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Percolation of clusters with a residence time in the bond definition: Integral equation theory
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We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-
Jones pair potential. A cluster definition is used according to which two particles are considered directly
connected (bonded) at time 7 if they remain within a distance d, the connectivity distance, during at least a time
of duration 7, the residence time. An integral equation for the corresponding pair connectedness function,
recently proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved using the orthogonal
polynomial approach developed by another of the authors [Phys. Rev. E 55, 426 (1997)]. We compare our
results with those obtained by molecular dynamics simulations.
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I. INTRODUCTION

The ideas of clustering and percolation have been ex-
ploited to explain numerous macroscopic properties in many-
body systems and a wide class of problems has been studied
using this approach. We can mention, among many others,
the insulator-conductor transition [1], the glass transitions
[2,3] and the sol-gel transition [4] observed in several mate-
rials, the behavior of supercooled water [5,6], aggregation
and agglutination phenomena in cells and biological macro-
molecules and organelles [7-9], the flow of fluids in porous
media [10], earthquakes and fractures in the terrestrial crust
[11,12], and the large-scale structure of the Universe
[13—15]. The concept of connectivity between the particles
of the system plays a central role in this type of description.
Most of the efforts made in these areas are based on a lattice
representation of the systems of interest. The relative sim-
plicity of lattice models allows for a wide variety of treat-
ments, which extend from almost heuristic [16] to quite rig-
orous [17].

Despite the ubiquity of the lattice representation and the
contribution it has made to our understanding of many-
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particle systems, sometimes a continuous description
—where particles can occupy any point in a continuum
phase space— is needed to reach a more realistic picture of
the phenomena under consideration. Within this context, the
concept of connectivity has been generalized and adapted to
describe clustering and percolation in continuum systems.
The main ideas have been established in the pioneering
works of Hill [18] and Coniglio et al. [19]. Hill considers a
partition of the whole system into subsystems of particles
(the clusters) that satisfy some linking properties. The con-
cept of cluster is thus directly related to the idea of bonded
pairs. A bonded pair is a set of two particles that are linked
by some direct mechanism. A cluster is then defined as a set
of particles such that any pair of particles in the set is con-
nected through a path of bonded pairs. We call these clusters
“chemical clusters” to distinguish them from the non-pair-
bonded clusters we have introduced in a previous work [20]
— note, however, that this does not mean that clusters are
necessarily formed through chemical bonding. A system is
said to be in a percolated configuration if it contains a cluster
that spans the system.

From Hill’s theory, we see that a connectivity criterion is
needed in order to decide whether two particles are bonded
or not. This connectivity criterion has to be defined in accord
with the phenomenon under study [21-23]. In the search for
stable atomic clusters, which mark the onset of a phase tran-
sition in a monatomic gas, Hill proposed a simple energetic
criterion: two particles are bonded if their relative kinetic
energy is less than the negative of their relative potential
energy [18]. However, this criterion is difficult to implement
from a theoretical point of view (see Ref. [24] for a first
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attempt to tackle this problem) and simpler criteria have been
preferred. Thus, most of the theoretical studies on connectiv-
ity and percolation in continuum systems (see for example
Refs. [25-27]) were focused on the rather simple geometrical
connectivity criterion of Stillinger [28]. Stillinger’s criterion
states that two particles are bonded if they are separated by a
distance shorter than a given connectivity distance d. In this
case, d is an ad hoc parameter which must be chosen on
physical grounds.

The use of a geometrical criterion to decide whether two
particles are bonded might be meaningful in some applica-
tions where the fact that two particles are close together at a
given time is sufficient to infer the existence of a particle-
particle bond. However, in any real experiment, a cluster and
the particle-particle bonds that build it up need to last for
some minimum period of time in order to be detected. Ex-
amples where the finite value of the bond lifetime is of cru-
cial importance to the understanding of the clustering and
percolation phenomena include the formation of hydrogen
bonds in liquid and glassy water [6,29] and the viscoelastic
sol-gel transition [30].

In a previous work [31] (hereafter denoted as I), two of us
presented a generalized connectedness integral equation
theory for continuum systems —and molecular dynamics
(MD) simulations for the Lennard-Jones system [20]—
where the finite lifetime of the particle-particle bonds was
explicitly considered. In this generalization two particles are
considered bonded at time ¢ if they remain within a distance
d (the connectivity distance) at least during a period of time
of length 7 (the residence time). This connectivity criterion
allows us to detect bonds with different lifetimes by simply
setting 7 to any nonzero value. The clusters so obtained are
called “chemical clusters” to distinguish them from the
“physical clusters” [20] which have no need of bonded pairs
to exist.

The solution of the integral equation derived from this
theory posed an important challenge since it involves convo-
lutions not only on the positions but also on the momenta of
the particles. The form of the integral equation turned out to
be mathematically equivalent to that used to study the struc-
ture and thermodynamics of a model for nonpolar, polariz-
able molecules [32,33]. In this paper, we adapt the technique
of expansion in orthogonal polynomials, developed by one of
us in Ref. [33] (hereafter denoted as II) in the study of po-
larizable molecules, to solve the connectedness integral
equation at nonzero bond lifetime for the Lennard-Jones sys-
tem. We compare the chemical-cluster pair correlation func-
tion g.hem(r;,r,) and the percolation line with MD simula-
tions for the same system. The cluster pair correlation
function is proportional to the joint probability density of
finding two particles (labeled 1 and 2) within the same clus-
ter and at positions r; and r,, respectively. The percolation
line in the temperature-density plane separates the phase
space into a nonpercolated region (at low densities) and a
percolated region (at high densities).

The rest of the paper is organized as follows. In Sec. II we
summarize the generalized connectedness integral equation
theory to treat nonzero bond lifetimes. In Sec. 11l we present
the expansion in orthogonal polynomials used to solve the
integral equation in the Percus-Yevick approximation. Sec-
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tion IV is devoted to the numerical results and a comparison
with our MD simulations. We finish with conclusions and a
brief description of the implications of this generalized con-
nectivity criterion on the study of gelation in weakly attrac-
tive colloids.

II. CHEMICAL CLUSTERS

We summarize here the basic theory that we have devel-
oped in I to describe the clustering and percolation for
chemical clusters with nonzero bond lifetime.

For a system of N classical particles that interact through
a pair potential v(r;,r;), we define a density correlation func-
tion p(r;,r,,p;,p,) that is N(N—1) times the probability
density of finding two particles at the phase space configu-
rations (r;, p;) and (r,, p,), respectively:

N(N-1)
NN OQ(N,V,T)

N
I1 eXP[
i=1

Xexp[— Bu(r,r)]ldr"2dp" 2. (1)

Here £ is Planck’s constant and Q(N, V, T) the canonical par-
tition function of the system. Then, in the same spirit of Hill
and Coniglio ef al. [18,19], we separate exp[—Bv(r;,r;)] into
connecting () and blocking (*) parts,

exp[— Bv(ria r;)] :f'r(ria rja Pis p/) +f$(ria rjs Pi p/) +1.

p(rlsr29plsp2) =

}HH

=1 j>i

l’j

)

Here /T (r;,r;,p;,p;) represents the basic probability density
that two particles in configuration (r;,r;,p;,p;) are bonded.
We will sometimes use the shorthand notation
S(r;x;,p;,p)) =/}, where y can be either T or *. Substitu-
tion of Eq. (2) in Eq. (1) yields

N(N—-1
h3NN!(Q—(N)VT')eXp[_ Bo(ry,ry)]

<[ Tew] o2 | S {11

XdrN 2dp™2, (3)

where the sum is carried out over all possible arrangements
of products of functions f ;; and f

We note that the functions fT and f can depend on the
momenta as well as on the pos1t10ns of the two particles, but
the sum of le and f must be momentum independent in
order to conform to Eq (2). Except for this last condition,
the functions fl ; and f;k ; are otherwise arbitrary for thermo-
dynamic purposes. Of course, we choose them in such a way
that the desired definition of bonded particles for chemical
clusters is achieved, i.e.,

ﬁ(l’-l‘»p.p):{exp[ ,BU(I‘Z, /)]
i Pis Py

0, otherwise,

p(rler’plapz) =

Ir,,(0|<d Vi<,

(4)
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I, [r,00l<d Vi<~

.f*(ri’rj’piapj):{_ ’ . (5)

exp[— Bu(r,r)]—1, otherwise,

where r; /(1) is the relative position of the particles i and ; at
time ¢ within the time interval [0,7]. We assume that
(r;,r;,p;,p;) is the configuration of the set at =0. We see
that in fact Eq. (2) is satisfied by Egs. (4) and (5). Equation
(4) states that two particles i and j are bonded if they remain
separated by a distance shorter than d for at least a time
interval of length 7. This coincides with our definition of
chemical clusters. Time is explicitly introduced here by tak-
ing the set {r",p"} as initial conditions for /=0 and solving
the equations of motion of the N particles under their mutual
interaction.
In order to calculate r, () exactly for any # we must solve
a many-body problem. An approximation to this can be ob-
tained by reducing the calculation to a two-body problem.
This is done by using the potential of mean force
v(r;,r;)=—In[g(r;,r;1/ B [34], where g(r,,r)) is the system
pair distribution functlon (PDF). In this way, r; (¢) is ob-
tained in terms of just the initial values r;,r;,p;, and p;.
Each term in the integrand of Eq. (3) can be represented
as a diagram consisting of two white e; and e, points, N—2
black e; points and some f and f’k connections except be-
tween the white points. Here we take e, .=exp[—B(p/2m)].
White points are not integrated over whereas black points are
integrated over both their positions and momenta. All the
machinery normally used to handle standard diagrams in
classical liquid theory [32] can now be extended to treat
these new type of diagrams. By following Coniglio’s recipe
to separate connecting and blocking parts in the PDF,
g(rl 9r2) :gT(rl »I2,P1 ’p2) +g*(l'1 »I2,P1 9p2)n LWG obtain an
Ornstein—Zernike-like integral equation for g'(ry,r,,p;,p2),

gT(rlarz,PbPz) = CT(rlerapl’pZ)

+Jp(r3ap3)c%(r]’r3?plap3)gT(r33r27p3ap2)

Xdrsdps. (6)

Here p(rl 7p1)p(r2’p2)gT(rl >I5 Py ’pZ) is N(N_ 1) times the
joint probability density of finding two particles at positions
r; and r, with momenta p; and p,, respectively, and belong-
ing to the same cluster, where the bonding criterion is given
by Egs. (4) and (5), while

(rl’pl) fp(rlar25p19p2)dr2dp2 (7)

The function ¢'(r;,r,,p,,p,) denotes the sum of all the non-
nodal diagrams in the diagrammatic expansion of
g'(ry,ry,p;,pa). We recall here that a nodal diagram con-
tains at least one black point through which all paths be-
tween the two white points pass. For a homogeneous system,
we have
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T ot P
g'(ri.p1,p2) =c'(ry2,p1,p2) (zﬂ_kaTg/z

2
P3
Xf exp[— ,8%]cT(rn,pl,p3)gT(r32,p3,p2)

X dl‘3dp3 . (8)

To obtain a closed integral equation with Eq. (6) or Eq.
(8), we need a closure relation between g'(r,,r,,p,,p,) and
cf(r;,ry,p;,p,). Here we will use the Percus-Yevick ap-
proximation g(r,,r,)exp[ Bv(r,,r;)]=1+N(r,,r,), where the
function N(r;,r,) is the sum of the nodal diagrams in the
expansion of g(r,,r,). Separation into connecting and block-
ing parts, g(ry,ry)=g'(ry,ry,p;,po)+g (r,r2,py,py) and
N(rl ’rZ)ZM(rl I, Py ,p2)+N*(l'1 I, Py 7p2)s ylelds

gT(rler:vpl’pZ) = U*(rl’r%pl’pZ) + 1][g1.(rl’r27pl’p2)
- C-}-(rlsr%p] sp2)]
+exp[Bu(ry,r)]g(ry,r)/ (r,rp1.po),

)
or, for a homogeneous system,
g'(r.p1p2) =L/ (ri2.p1.p2) + 18" (r 1. p1.p2)
- CT(I‘lzsPl,Pz)]
+expl Bu(r;y)]g(r ) (r12,p1.py)-
(10)

Equation (6) joined with Eq. (9) or Eq. (8) joined with
Eq.(10) give a closed set of equations for g'(r;,1,,p;,p,).

From the function g'(r,,r,,p;,p,) we define the pair cor-
relation function for chemical clusters,

gchem(rlsrz)—fP(l'l,Pl)P(l’zapz)gT(rl,Fzspl,Pz)dPIdpz-

(11)

This function is the joint probability density of finding two
particles within the same chemical cluster at positions r; and
r,, respectively. Then the mean cluster size Sy, and the
percolation density p, are calculated as

1
Schem(p) =1+ m J gchem(rlsrz)drldrb (12)

lim Schem(p) =%, (13)

p—p,

III. SOLUTION OF THE INTEGRAL EQUATION
A. Equivalence with an integral equation for polarizable fluids

Our problem consists in solving Eq. (8) for g'(r;,,p1,p2)
closed by the connectedness Percus-Yevick relation (10) with
ﬂ(riarjapi:pj) andf*(riﬂrjapiapj) giVGl’l by Eqs (4) and (5)
In the closure relation (10), g(r,) is the thermal PDF of the
system. We consider here a Lennard-Jones fluid whose par-
ticles interact through the pair potential
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o]

In this work we take g(r;,) from the solution of the thermal
Ornstein—Zernike (OZ) equation in the Percus-Yevick ap-
proximation [32].

An equation mathematically equivalent to Eq. (8) has
been previously solved in II by one of us in the study of
nonpolar polarizable molecules. Explicitly, the equation con-
sidered there, which is a generalized OZ equation, relates the
fluid total correlation function (TCF) A(ry,,p;.p2)
=g(ry2,p1>p2)— 1 [with g(r5,p;,p,) the PDF] and the direct
correlation function (DCF) ¢(r5,p1,p2)s

h(r5,p1,p2) = c(ry2,p1,pa)

+p Jf(P3)C(1‘13,P1,P3)h(l‘32,P3:P2)dl'3dP3,

(15)

where p; denotes the instantaneous dipolar moment induced
on molecule i by the remaining molecules of the system. The
function f(p) gives the instantaneous dipolar moment ther-
mal distribution which, in II, is assumed to have a Gaussian
form

1 B
fp) (2m//3)3/26Xp< rw ) (16)
where « is the effective polarizability of the molecules.

We observe that Egs. (8) and (15) are the same equation if
we identify 4 with g', ¢ with ¢, the induced dipolar moment
p; with the kinetic momentum p; and the polarizability «
with the particle mass m. There are, however, some differ-
ences between the connectivity problem and the polarizable-
molecule problem described in II. The form of f(p) does not
need to be Gaussian in II; moreover, f(p) is coupled to the
TCF. Therefore, the value of the effective polarizability «
depends on the density and temperature of the system. In the
connectivity problem, however, the equivalent of f{(p),
p(r,p)/p, is intrinsically Gaussian and independent of the
thermodynamic macrostate of the system.

Another difference between the connectivity problem here
and the problem described in II is that our closure relation
must be complemented with the condition given by Eq. (4).
This means that we have to calculate the path of a given pair
of molecules over a period of time 7. In addition, the closures
are different. Here we consider the connectedness version of
Percus-Yevick whereas an almost exact relation between
DCF and TCF (van Leeuwen—Groeneveld-De Boer [35] ex-
act relation with approximate bridge function) is used in II.
Nevertheless, these differences do not affect the general
method of solution developed in II and we can apply the
same principle of expansions in orthogonal functions.

Thus, following II, we start by reassigning the unknown
function to be the indirect correlation function

Y (r.p1p) =g (r.prpy) — ' (rip.prpy),  (17)

rather than g'(ry,,p,,p,), and rewriting Eq. (8) in Fourier
transform representation,
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2
F(k Y L d _aP3 3 (k
Y'(k,p1.p2) (kammf psexr{ By |7 (k.pips)

+ﬁ(k7plap3)]ﬁ(kap3>p2)' (18)

The closure given by the Percus-Yevick relation [Eq. (10)]
together with the conditions (4) and (5) yield

CT(I'lz,Pl,Pz)
_ {g(rlz) ~ ¥ (rppy), rp@<dvisr,
(exp[~ Bu(ri»)] = 1)y (rj2,p1,p),  otherwise.

(19)

The connectivity part of the PDF is then computed from 7
as

glrp) [rp(|<dvis<r,

¥ _
g'(ri,p1,p) =
e {exp[— Bo(r)]y (r,p1,po),

otherwise.
(20)

The Fourier transform in Eq. (18) and its inverse are defined
as

flk) = f dr f(r)e T, (1)

o
2m)?

The standard method for solving Egs. (18) and (19) is to
explicitly break out the angular dependence of all functions
in the form of expansions in spherical harmonics [36]. The
general expansions for pair functions in real as well as in
transformed spaces are shown in the Appendix.

Introducing the expansion for ¥(k,p,,p,) and the corre-
sponding expansion for ¢'(k,p;,p,), one finds that the OZ-
like equation in Fourier space [Eq. (18)] goes over into a set
of matrix equations for the respective coefficients,

flr)= f dk f(k)e™®T. (22)

T = 0" S [ + S0 eliam.
n3,l3

(23)

B. Numerical procedure

To obtain a numerical solution for the set of equations (8)
and (10) one needs the discrete versions of the expansion for
¥'(r,py,p2) [Eq. (A9)] and the quadratures for the coeffi-
cients v/"1"2(r) [Eq. (A11)]; these are

Iylym

'}’T(I’,il,iz,kl,kz,j):41T E

ny,nylyl,m

X ,Pl]m(kl),Plzm(kZ) Vi Tm(]) (24)

’YIT@:;Z(F)Q,:I]I (il)anlz(i2)

and
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N,

i = 2

i1,ip,k .k, j=1
X ’y-‘-(r’il,i27kl9k29j)Qn111(il)anlz(iZ)
XPp (k) Prka) (= D™ T, (7) - (25)

In Eq. (24), vo=1 and v,,=2 for m>0. In Eq. (25), Gaussian
quadratures are being used, with the argument i standing for
t;=PBp?/2m, the ith root of L*(¢), k for x,=cos 6, the kth
root of Py (x), and j for yj=c%s ¢, the jth root of TNp(y),
where L}\?z(t), Py (x),and T, N}(y) are the associated Laguerre,
Legendref and Chebyshev polynomials, respectively, all of
order N,; here the associated Legendre functions 7, (x) are
normalized to 2. The w are the corresponding Gaussian
weights,

w(ip)w(i)wlk)w(ky)w())

w(i) ={lLy” () (26)
w(k) ={(1 =x)LPy ()P, 27)
w(j)=N,', (28)

where the prime denotes derivative.

The solution follows an iterative procedure. The prepara-
tory stages of the calculation consist of (i) computing the
thermal PDF g(r),) for the Lennard-Jones fluid over a suit-
able mesh using the Percus-Yevick equation, (ii) reducing the
momentum space to the discrete set of points p;y;
=(p;, O, @) with i, k,j=1,2,...,N,, and (iii) identifying the
subset of states —within all possible configurational states
(r12,p1,p2) of a pair of particles— that correspond to a
bonded pair.

The third preparatory step above is carried out as follows.
The relative distance 7|, between particles 1 and 2 and the
momenta Py, x; = (P1;» O, $1; and Paix ;= (Pai, Oo, b)) are
made to run over all the mesh values and the reduced mo-
mentum space [step (ii)], respectively. Thus, for each set
(712>P1:i k5 P2:ik,) taken as initial condition, we consider the
equation of motion of the two particles

m FPr(1) _ M r(1)] N L?

2
2 Ot or %[r(t)P

, (29)

where 7(£)=|r ()—ry(0)|, vNr()]=—kzTIng[r(r)], and L
=|L|=|r(t) X p(t)|=const. In the last equality we have r(¢)
=r,(1)—r,(¢) and p(r)=p;()—p,(?). Equation (29) must be
solved with the initial conditions

r(0) =r(0) = r2(0) o= 1) — 13| = 113 (30)
and
PO o) a0 = "’—(f) X0
=0 s
Pl s 31)
m m m
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Thus, for each set of values (7,,p;,p,) we must solve the
differential equation (29) with the initial conditions given by
Egs. (30) and (31). This problem can be put in a more ad-
equate form to be solved using the Runge-Kutta method:

dr(t)
dt

=s(1),

aste) _
=1,

()] =0 =712,

dr(t)
dt

12

- H

=0 m

s5(0)] =0 =

dsto)
dt

=flr(t=0)], (32)
0

1=

where

_ L dg) | rop)’(1-xpy)

m dr (m )2 3

—|r

2 2
From the numerical solution of the equation of motion, we
construct a logical array B(r;,pi.ixsP2ix;) of dimension
seven whose value is TRUE if the configurational state of the
pair of particles corresponds to a bonded state, i.e., if r,(¢)
<d Vt<r. If instead the condition r,(f)<d Vi<t is not
satisfied, then B(r15, P, x,>P2:ix,) 15 FALSE.

The iterative solution of Egs. (23) and (19) starts by
guessing the initial values of the coefficients 7}1”,;;2012).
Then, if B(r15,P1;ik,-P2:ik,) 18 TRUE, following Eq. (20) we
take

(33)

%”1”2,,- ): g(”12), if 7’11:712:[1212:}1’[:0,
Bl 12 0, otherwise.
(34)
If instead B(V1z,p1;i,k,j,p2;,-,k,j) is FALSE then, following Eq.
(20), we take

gl 1) = expl— Bu(ri) 9] (ryy). (35)

Knowing g}l'};"mz(rlz) and ’Ym;f(”lz) for all the mesh points

and allowed indices, we can calculate [see Egs. (17) or (19)]
Tniny — S _ A nny

€l lym (r12) &iiym (r12) Vi, lym (r12). (36)

We now need to transform the coefficients c}l’g%(rlz) in
. . ~t . .
real space into coefficients c,'l",;”m2(k) in Fourier space. How-

ever, as we have mentioned, they are not themselves Fourier
transforms of each other. Thus, we have to assemble the
complete function first using the equation analogous to Eq.
(24) for c¢'(r,iy,iy,k,ky,j) and then use a generalized fast-
transform algorithm [33] to calculate '(k, i, ,i5,ky,k,, /). Us-
ing the equation analogous to Eq. (25) in k space we then

have the coefficients E’;l'};zf(k) for the complete set of indices
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FIG. 1. Cluster pair correlation function. Full line and circles
correspond to chemical clusters with d*=1.5 and 7 =0.5 as ob-
tained from the integral equation and MD, respectively. Triangles
correspond to Stillinger clusters (7°=0) with d"=1.5 as obtained
from MD. Dashed line is the thermal PDF as obtained from MD.
The system is at 7°=1.4 and p*=0.155.

and all the values of £ on an adequate mesh. The coefficients
7}1’2’;2(1() are then easily calculated by using the OZ-like
equation in Fourier space [see Eq. (23)]. Again we assemble
the complete function ¥'(k,i,,i,,k,,k,,j) [using the Fourier
space version of Eq. (24)]. The inverse transform
Y (r12,i1 15,k ,ky,j) is calculated with the fast-transform al-
gorithm and so new coefficients y;rl'};zz(rlz) [obtained from
Eq. (25)] are again available to reinitiate the iterative cycle.
The iterations end when convergence is reached, as mea-

sured by
<e€

(37)

i A
| [7}1'2:;2(F12)](s+1>th iteration [ Y 1’1[;;2(7‘12) ]sth iteration

for the complete set of indices. The tolerance € is set to
0.0001.

The pair correlation function for a chemical cluster [see
Eq. (11)] is finally given by

Zenem(712) = 2o00(112) (38)

where the orthonormality condition [see Eq. (A12)] has been
used.

IV. RESULTS AND DISCUSSION

Following the method of the previous section, we have
solved the integral equation (8) for a Lennard-Jones fluid
with a pair potential given by Eq. (14) and we have calcu-
lated the corresponding gguem(712) according to Eq. (38). In
order to check the theory, MD simulations on the same sys-
tem have been performed; the simulation details are given
elsewhere [20]. All the quantities reported here are in re-
duced units: r=rla, p'=po>, T"'=kzT/e, d"=d/o and 7"
=70 '"e/m for the density, temperature, connectivity dis-
tance, and residence lifetime, respectively. For the results
shown below we have used d"=1.5 and 7 =0.5.

In Figs. 1-3 we show the theoretical cluster correlation
functions g.pem(712) calculated for p*=0.155, T°=14; p
=0.155, T"=2.0; and p*:0.26, T"=2.0, along with the corre-
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FIG. 2. The pair correlation functions for chemical clusters with
d*=1.5and 7'=0.5 at T"=2.0 and p*=0.155. Results from the in-
tegral equation theory (full line) and from MD simulation (circles)
are shown.

sponding simulation results. In Fig. 1 we also show the clus-
ter correlation function gg;(r;2) obtained from molecular
dynamics when the Stillinger connectivity criterion, namely
when 7 =0, is used instead. In addition, the thermal PDF
g(r},) from MD is shown as a guide. It should be mentioned
that the percolation density p* for our chemical clusters is
about 0.26 for 7°=1.4 and 0.32 for T"=2.0 according to our
simulations. The density p"=0.155 corresponds to the perco-
lation density for Stillinger clusters at 7"=1.4.

The qualitative behavior of these curves agrees with the
general trends encountered in connectedness studies in con-
tinuum systems. The discontinuity at r,=d for Stillinger
(see Fig. 1) as well as for chemical clusters is a typical fea-
ture: the probability for two particles to be connected at 7|,
>d, even for r|,—d", depends on the presence of an inter-
mediate third particle directly connected to the other two and
thus the probability of belonging to the cluster notably de-
creases. For clusters defined according to the Stillinger cri-
terion (7=0), two particles which are separated by a distance
shorter than the connectivity distance belong to the same
Stillinger cluster with certainty. Thus, for r,<d, the func-
tion ggn(r2) coincides with the ordinary PDF g(r;,). As
expected, the probability density of finding two particles
connected according to the chemical criterion (7#0) is
smaller than gg,(r1,) for any ri,. This is to be expected

0.8

0.6

0.4

gchem(r*)

0.2

0.0

FIG. 3. The pair correlation functions for chemical clusters with
d*=1.5and 7'=0.5 at T'=2.0 and p"=0.26. Results from the inte-
gral equation theory (full line) and from MD simulation (circles) are
shown.
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1.8
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1.6

1.4

1.2
0.0

FIG. 4. The percolation loci for clusters with d"=1.5. The empty
symbols correspond to Stillinger clusters (7 =0) and the full sym-
bols to chemical clusters with 7'=0.5. Circles and squares were
calculated from the theory using the power law [Eq. (39)] with y
variable and y=2, respectively. Triangles were obtained from MD.
The full lines are only a guide to the eye. The dashed line is an
interpolation to the Monte Carlo coexistence curve obtained by Pa-
nagiotopoulos (Ref. [39]).

since a dynamic restriction is required in addition to the geo-
metrical one. In particular, for 7, <d, gehem(712) is always
smaller than the thermal PDF. The function gg,y(7},) in Fig.
1 is long ranged because, as mentioned above, the density
considered in that case corresponds to the percolation density
for Stillinger clusters at the given temperature. The mean
cluster size Sy diverges at that density.

From these figures we can conclude that, at least for the
densities and temperatures considered, the integral equation
results reproduce rather well those obtained from MD simu-
lations.

In Fig. 4 we present the gas—liquid coexistence curve in
the T-p plane obtained by Panagiotopoulos [39], using Gibbs
ensemble Monte Carlo simulations, together with the perco-
lation loci for the chemical clusters (7=0.5) and Stillinger
clusters (7=0). These percolation curves separate the phase
diagram in two parts: percolated (high densities) and nonper-
colated (low densities). They were calculated from our
theory using Egs. (12) and (13), and also from MD (see Ref.
[20] for details).

To calculate the critical density p, for a given temperature
we use the critical power law

Schem(p) ~ |p - ppl_y (39)

as an extrapolation formula. The fitting was performed in
two alternative ways: (i) fixing the exponent at the value y
=2, and (ii) allowing 7y to vary freely. The value y=2 is the
known mean field critical exponent obtained from the
Percus-Yevick approximation when only a geometric restric-
tion is required in the cluster definition (which is the case of
the Stillinger clusters [40]). The critical exponent vy for Still-
inger clusters in Lennard-Jones fluids, obtained from MD
simulations, was reported by Heyes and Melrose [41] as be-
ing near the universal value y=1.8 observed in lattice sys-
tems. In Fig. 4, the theoretical percolation curves for 7=0.5
and 7=0 calculated by using the two fitting procedures and
that obtained from MD can be seen. For 7=0.5 we clearly
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observe that the theoretical curve extrapolated using 7y vari-
able agrees with the simulation data better than the curve
obtained by using y=2, although the theoretical prediction
is slightly shifted to lower densities with respect to the MD
prediction. For Stillinger clusters, things are less clear at
first sight*. Howeve;r, if we calculate the mean quadfatic
error, *App:\,/Er*(ptheor—psimul)z, we observe that [Ap ],
<[App]yvariable, which suggest that the agreement with the
MD percolation loci is better when a constant exponent 2 is
used.

From Fig. 4 we can observe that the predictability of the
theory is as good for 7# 0 as for 7=0. However, for values
of 7 much larger than the one shown here, the corresponding
percolation density will be significantly higher and the ap-
proximation introduced by the potential of mean force in the
equation of motion will eventually fail. It is worth mention-
ing that the deviations observed between MD and the theo-
retical results are not entirely due to the approximations in-
troduced in the numerical solution of Eq. (8). In practice, in
a MD simulation [20], the percolation density is calculated
as the density at which 50 percent of the configurations
present a percolating cluster. This technique is rather differ-
ent to the extrapolation described above for the theoretical
prediction of the percolation density.

V. CONCLUSIONS

We have numerically solved a connectedness integral
equation theory that describes clusters where the particle-
particle bonds are identified by setting a connectivity dis-
tance d plus a lifespan 7. The technique used consists in
expanding the pair correlation functions in orthogonal poly-
nomials. These same polynomials were considered originally
in the study of the “thermal” correlation function of polariz-
able molecules. The numerical results within the Percus-
Yevick approximation that are obtained here agree rather
well with earlier MD simulations, at least at the densities
studied, in the case of Lennard-Jones particles.

The use of an explicit lifetime for the bonding criterion is
especially important when one tries to compare cluster prop-
erties extracted from the theory with those measured in ex-
periments. The sol-gel transition in weakly attractive col-
loids, for example, is associated with the percolation of the
clusters due to weak colloidal interactions. However, if the
transition is measured by linear viscoelastic rheology, the
position of the sol-gel line depends on the testing frequency
[42]. High frequencies are able to detect only very short-
lived bonds and clusters whereas low frequencies detect
more long-lasting bonds and clusters. A discussion on the
relationship between this frequency effect and the chemical
clusters considered in this paper can be found in Ref. [30].

Since MD is a very costly technique to study long lasting
clusters [20], we expect that our numerical approach will be
particularly useful to estimate the percolation line for mod-
erately large values of 7. Large values of 7 are of particular
interest since they lead to the identification of more stable
clusters that are easier to detect in experiments.
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APPENDIX: EXPANSION OF THE PAIR FUNCTIONS
IN ORTHOGONAL POLYNOMIALS

The essential point in the integral equation solution
method [33] is the expansion of all the pair functions, like
¥(ry2,p;,p,), in terms of orthogonal polynomials. Here we
sketch how these expansions follow. First we expand:

7T(r12’p17p2) = ’y%(raplapbwlawZ)
=47 X V11212 Yy (@) Y (@),

11,lh,m

(A1)

where w,w,, are the directions of the momenta p; and p,,
m=—m, and m=—[,—[+1,...,[. In this and similar expres-
sions, the vector ry, has been implicitly chosen as the z di-
rection in the specification of the Euler angles w=(6, ¢). The
spherical harmonics satisfy the orthogonality condition

J dw Ylm(w)Y*fml(w) = 5]1'6mm’1 (Az)
so that the coefficients of the expansion (Al) are immedi-
ately obtainable as

1 .
’y;-]lzm(rapl)p2) = 4_ f dwldwly' (raplnp23 (1)1,(,()2)
o

XYy m(@)Y ) (@), (A3)

Similarly, we can break out the kinetic momentum depen-
dence in the form of expansions in polynomials of p,

Vi rsP1p) = 2 V)00, (1) ity (p2), (A4)

ny,ny

which are constructed to be orthogonal with Gaussian weight
function

f(P) = )3/2 exp[_ ﬁpz/zrl’l], (AS)

v
2mm/B

namely,

4 f dp p*f(p) 0u(P) O () = S (A6)
0

The coefficients of the expansion are then again obtainable
by quadratures,
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Vi (r) = f dp dp[4mpif(p) 4mp3f(po)]
0

XYZIQm(”,P1,P2)Qn111(P1)Qn212(P2)~ (A7)

Given the Gaussian form of the weight function f(p), the
associated polynomials are [37]

F(%(n—l)+1)1“(%)}”2<B_pz)”2 L (ﬁp2>

TG(n+1)+2) 2m (n=1)/2\ 9y

(A8)

in(ﬁ) = |:

where Lf;(t) is an associated Laguerre polynomial [38] and
I'(z) is the gamma function.

Accordingly, all the functions in r space are expanded in
the form

’yT(raplap2)247T E

ny,np,lLl,m

XY m(0)Y ) m(w)),

7}1’2’;12(7/) Qn 1 ll (pl)anlz(p2)

(A9)

where the z axis is along r and the summation indices satisfy
the constraints

n=0,1,2,...,
[=n,n—=2,n—4,...,10r0,

m=0,+1,£2, ..., £/ (A10)

The coefficients of Eq. (A9) can be obtained as
anénmz(") = 477[ dp dp,/(p)f(p>) ¥ (r.p1.p2)

X inll(pl)anlz(pZ)YZm(wl)YZﬁ(wZ)
(A11)

with f(p) given by Eq. (A5). The complete orthonormality
condition is

47Tf dpf(p)in(p)Qn’l’(p)Ylm(w)Y*rmr(w): 5nn’5ll’5mm"

(A12)

The functions in k are expandable in a similar way. Set-
ting the z axis along k, we write
Fniny
=~ Kk =4 E ~tniny k
Y (K,p,py) =47 V1,10 ) O 1, (1) Oy 1, (P2)

ny,nplyLl,m

XY m(@))Y ) m(w;). (A13)

However, the angles w,w, are referred to different axes in
Egs. (A9) and (A13), so that the coefficients in these expan-
sions are not themselves mutual Fourier transforms.
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