Bk. One
still needs to select a choice for the vacuum state for the
field. In order to proceed, we will select a vacuum state in
the inflation era (where a00=a≃ 2η−2), where the quantum
fluctuations of the inflaton field are originated. There are a
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variety of choices regarding the vacuum state during
inflation; one of the most common choices is the so-called
Bunch-Davies (BD) vacuum characterized by

ykðηÞ ¼
1ffiffiffiffiffi
2k

p
�
1 − i

kη

�
e−ikη; gkðηÞ ¼ −i

ffiffiffi
k
2

r
e−ikη:

ð25Þ

Consequently, the constants Ak and Bk will be fixed by
matching the modes during the inflation [Eqs. (25)] era and
the modes during the radiation era [Eqs. (24)] at the time ηr,
which corresponds to the conformal time of the beginning
of the radiation era and is essentially the same order of
magnitude as the conformal time that marks the end of
inflation. Note that we are neglecting the reheating era
that describes the decay of the inflaton in all the fields
characterizing the radiation type of matter. If one takes into
account the interaction of the inflaton and the quantum
fields representing the radiation matter, the vacuum state
could possibly change. Note, however, that this resulting
new vacuum state would still be perfectly homogeneous
and isotropic. In other words, the reheating period cannot
break the symmetry of an original quantum state because its
dynamics is given by the Schroedinger’s equation which
preserves the symmetry. For simplicity we will not consider
the reheating period and assume that all the fields, before
and after inflation, are characterized by the BD vac-
uum state.
Therefore, with the previous assumptions, the constants

Ak and Bk are

Ak ¼
e−2ikηr

23=2k5=2η2r
; Bk ¼

1ffiffiffiffiffi
2k

p
�
1 − i

kηr

�
− 1

23=2k5=2η2r
:

ð26Þ

To recapitulate, the modes ykðηÞ are originated during
the inflationary epoch in the BD vacuum state; after
inflation reaches its end at ηr (and ignoring the reheating
era) the radiation dominated epoch begins and the inflaton
is now oscillating around the minimum of its potential.
Additionally, its modes continue to evolve according to
Eqs. (24); nevertheless, the quantum state of the modes is
still the BD vacuum state, which is 100% homogeneous
and isotropic; consequently there are no inhomogeneities
and anisotropies present at this stage of the evolution. Thus,
as discussed in Sec. I, in order to account for the issue
regarding the emergence of an anisotropic and inhomo-
geneous universe from an exactly isotropic and homo-
geneous initial state of the primordial perturbations, we
must consider a self-induced collapse of the wave function.
In the following section, we will describe how to para-
metrize such collapse and show how the primordial
curvature perturbations are produced by the self-induced
collapse in a radiation dominated era.

IV. THE COLLAPSE MODEL AND THE
CURVATURE PERTURBATION

In this section, we will show how one can generate the
primordial curvature perturbation during the radiation
dominated era by introducing the collapse hypothesis.
The self-induced collapse hypothesis is based on con-

sidering that the collapse acts similar to a measurement
(clearly, there is no external observer or detector involved).
This lead us to consider Hermitian operators, which in
ordinary quantum mechanics are the ones susceptible to
direct measurement. Therefore, we separate ŷ~kðηÞ and
π̂~kðηÞ into their real and imaginary parts ŷ~kðηÞ ¼ ŷR~k ðηÞ þ
iŷI~kðηÞ and π̂~kðηÞ ¼ π̂R~k

ðηÞ þ iπ̂I~kðηÞ; in this way the oper-

ators ŷR;I~k
ðηÞ and π̂R;I~k

ðηÞ are Hermitian operators. Thus,

ŷR;I~k
ðηÞ ¼

ffiffiffi
2

p
R½ykðηÞâR;I~k

�;
π̂R;I~k

ðηÞ ¼
ffiffiffi
2

p
R½gkðηÞâR;I~k

�; ð27Þ

where âR~k ≡ ðâ~k þ â−~kÞ=
ffiffiffi
2

p
, âI~k ≡−iðâ~k − â−~kÞ=

ffiffiffi
2

p
. The

commutation relations for the âR;I~k
are nonstandard,

½âR~k ; â
R†
~k0
� ¼ L3ðδ~k;~k0 þ δ~k;−~k0 Þ;

½âI~k; â
I†
~k0
� ¼ L3ðδ~k;~k0 − δ~k;−~k0 Þ; ð28Þ

with all other commutators vanishing.
One natural way to proceed is to assume that the effect

of the collapse on a state is analogous to some sort of
approximate measurement; in other words, after the col-
lapse, the expectation values of the field and momentum
operators in each mode will be related to the uncertainties
of the initial state. In the vacuum state, ŷ~k and π̂~k are
individually distributed according to Gaussian wave func-
tions centered at 0 with spread ðΔŷ~kÞ20 and ðΔπ̂~kÞ20,
respectively. We consider various possibilities for such
relations; we will refer to them as collapse schemes to the
different ways of characterizing the expectation values.
So, even though we did not assume a specific collapse
mechanism, the different schemes refer to different ways
of the collapse to happen, affecting either the field or
momentum variable or both. The most generic form to
characterize such collapse schemes is

hŷR;I~k
ðηc~kÞiΘ ¼ λ1x

R;I
~k;1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔŷR;I~k

ðηckÞÞ20
q

¼ λ1x
R;I
~k;1

L3=2ffiffiffi
2

p jykðηc~kÞj;

ð29aÞ

hπ̂R;I~k
ðηckÞiΘ ¼ λ2x

R;I
~k;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔπ̂R;I~k

ðηckÞÞ20
q

¼ λ2x
R;I
~k;2

L3=2ffiffiffi
2

p jgkðηc~kÞj:

ð29bÞ
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The subindex h·iΘ represents taking the expectation value
on the postcollapse state jΘi. The random variables
xR;I~k;1

; xR;I~k;2
are distributed according to a Gaussian centered

at zero, of spread one (normalized), and are statistically
uncorrelated; the quantity ηc~k denotes the conformal time of

collapse, which in principle might depend on k. The
parameters λ1; λ2 can only take two values: 0 or 1; the
only purpose of these parameters is to “switch on” or
“switch off” the operators in which the collapse take place.
For example, we can choose a scheme in which the
momentum operator is affected by the collapse but not
the field, i.e. hπ̂~kðηc~kÞiΘ ≠ 0, hŷ~kðηc~kÞiΘ ¼ 0; this situation

corresponds to set λ2 ¼ 1, λ1 ¼ 0. In Sec. VI we will study
with detail the primordial spectrum in three different cases:
(i) only the field variable is affected by the collapse, λ1 ¼ 1,
λ2 ¼ 0; (ii) only the momentum variable is affected by the
collapse, λ1 ¼ 0, λ2 ¼ 1; (iii) both variables are affected by
the collapse, λ1 ¼ 1, λ2 ¼ 1.
The next step would be to relate the quantum objects

with the observational quantities, but before we proceed in
that direction, we introduce the way in which we believe the
quantum DOF relate to the classical description of the
space-time in terms of the metric.

A. The semiclassical gravity approach and the
collapse of the wave function

We will rely on the so-called semiclassical gravity
approach. This approach is characterized by Einstein’s
semiclassical equations Gab ¼ 8πGhT̂abi, which relate the
matter quantum DOF with the classical description of
gravity in terms of the metric. The semiclassical approach
is a valid approximation in the energy scales for our case of
interest; also, this approach lead us to consider that the
Universe can be described, by what was called semi-
classical self-consistent configuration (SSC), first intro-
duced in Ref. [10]; in the following, we present a brief
description of such an idea.
The SSC considers a space-time geometry characterized

by a classical space-time metric and a standard quantum
field theory constructed on that fixed space-time back-
ground, together with a particular quantum state in that
construction such that the semiclassical Einstein equations
hold. Specifically, one will establish that the set

fgμνðxÞ; φ̂ðxÞ; π̂ðxÞ;H; jξi ∈ Hg ð30Þ

characterizes a SSC if and only if φ̂ðxÞ, π̂ðxÞ, and H
correspond to a quantum field theory constructed over a
space-time with metric gμνðxÞ (as described in, say, [28]),
and the state jξi in H is such that

Gμν½gðxÞ� ¼ 8πGhξjT̂μν½gðxÞ; φ̂ðxÞ; π̂ðxÞ�jξi; ð31Þ

for all the points in the space-time manifold.

Such description is thought to be appropriate in the
regime of interest except in those times when a collapse
occurs. In particular, if one considers a specific collapse
mechanism, then Eq. (31) will not hold; this is due to the
fact that the quantum collapse would induce sudden
changes or “state jumps” to the initial quantum state; thus
the divergence∇ahT̂abi ≠ 0which implies that∇aGab ≠ 0;
evidently that is a problem since a well-known result from
general relativity is that the divergence of Einstein’s tensor
vanishes. Nevertheless, since we will be only interested in
states before and after the collapse, this breakdown of the
semiclassical approximation would not be important for
our present work. During the collapse, the dynamics of the
space-time would be affected, but in the absence of a full
workable theory of quantum gravity, we cannot character-
ize the metric dynamical response to the modification of the
standard unitary quantum evolution.
The relation between the SSC and the collapse process

can be described in a more formal way: first, within the
Hilbert space associated to the given SSC-i, one can
consider that a transition jξðiÞi → jζðiÞitarget is about to

happen, with both jξðiÞi and jζðiÞitarget in HðiÞ. In general,

the set fgðiÞ; φ̂ðiÞ; π̂ðiÞ;HðiÞ; jζðiÞitargetgwill not characterize a
new SSC. In order to describe a reasonable picture, as
presented in Ref. [10], one needs to relate the state jζðiÞitarget
with another one jζðiiÞi existing in a new Hilbert spaceHðiiÞ

for which fgðiiÞ; φ̂ðiiÞ; π̂ðiiÞ;HðiiÞ; jζðiiÞig is a valid SSC; this
new SSC is denoted by SSC-ii. Consequently, one needs to
determine first the target (nonphysical) state in HðiÞ to
which the initial state is “tempted” to jump, so to speak, and
after that, one can relate such a target state with a
corresponding state in the Hilbert space of a new SSC,
the SSC-ii. One then considers that the target state is chosen
stochastically, guided by the quantum uncertainties of
designated field operators, evaluated on the initial state
jξðiÞi, at the collapsing time; this was the motivation behind
the characterization of the collapse schemes presented
in Eqs. (29).
Regarding the identification between the two different

SSCs involved in the collapse, the prescription introduced
in Ref. [10] is the following: Assume that the collapse takes
place along a Cauchy hypersurface Σ. A transition from
the physical state jξðiÞi in HðiÞ to the physical state jζðiiÞi in
HðiiÞ (associated to a certain target nonphysical state
jζðiÞitarget in HðiÞ) will occur in a way that

targethζðiÞjT̂ðiÞ
μν½gðiÞ; φ̂ðiÞ; π̂ðiÞ�jζðiÞitargetjΣ

¼ hζðiiÞjT̂ðiiÞ
μν ½gðiiÞ; φ̂ðiiÞ; π̂ðiiÞ�jζðiiÞijΣ; ð32Þ

i.e. in such a way that the expectation value of the energy-
momentum tensor, associated to the states jζðiÞitarget and
jζðiiÞi evaluated on the Cauchy hypersurface Σ, coincides.
Note that the left-hand side in the expression above is
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meant to be constructed from the elements of the SSC-i
(although jζðiÞitarget is not really the state of the SSC-i),
while the right-hand side corresponds to quantities evalu-
ated using the SSC-ii.
In the situation of interest for this work, the SSC-i

corresponds to a homogeneous and isotropic space-time
characterized by Ψ ¼ 0 with the state of the quantum field
corresponding to the Bunch-Davies vacuum. Meanwhile,
the SSC-ii corresponds to an excitation of all the modes k,
characterized by the Newtonian potential Ψ~k. In particular,
the postcollapse state jζðiiÞi is explicitly

jζðiiÞi ¼ …jζðiiÞ−~k2i ⊗ jζðiiÞ−~k1i ⊗ jζðiiÞ0 i ⊗ jζðiiÞ~k1
i ⊗ jζðiiÞ~k2

i…;

ð33Þ

which means that the collapse process affects all modes of
the quantum field. Given the previous prescription for the
postcollapse state, and considering the SSC-ii, we can now
associate each mode of the postcollapse state to each mode
characterized by Ψ~k. In this way the metric perturbations
ΨðxÞ are born, and thus the SSC-ii corresponds to an
inhomogeneous and anisotropic space-time at all scales k;
in particular, Ψ~k corresponds to modes that are super-
horizon and subhorizon.
One advantage of relying on the semiclassical approach

is that it allows us to present a clear picture of the physical
process (although not exactly known) responsible for the
birth of the primordial perturbations from the quantum
collapse: the initial state of the Universe is described by
both an homogeneous-isotropic vacuum state and an
equally homogeneous-isotropic Friedmann-Robertson-
Walker space-time. Then, at some point during the radi-
ation epoch, some unknown physical mechanism causes a
quantum collapse of the matter field wave function.
However, the state resulting from the collapse needs not
to share the same symmetries as the initial state. After the
collapse, the gravitational DOF are assumed to be, once
more, accurately described by Einstein’s semiclassical
equation. Nevertheless, hT̂abi evaluated in the new state
does not generically posses the symmetries of the precol-
lapse state; hence, we are led to a new geometry that is no
longer homogeneous and isotropic.
We should note here that we will not be using at this

point the full-fledged formal treatment developed. This is
because, as can be seen in Ref. [10], the problem becomes
extremely cumbersome even in the treatment of a single
mode. Thus, even though it is in principle possible to use
such detailed formalism to treat the complete set of relevant
modes, when studying the CMB spectrum the task quickly
becomes a practical impossibility. We will instead rely on
the less formal treatments we had employed in previous
works. That is, we can assume that after the collapse has
ended, and having constructed a SSC-ii, we can generalize
Eq. (18) in the following manner:

Ψ~kðηc~kÞ ¼
ffiffiffiffiffi
ρϕ

p
ffiffiffi
2

p
M2

Pð−k2 þ ρϕa2c=M2
PÞ

× ðhπ̂~kðηc~kÞi þ 3Hchŷ~kðηc~kÞiÞ; ð34Þ

with ac ≡ aðηc~kÞ and Hc ≡Hðηc~kÞ. The condition that
the associated proper wavelength of the modes is bigger
than the Hubble radius at the time of collapse is given by
kηc~k − δk ≪ 1; but upon using the numerical values for
ar; ηr; C one obtains that δk ≃ 10−22; thus, the time of
collapse must satisfy kηc~k ≪ 1.
Equation (34) is the main result of this section as it

relates the primordial curvature perturbation with the
quantum expectation values after the collapse; i.e. it is
an expression that relates the metric perturbation with the
parameters characterizing the collapse. In this manner,
the quantum collapse of the wave function can generate
the primordial cosmic seeds at the radiation era. Note that,
as discussed above, the collapse affects all modes; there-
fore, we could use Eq. (18), which corresponds to the
superhorizon modes. The subhorizon modes are present
too, but as shown in Sec. II, they decay as 1=aðηÞ2.
Furthermore, within the semiclassical approach, the metric
is always a classical object; therefore its dynamics during
the radiation era is exactly given by the motion equa-
tion (14), and as we have argued, it will not be modified
once the collapse mechanism has ended.
It is worth noting that, by relying on the semiclassical

approach, we have no issue regarding the “quantum-to-
classical” transition that is always present in the traditional
approach, namely, to find a justification from going from a
strictly quantum object Ψ̂~k to a classical stochastic fieldΨ~k.
The next task is to obtain an equivalent power spectrum for
the primordial perturbations that can be consistent with the
observational data.
Regarding the tensor modes and the semiclassical

gravity approach, we should mention that recent observa-
tional data [2] suggest that the amplitude corresponding to
the tensor modes may be nontrivial. Additionally, in our
approach, the source of the curvature perturbations lies in
the quantum inhomogeneities of the inflaton field (after
the collapse). Once the collapse has taken place, the
inhomogeneities of the inflaton feed into the gravitational
DOF leading to perturbations in the metric components.
However, the metric itself is not a source of the self-induced
collapse. Therefore, as the scalar field does not act as a
source for the metric tensor modes, at least not at first order
considered here, the analysis concerning the amplitude of
the primordial gravitational waves should be done at
second order in the perturbations; such analysis is beyond
the scope of this paper and would be the subject of future
research. On the other hand, if one takes the view that both
metric and matter perturbations should be quantized, say at
the level of the Mukhanov-Sasaki variable, then one could
still implement a specific collapse mechanism for this
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variable. Furthermore, quantizing matter and metric per-
turbations would yield a nontrivial amplitude for first-order
tensor modes (in the same vein as in the standard
approach); after putting into effect a mechanism respon-
sible for collapsing the wave function, one can look for
possible modifications to tensor power spectra and their
implications. In the particular case of the CSL mechanism,
this type of analysis has been done in Ref. [29].

V. OBSERVATIONAL QUANTITIES

In this section, we will relate the parameters character-
izing the collapse with the observational quantities.
The temperature anisotropies δT

T0
of the CMB are clearly

the most direct observational quantity available (T0 is
the mean temperature). One can expand such anisotropies
with the help of the spherical harmonics δT

T0
ðθ;φÞ ¼P

l;malmYlmðθ;φÞ; therefore, the coefficients alm are
given by

alm ¼
Z

Θðn̂ÞY⋆
lmðθ;φÞdΩ; ð35Þ

with n̂ ¼ ðsin θ sinφ; sin θ cosφ; cos θÞ and θ;φ being the
coordinates on the celestial two-sphere; we have also
defined Θðn̂Þ≡ δTðn̂Þ=T0. Assuming instantaneous
recombination, the relation between the primordial pertur-
bations and the observed CMB anisotropies is

Θðn̂Þ ¼
�
Ψþ 1

4
δγ

�
ðηDÞ þ n̂ · ~vγðηDÞ þ 2

Z
η0

ηD

Ψ0ðηÞdη;

ð36Þ

where ηD is the time of decoupling; δγ and ~vγ are the
density perturbations and velocity of the radiation fluid
(which are generated after the collapse, i.e. once the
curvature perturbation Ψ is originated).
It is common practice to decompose the temperature

anisotropies in Fourier modes,

Θðn̂Þ ¼
X
~k

Θð~kÞ
L3

ei~k·RDn̂; ð37Þ

with RD being the radius of the last scattering surface.
Afterwards, one solves the fluid motion equations with the
initial condition Ψ~k, which in our model corresponds to
Ψ~kðηc~kÞ, i.e. the curvature perturbation at the time of
collapse, Eq. (34).
Furthermore, using that ei~k·RDn̂ ¼ 4π

P
lmi

ljlðkRDÞ×
Ylmðθ;φÞY⋆

lmðk̂Þ, expression (35) can be rewritten as

alm ¼ 4πil

L3

X
~k

jlðkRDÞY⋆
lmðk̂ÞΘð~kÞ; ð38Þ

with jlðkRDÞ being the spherical Bessel function of order l.
The linear evolution which relates the initial curvature

perturbation Ψ~k and the temperature anisotropies Θð~kÞ is
summarized in the transfer function TðkÞ, in other words,
TðkÞ is the result of solving the fluid motion equations
(for one mode) with the initial condition provided by
the curvature perturbation Ψ~k and then making use of
Eq. (36) to relate it with the temperature anisotropies.
Thus, Θð~kÞ ¼ TðkÞΨ~k.
Consequently, the coefficients alm, in terms of the modes

Ψ~kðηc~kÞ, are given by

alm ¼ 4πil

L3

X
~k

jlðkRDÞY⋆
lmðk̂ÞTðkÞΨ~kðηc~kÞ: ð39Þ

We emphasize that Ψ~kðηc~kÞ must correspond to the modes
such that zk ≪ 1, because as explained in Sec. II only
the superhorizon modes are relevant in this context.
Substituting Eq. (34) and using Eqs. (29) (i.e. the collapse
schemes) in Eq. (39) yields

alm ¼ 2πil

L3=2

ffiffiffiffiffi
ρϕ

p
M2

P

X
~k

jlðkRDÞY⋆
lmðk̂ÞTðkÞ

ð−k2 þ ρϕa2c=M2
PÞ

× ðλ2X~k;2jgkðηc~kÞj þ 3Hcλ1X~k;1jykðηc~kÞjÞ; ð40Þ

where X~k;i ≡ xR~k;j þ ixI~k;j (j ¼ 1; 2).

One key aspect that in our treatment differs, from those
followed in the standard approaches, is the manner in which
the results from the formalism are connected to observa-
tions. This is most clearly exhibited by our result regarding
the quantity alm in Eq. (40). Despite the fact that we have in
principle a close expression for the quantity of interest, we
cannot use Eq. (40) to make a definite prediction because
the expression involves the numbers X~k;j that correspond,
as we indicated before, to a random choice “made by
nature” in the context of the collapse process. The way one
makes predictions is by regarding the sum appearing in
Eq. (40) as representing a kind of two-dimensional random
walk, i.e. the sum of complex numbers depending on
random choices (characterized by the X~k). As is well
known, for a random walk, one cannot predict the final
displacement (which would correspond to the complex
quantity alm), but one might estimate the most likely value
of the magnitude of such displacement. Thus, we focus
precisely on the most likely value of jalmj, which we denote
by jalmjM:L:. In order to compute that quantity, we can
imagine a fiducial ensemble of possible realizations of the
random walk, then perform the ensemble average and
identify this average with the most likely value of the total
displacement of the random walk that characterizes our
Universe. Thus we identify

QUANTUM COLLAPSE AS A SOURCE OF THE SEEDS OF … PHYSICAL REVIEW D 90, 083525 (2014)

083525-9



jalmj2M:L: ¼ jalmj2: ð41Þ

The overline appearing denotes average over the fiducial
ensemble of possible realizations, i.e. of possible outcomes
of the random variables where each outcome corresponds to

a single universe. Thus, we identify the ensemble average of
possible realizations with the most likely value, and this
most likely value with the one characterizing our Universe.
The estimate is done now in the standard way in which

one deals with such random walks:

jalmj2M:L: ¼ jalmj2 ¼
4π2ρϕ
L3M4

P

X
~k;~k0

jlðkRDÞjlðk0RDÞY⋆
lmðk̂ÞYlmðk̂0ÞTðkÞTðk0Þ

ð−k2 þ ρϕa2c=M2
PÞð−k02 þ ρϕa2c=M2

PÞ

× ðλ2X~k;2jgkðηc~kÞj þ 3Hcλ1X~k;1jykðηc~kÞjÞðλ2X
⋆
~k0;2

jg0kðηc~k0 Þj þ 3Hcλ1X⋆
~k0;1

jykðηc~k0 ÞjÞ; ð42Þ

which upon using the normalized Gaussian assumption for fiduciary ensemble, that is, X~k;iX
⋆
~k;j0

¼ 2δi;jδ~k;~k0 , leads to

jalmj2M:L: ¼
8π2ρϕ
L3M4

P

X
~k;

jlðkRDÞ2jYlmðk̂Þj2TðkÞ2
ð−k2 þ ρϕa2c=M2

PÞ2
ðλ22jgkðηc~kÞj

2 þ 9H2
cλ

2
1jykðηc~kÞj

2Þ: ð43Þ

Finally, we can remove the fiducial box of side L and pass to the continuum

jalmj2M:L: ¼
ρϕ
πM4

P

Z
d3k

jlðkRDÞ2jYlmðk̂Þj2TðkÞ2
ð−k2 þ ρϕa2c=M2

PÞ2
ðλ22jgkðηc~kÞj

2 þ 9H2
cλ

2
1jykðηc~kÞj

2Þ: ð44Þ

The exact expressions for jykðηc~kÞj and jgkðη
c
~k
Þj can be obtained from Eqs. (25) [with Ak and Bk given in Eqs. (26)]; these

are

jykðηc~kÞj
2 ¼ 1

2k

�
1þ 1

2σ4k
þ cos 2Dk

σ2k

�
1 − 1

2σ2k

�
− sin 2Dk

σ3k

�
ð45Þ

and

jgkðηc~kÞj
2 ¼ k

2

��
H2

c

k2
þ 1

��
1þ 1

2σ4k

�
þ cos 2Dk

σ2k

��
H2

c

k2
− 1

��
1 − 1

2σ2k

�
þ 2Hc

kσk

�

−
sin 2Dk

σ2k

�
− 2Hc

k

�
1 − 1

2σ2k

�
þ
�
H2

c

k2
− 1

�
1

σk

��
; ð46Þ

where σk ≡ kηr, zk ≡ kηc~k, and Dk ≡ zk − σk.
At this point, one could focus on the quantity that is

commonly presented as a direct result from the observa-
tional data, namely

Cl ≡ 1

2lþ 1

X
m

jalmj2 ð47Þ

for which we would have the estimate

Cl
M:L: ≡ 1

2lþ 1

X
m

jalmj2M:L:

¼ ρϕ
πM4

P

Z
∞

0

dk
k

jlðkRDÞ2TðkÞ2k3
ð−k2 þ ρϕa2c=M2

PÞ2
× ðλ22jgkðηc~kÞj

2 þ 9H2
cλ

2
1jykðηc~kÞj

2Þ: ð48Þ

In the standard inflationary paradigm, a well-known
result is that the dimensionless power spectrum Δ2ðkÞ for
the curvature perturbation and the Cl are related by

Cl ¼
4π

9

Z
∞

0

dk
k
j2l ðkRDÞTðkÞ2Δ2ðkÞ: ð49Þ

Thus, by comparing Eq. (48) with (49) we can extract an
equivalent power spectrum for the Ψ~k,

Δ2ðkÞ ¼ 9ρϕ
4π2M4

P

k3

ð−k2 þ ρϕa2c=M2
PÞ2

× ðλ22jgkðηc~kÞj
2 þ 9H2

cλ
2
1jykðηc~kÞj

2Þ: ð50Þ
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In the next section, we will show that, under certain
conditions, the power spectrum given in Eq. (50) can be
approximated to yield a nearly scale-invariant spectrum
with the correct amplitude.

VI. ANALYSIS OF THE EQUIVALENT
POWER SPECTRUM

In this section, we will study different cases and show
that, under specific conditions, our model reproduces a
nearly flat power spectrum. In standard inflationary
models, the power spectrum has a phenomenological
expression: Δ2ðkÞ ¼ Akns−1, with ns being the scalar
spectral index of the perturbations. A perfect scale-
invariant spectrum corresponds to ns ¼ 1. However, the
most recent results from Planck mission rule out exact

scale invariance (at over 5σ, the spectral index is
ns ¼ 0.9603� 0.0073). Therefore, we will explore the
conditions given in our model that lead to a nearly
scale-invariant spectrum. Note, however, that the depar-
ture from perfect scale invariance will be given by
having introduced the collapse hypothesis. Thus, the
dependence on k introduced by the collapse proposal
will be different from the standard one.
Our first approximation concerns the scale factor at the

time of collapse, namely ac ¼ Cðηc~k − ηrÞ þ ar; if we

assume that ηc~k ≫ jηrj, then ac ≃ Cηc~k; additionally Hc at

the time of collapse is Hc ¼ ðηc~k − ηr þ ar=CÞ−1, which
can be approximated by Hc ≃ 1=ηc~k. Thus, the power

spectrum in Eq. (50) is approximately

Δ2ðkÞ≃ 9ρϕ
8π2M4

P

k4

½−k2 þ ρϕðCηc~k=MPÞ2�2
ðλ22NðzkÞ þ 9λ21MðzkÞÞ; ð51Þ

where

MðzkÞ≡ 1

z2k

�
1þ 1

2σ4k
þ cosð2zk − 2σkÞ

σ2k

�
1 − 1

2σ2k

�
− sinð2zk − 2σkÞ

σ3k

�
ð52Þ

and

NðzkÞ≡ 1þ 1

z2k
þ 1

2σ4k
þ 1

2σ4kz
2
k

þ cosð2zk − 2σkÞ
�
− 1

σ2k
þ 1

z2kσ
2
k

þ 1

2σ4k
− 1

2z2kσ
4
k

þ 2

zkσ3k

�

− sinð2zk − 2σkÞ
�
− 2

zkσ2k
þ 1

zkσ4k
þ 1

z2kσ
3
k

− 1

σ3k

�
: ð53Þ

Moreover, we can make another approximation by
considering the fact that σk ≡ kηr ≪ 1. Hence, one can
take the first two term of the series expansion for sinð2σkÞ
and cosð2σkÞ and, after performing the simplification of
the terms, only retain the dominant term, which is of order
Oðσ−4k Þ. Thus,

MðzkÞ≃ 1

σ4k

sin2 zk
z2k

ð54Þ

and

NðzkÞ≃ 1

σ4k

�
1

2
þ 1

2z2k
þ cosð2zkÞ

�
1

2
− 1

2z2k

�
− sinð2zkÞ

zk

�
:

ð55Þ

There are two limit cases we can further analyze at this
point: the limit k2 ≪ ρϕðCηc~k=MPÞ2 or k2 ≫ ρϕðCηc~k=MPÞ2.
Let us focus on the first case.

If k2 ≪ ρϕðCηc~k=MPÞ2 then the power spectrum in
Eq. (51) can be further approximated as

Δ2ðkÞ≃ 9

8π2
k4

ρϕðCηc~kÞ
4
½1þ 2βk�½λ22NðzkÞ þ 9λ21MðzkÞ�;

ð56Þ

where we defined

βk ≡ k2M2
P

ρϕðCηc~kÞ
2
; ð57Þ

with MðzkÞ and NðzkÞ as expressed in Eqs. (54)–(55).
Therefore, the condition k2≪ρϕðCηc~k=MPÞ2 implies βk≪1.
As mentioned earlier, zk ≪ 1 must be satisfied in order

to ensure that the mode has a proper wavelength bigger
than the Hubble radius when the collapse is triggered.
Therefore, one can perform a series expansion of the
functions NðzkÞ and MðzkÞ for zk ≪ 1, that is,
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MðzkÞ≃ 1

σ4k

�
1 − z2k

3

�
and NðzkÞ≃ 1

σ4k

z4k
9
: ð58Þ

Now let us focus on the collapse scheme where the
momentum variable collapses but not the field variable, i.e.
the scheme where λ1 ¼ 0 and λ2 ¼ 1. In such case, the
power spectrum takes the form

Δ2ðkÞ≃ 1

8π2
1

ρϕðηrCÞ4
½1þ 2βk�k4; ð59Þ

where we used the definition zk ≡ kηc~k. The power spectrum
is of the form k4 and the dominant term does not contain
any parameter that can be adjusted to recover a nearly scale-
independent spectrum. Thus, in the limit where βk ≪ 1
and λ1 ¼ 0 and λ2 ¼ 1 one cannot recover the standard
prediction.
Next, we focus on the scheme λ1 ¼ 1, λ2 ¼ 0. For this

scheme

Δ2ðkÞ≃ 9

8π2
k4

ρϕðCηc~kÞ
4
½1þ 2βk�

9

σ4k

�
1 − z2k

3

�
: ð60Þ

Substituting βk and zk in the last expression, the power
spectrum is written explicitly as

Δ2ðkÞ≃ 81

8π2
1

ρϕðηrCηc~kÞ
4

�
1þ k2

�
2M2

P

ρϕC2ηc~k
2
− ηc~k

2

3

��
:

ð61Þ

Hence, if ηc~k is independent of k, i.e. the time of collapse
does not depend on the mode k, one can recover a flat
spectrum plus (small) first-order corrections of the form k2.
The next step is to check if the amplitude of the spectrum

[Eq. (61)] is consistent with the latest CMB observations
[1]. That is, the model must satisfy that

81

8π2
1

ρϕðηrCηc~kÞ
4
≃ 10−9: ð62Þ

Using the numerical values forC and ηr the last condition is
re-expressed as

ρ−1ϕ ≃ 10−120ηc~k
4: ð63Þ

Furthermore, the condition βk ≪ 1 written explicitly is

k2M2
P

ρϕðCηc~kÞ
2
≪ 1: ð64Þ

Using once again the numerical values for C and ηr and
taking the greatest value of the relevant values for
k≃ 10−1 Mpc−1, the condition (64), together with the

condition on the amplitude (63), establishes an upper
bound on the time of collapse, namely

ηc~k
≪ 10−2 Mpc: ð65Þ

That is, the time of collapse must be approximately much
before the epoch of nucleosynthesis. Additionally, con-
dition (65) is consistent with the condition kηc~k ≪ 1 for the
modes of observational interest. One further consistency
check is to ensure that ρϕ ≪ ρradðηc~kÞ given that ρϕ must
satisfy Eq. (63), which assures that the power spectrum
possesses the correct amplitude. Therefore, from
Friedmann’s equation

ρrad ¼
3M2

PH
2
c

a2c
≃ 3M2

P

C2ηc~k
4
≃ 3M2

P10
−120ρϕ

C2
; ð66Þ

where in the last equality we used Eq. (63). Inserting the
numerical values for C and MP yields

ρϕ ≃ 10−5ρrad: ð67Þ

Thus, it is consistent with the requirement that ρrad ≫ ρϕ.
For the scheme λ1 ¼ λ2 ¼ 1, the power spectrum can be

approximated as

Δ2ðkÞ≃ 81

8π2
k4

ρϕðCηc~kÞ
4
½1þ 2βk�

1

σ4k

�
1 − z2k

3
þ z4k
81

�
: ð68Þ

Thus, the dominant term is of the same form as the scheme
described by λ1 ¼ 1 and λ2 ¼ 0; therefore, the analysis
proceeds in an identical fashion.
Now let us analyze the case k2 ≫ ρϕðCηc~k=MPÞ2, which

now implies βk ≫ 1. Therefore, the power spectrum in
Eq. (51) can be approximated by

Δ2ðkÞ≃ 9ρϕ
8π2M4

P

�
1þ 2

βk

�
ðλ22NðzkÞ þ 9λ21MðzkÞÞ: ð69Þ

We focus first on the collapse scheme λ1 ¼ 1 and λ2 ¼ 0.
In this case, upon using the series expansion Eq. (54), one
obtains

Δ2ðkÞ≃ 81ρϕ
8π2M4

Pη
4
r

�
1þ 2

βk

�
k−4

�
1 − z2k

3

�
: ð70Þ

We see that the dominant term of the approximation is
proportional to k−4 and does not depend on the time of
collapse; henceforth, one cannot recover the standard
spectrum.
The collapse scheme described by λ1 ¼ 0 and λ2 ¼ 1

yields an approximated power spectrum expressed as
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Δ2ðkÞ≃ 9ρϕ
8π2M4

P

�
1þ 2

βk

�
1

σ4k

z4k
9
: ð71Þ

Substituting βk and zk we have

Δ2ðkÞ≃ ρϕ
8π2M4

P

ηc~k
4

η4r

�
1þ

2ρϕðCηc~kÞ
2

k2M2
P

�
: ð72Þ

Thus, in this scheme, if the time of collapse is independent
of the mode k, the model predicts a scale-invariant
spectrum plus corrections of the form k−2. Additionally,
for this scheme, we must check if the predicted amplitude is
consistent with the latest CMB observations [1]:

ρϕ
8π2M4

P

ηc~k
4

η4r
≃ 10−9: ð73Þ

Therefore, by inserting the numerical values the relation
between the energy density and the time of collapse is

ρ−1ϕ ≃ 10−129ηc~k
4: ð74Þ

The condition βk ≫ 1 is thus

k2M2
P

ρϕðCηc~kÞ
2
≫ 1: ð75Þ

Using Eq. (74) and the numerical values of C; ηr;MP and
the lowest value for the mode of interest k≃ 10−6 Mpc−1,
one obtains that the time of collapse must satisfy

ηc~k
≫ 108 Mpc; ð76Þ

which is six orders of magnitude greater than the time of
decoupling; consequently this scheme is also ruled out.
Finally, the approximated power spectrum for the last

scheme corresponding to λ1 ¼ λ2 ¼ 1 is

Δ2ðkÞ≃ 81ρϕ
8π2M4

Pη
4
r

�
1þ 2

βk

��
1 − z2k

3
þ z4k
81

�
k−4: ð77Þ

As we see, the dominant term in the expansion is of the
form k−4 and therefore the scheme is discarded.
We end this section by summarizing the main conditions

under which the model can reproduce a nearly scale-
independent power spectrum.
The first condition is that the collapse scheme must be

such that the field variable is affected by the collapse, i.e.
hŷ~kðηc~kÞi ≠ 0; the momentum variable can or cannot be
affected by the collapse. The second condition is that the
time of collapse must be independent of k, ηc~k ¼ ηc, i.e., it
affects all modes in the same way; additionally, the time of
collapse must satisfy ηc~k

≪ 10−2 Mpc. This is a reasonable

range for the time of collapse, since it means that the
collapse should occur before the nucleosynthesis stage.
If those conditions are met, then the power spectrum is
explicitly

Δ2ðkÞ≃ACðkÞ; ð78Þ
where

A≡ 81

8π2
1

ρϕC4η4rηc
4
; ð79Þ

CðkÞ≡ ð1þ 2βkÞ
�
sin2ðkηcÞ
ðkηcÞ2

þ λ22
9

�
1

2
þ 1

2ðkηcÞ2

þ cosð2kηcÞ
�
1

2
− 1

2ðkηcÞ2
�
− sinð2kηcÞ

kηc

��
; ð80Þ

with λ2 being either 1 or 0 and ρϕ to be adjusted by the
amplitude. Therefore, apparently we have constructed a
viable model for generating the primordial curvature
perturbation. It is a viable model in the sense that our
theoretical prediction Eq. (78) has a consistent amplitude
and is almost independent of k.
Let us remark that the prediction from our model

[Eq. (78)] is different from the standard one
Δ2ðkÞ ¼ Askns−1; in particular, the dependence on k is
not similar. In our model the dependence on k is explicitly
contained in the function CðkÞ [see Eq. (80)], while in the
standard case is given by kns−1. This difference can be
explained in part by noting that we have considered a
perfect de Sitter space-time for the inflationary regime. On
the other hand, we could have performed our calculations in
a quasi––de Sitter Universe during inflation and that would
have yielded a collapse power spectrum of the form
Δ2ðkÞ≃A ~CðkÞkns−1, i.e., we would have obtained a power
spectrum that would depend on k in two ways: The first
would be given by having introduced the collapse hypoth-
esis, reflected in the function ~CðkÞ, and the second one
would have to do with the quasi––de Sitter background
during inflation, hence the factor kns−1. Nevertheless, the
functional dependence on k, given by the collapse hypoth-
esis, would have not been substantially different from the
one obtained in this paper, that is, ~CðkÞ≃ CðkÞ. Therefore,
by relying on pure de Sitter inflation, we have simplified
our calculations but also we have retained the dependence
on k, within the power spectrum, that has to do only with
the collapse hypothesis; consequently, the predicted power
spectrum, Eq. (78), is not exactly scale invariant even if
pure de Sitter inflation was used for calculations.
In the next section, we will study the effects of the

collapse during the radiation era on the CMB temperature
and polarization fluctuation spectrum by considering only
the approximate scale-invariant spectrum given by Eq. (78)
that relies on the assumption that the time of collapse is
independent of k, i.e. ηc~k ¼ A.
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VII. EFFECTS ON THE CMB FLUCTUATION
SPECTRUM AND COMPARISON WITH

OBSERVATIONAL DATA

In order to analyze the effects of a collapse of the wave
function of the inflaton field during the radiation era on the
CMB fluctuations power spectrum, let us first define the
fiducial model, which will be taken just as a reference to
discuss the results we obtain for the collapse models. The
fiducial model is a ΛCDM model with the following
cosmological parameters: baryon density in units of the
critical density, ΩBh2 ¼ 0.02214; dark matter density in
units of the critical density, ΩCDMh2 ¼ 0.1187; Hubble
constant in units of Mpc−1 km s−1, H0 ¼ 67.8; reionization
optical depth, τ ¼ 0.092; and the scalar spectral index,
ns ¼ 0.9608. These are the best-fit values presented by the
Planck collaboration [30] using the CMB temperature data
released by Planck, the CMB polarization data reported by
WMAP [31], CMB temperature data for high values of l
reported by ACT [32] and SPT [33]. and baryon acoustic
oscillations [34–37].
In Fig. 1, left, we show the primordial spectrum of

models where a collapse of the wave function of the
inflaton field during the radiation era has been included
for different values of the collapse time ηc~k ¼ A and λ2 ¼ 0.
It follows from Eq. (80) that the main contribution to CðkÞ
comes from the term ð1þ 2βkÞ≃ 1þ 105z2k and thus
setting λ2 ≠ 0 does not change the primordial spectrum
significantly. Therefore, we will only analyze the case
λ2 ¼ 0 since the same conclusions apply to the case λ2 ≠ 0.
Figure 1, right, shows the primordial spectrum of the
collapse models compared to the fiducial model. The
variation between the collapse models due to different
values of the collapse time is very tiny compared to the
difference of these models with the fiducial model (see
Fig. 1, right). Thus, it follows that the collapse models are

very similar to a fiducial model with ns ¼ 1 (which is ruled
out at 5σ by Planck data) and it will be difficult to fit these
models to present data. This also reflects the fact that if we
would have considered quasi––de Sitter inflation, the shape
of the collapse power spectrum during radiation and the one
given by the standard single-field slow-roll inflationary
model would have been, for all practical purposes, indis-
tinguishable from each other. The main reason for this is the
restriction ηc~k

≪ 10−2 Mpc that constrains the values of A
to be less than one and prevents the primordial power
spectrum to move over significantly from the standard
power spectrum. This is not the case for the models where
the collapse happens during inflation and therefore, we
could find good fit to the WMAP data in previous works
[11] and also provide features in the collapse power
spectrum that made it distinguishable from the traditional
spectrum.
Figure 2 shows the temperature autocorrelation power

spectrum for the fiducial model and for the model where the
collapse occurs during the radiation era. The respective EE
and TE polarization power spectrum is shown in Fig. 3.
For all models satisfying the constraint ηc~k ≪ 10−2 Mpc,
the temperature, the E polarization, and the TE cross
correlation power spectrum are the same as the ones shown
in Figs. 2 and 3, labeled as “radiation models.” The main
reason for this is the tiny difference in the primordial power
spectrum for different radiation-collapse models shown in
Fig. 1. The difference between the value of χ2 for the
fiducial and collapse models is significant (χ2 is calculated
using WMAP9 polarization data, Planck temperature data,
SPT, and ACT temperature data) and shows that a good fit
to these data would be difficult to find for the collapse-
radiation models. This is due to the low errors and accuracy
of the present CMB data set. However, and in order to be
sure about our conclusions, we intended to perform a
statistical analysis to fit the CMB temperature power
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FIG. 1 (color online). Left: Primordial spectra, with wave function collapse of the inflaton field during the radiation era, for different
values of the collapse time ηc~k ¼ A and λ2 ¼ 0; Right: Primordial spectra with wave function collapse of the inflaton field during the
radiation era (λ2 ¼ 0) and primordial spectra of the fiducial model (for these scales the collapse models are indistinguishable among
themselves).
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spectrum reported by the Planck [1] collaboration and the
polarization spectra reported by the WMAP [31] collabo-
ration together with the temperature power spectrum for
high l from ACT [32] and SPT [33] and baryon acoustic
oscillations [34–37]. We performed our statistical analysis
by exploring the parameter space with Monte Carlo
Markov chains generated with the publicly available
COSMOMC code of Ref. [38] that uses the Boltzmann
code CAMB [39] to compute the CMB power spectra. We
modified the primordial power spectrum according to
Eq. (78) with CðkÞ as given in Eq. (80) and with the
time of collapse parametrized as ηc~k

¼ A. The parameters
allowed to vary are

P ¼ ðΩBh2;ΩCDMh2;Θ; τ; As; AÞ; ð81Þ
where Θ is the ratio of the comoving sound horizon at
decoupling to the angular diameter distance to the surface
of last scattering, τ is the reionization optical depth, As is
the amplitude of the primordial density fluctuations, and A
is the model’s parameter related to the conformal time of
collapse. According to the previous discussion, we could
not find a good convergence of the Markov chains, even
more; the code got stuck about 200 steps and/or failed
due to the value of the optical depth. This happens because,
in order to get a fit to the data, the code explores other
values for the cosmological parameters far from the
fiducial model.
Note that in Figs. 1, 2, and 3, the fiducial model assumed

ns ¼ 0.9608, while for the collapse model we set ns ¼ 1. If
we would have considered a quasi––de Sitter inflation for
our model instead of a pure de Sitter one, we should have
set ns ¼ 0.9608 for our model too, but, as argued in the
previous section, we could have still used the collapse
power spectrum given by Eq. (78) since it should not be
substantially different from the one obtained using quasi–
de Sitter inflation. Therefore, as can bee seen in all figures,
our model’s prediction would have been practically the
same as the fiducial one, which corresponds to the conven-
tional inflationary scenario, both with ns ¼ 0.9608.

VIII. SUMMARY AND CONCLUSIONS

In this paper we have constructed a plausible model for
generating the primordial curvature perturbation during
the radiation dominated era, by assuming a self-induced
collapse of the wave function associated to each mode of
the inflaton field. In Sec. VI, we showed that there are two
major conditions for this model to be considered viable:
(i) the collapse must affect the perturbation of the inflaton
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FIG. 2 (color online). The temperature autocorrelation power
spectrum for the fiducial model and for a model where the
collapse of the inflaton wave function happens during the
radiation era at conformal time ηc~k

¼ 10−3 Mpc. All models
are normalized to the maximum of the first peak of the fiducial
model. The value of χ2 is calculated using WMAP9, Planck, SPT,
and ACT release data (both the temperature and temperature-
polarization power spectrum are included).
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FIG. 3 (color online). Left: E polarization autocorrelation (EE) power spectrum; Right: Temperature-polarization cross correlation
(TE) power spectra. In both cases we plot the fiducial model and a model where the collapse of the inflaton wave function happens
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field while the respective momentum can or cannot be
affected; (ii) the time of collapse ηc~k must be independent of
the mode k. If these conditions are met, then our model
predicts a nearly scale-invariant power spectrum, which in
principle has a different shape from the one given by the
conventional single-field slow-roll inflationary model. This
difference in the shape of the power spectrum is exclusively
provided by having introduced the collapse hypothesis and
is reflected in the function CðkÞ [see Eqs. (78) and (80)].
However, in Sec. VII we showed that the changes to the
primordial spectrum introduced by the collapse are very
small. Moreover, the angular temperature and temperature-
polarization CMB power spectrum, within the collapse
proposal, are essentially indistinguishable from the stan-
dard inflationary model in an exact de Sitter background.
The fact that the angular power spectrum cannot be
distinguished from the standard inflationary model arises
from the requirement that the primordial power spectrum
matches the amplitude of scalar fluctuations consistent
with the latest CMB observations. This latter requirement
implies a constraint on the time of collapse ηc~k≪10−2Mpc.
On the other hand, this constraint is consistent with the
requirement that the energy density of the inflaton field
should be negligible compared with the energy density of
the radiation field, if the collapse is supposed to take place
in the radiation era. The restriction on the time of collapse,
thus, does not allow the model’s predictions to depart too

much from the standard ones. Additionally, considering a
quasi––de Sitter background for the calculation of the
inflaton perturbations during inflation would have resulted
in a primordial power spectrum equal to the fiducial model
one with very small corrections due to the collapse of the
inflaton’s wave function. Therefore, given the calculations
performed in this paper, we can assure that the predictions
of the present model (using a quasi–de Sitter background
for the calculations during inflation), regarding the CMB
temperature and polarization fluctuation spectrum, will not
be different from the ones provided by the standard model.
We emphasize that this case is different from the one in
which the collapse takes place during inflation and the
changes in the primordial power spectrum due to the
collapse hypothesis are important even in a perfect de
Sitter background.
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