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We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-
Jones pair potential. A cluster definition is used according to which two particles are considered directly
connected sbondedd at time t if they remain within a distance d, the connectivity distance, during at least a time
of duration t, the residence time. An integral equation for the corresponding pair connectedness function,
recently proposed by two of the authors fPhys. Rev. E 61, R6067 s2000dg, is solved using the orthogonal
polynomial approach developed by another of the authors fPhys. Rev. E 55, 426 s1997dg. We compare our
results with those obtained by molecular dynamics simulations.
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I. INTRODUCTION

The ideas of clustering and percolation have been ex-
ploited to explain numerous macroscopic properties in many-
body systems and a wide class of problems has been studied
using this approach. We can mention, among many others,
the insulator-conductor transition f1g, the glass transitions
f2,3g and the sol-gel transition f4g observed in several mate-
rials, the behavior of supercooled water f5,6g, aggregation
and agglutination phenomena in cells and biological macro-
molecules and organelles f7–9g, the flow of fluids in porous
media f10g, earthquakes and fractures in the terrestrial crust
f11,12g, and the large-scale structure of the Universe
f13–15g. The concept of connectivity between the particles
of the system plays a central role in this type of description.
Most of the efforts made in these areas are based on a lattice
representation of the systems of interest. The relative sim-
plicity of lattice models allows for a wide variety of treat-
ments, which extend from almost heuristic f16g to quite rig-
orous f17g.

Despite the ubiquity of the lattice representation and the
contribution it has made to our understanding of many-

particle systems, sometimes a continuous description
—where particles can occupy any point in a continuum
phase space— is needed to reach a more realistic picture of
the phenomena under consideration. Within this context, the
concept of connectivity has been generalized and adapted to
describe clustering and percolation in continuum systems.
The main ideas have been established in the pioneering
works of Hill f18g and Coniglio et al. f19g. Hill considers a
partition of the whole system into subsystems of particles
sthe clustersd that satisfy some linking properties. The con-
cept of cluster is thus directly related to the idea of bonded
pairs. A bonded pair is a set of two particles that are linked
by some direct mechanism. A cluster is then defined as a set
of particles such that any pair of particles in the set is con-
nected through a path of bonded pairs. We call these clusters
“chemical clusters” to distinguish them from the non-pair-
bonded clusters we have introduced in a previous work f20g
— note, however, that this does not mean that clusters are
necessarily formed through chemical bonding. A system is
said to be in a percolated configuration if it contains a cluster
that spans the system.

From Hill’s theory, we see that a connectivity criterion is
needed in order to decide whether two particles are bonded
or not. This connectivity criterion has to be defined in accord
with the phenomenon under study f21–23g. In the search for
stable atomic clusters, which mark the onset of a phase tran-
sition in a monatomic gas, Hill proposed a simple energetic
criterion: two particles are bonded if their relative kinetic
energy is less than the negative of their relative potential
energy f18g. However, this criterion is difficult to implement
from a theoretical point of view ssee Ref. f24g for a first
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attempt to tackle this problemd and simpler criteria have been
preferred. Thus, most of the theoretical studies on connectiv-
ity and percolation in continuum systems ssee for example
Refs. f25–27gd were focused on the rather simple geometrical
connectivity criterion of Stillinger f28g. Stillinger’s criterion
states that two particles are bonded if they are separated by a
distance shorter than a given connectivity distance d. In this
case, d is an ad hoc parameter which must be chosen on
physical grounds.

The use of a geometrical criterion to decide whether two
particles are bonded might be meaningful in some applica-
tions where the fact that two particles are close together at a
given time is sufficient to infer the existence of a particle-
particle bond. However, in any real experiment, a cluster and
the particle-particle bonds that build it up need to last for
some minimum period of time in order to be detected. Ex-
amples where the finite value of the bond lifetime is of cru-
cial importance to the understanding of the clustering and
percolation phenomena include the formation of hydrogen
bonds in liquid and glassy water f6,29g and the viscoelastic
sol-gel transition f30g.

In a previous work f31g shereafter denoted as Id, two of us
presented a generalized connectedness integral equation
theory for continuum systems —and molecular dynamics
sMDd simulations for the Lennard-Jones system f20g—
where the finite lifetime of the particle-particle bonds was
explicitly considered. In this generalization two particles are
considered bonded at time t if they remain within a distance
d sthe connectivity distanced at least during a period of time
of length t sthe residence timed. This connectivity criterion
allows us to detect bonds with different lifetimes by simply
setting t to any nonzero value. The clusters so obtained are
called “chemical clusters” to distinguish them from the
“physical clusters” f20g which have no need of bonded pairs
to exist.

The solution of the integral equation derived from this
theory posed an important challenge since it involves convo-
lutions not only on the positions but also on the momenta of
the particles. The form of the integral equation turned out to
be mathematically equivalent to that used to study the struc-
ture and thermodynamics of a model for nonpolar, polariz-
able molecules f32,33g. In this paper, we adapt the technique
of expansion in orthogonal polynomials, developed by one of
us in Ref. f33g shereafter denoted as IId in the study of po-
larizable molecules, to solve the connectedness integral
equation at nonzero bond lifetime for the Lennard-Jones sys-
tem. We compare the chemical-cluster pair correlation func-
tion gchemsr1 ,r2d and the percolation line with MD simula-
tions for the same system. The cluster pair correlation
function is proportional to the joint probability density of
finding two particles slabeled 1 and 2d within the same clus-
ter and at positions r1 and r2, respectively. The percolation
line in the temperature-density plane separates the phase
space into a nonpercolated region sat low densitiesd and a
percolated region sat high densitiesd.

The rest of the paper is organized as follows. In Sec. II we
summarize the generalized connectedness integral equation
theory to treat nonzero bond lifetimes. In Sec. III we present
the expansion in orthogonal polynomials used to solve the
integral equation in the Percus-Yevick approximation. Sec-

tion IV is devoted to the numerical results and a comparison
with our MD simulations. We finish with conclusions and a
brief description of the implications of this generalized con-
nectivity criterion on the study of gelation in weakly attrac-
tive colloids.

II. CHEMICAL CLUSTERS

We summarize here the basic theory that we have devel-
oped in I to describe the clustering and percolation for
chemical clusters with nonzero bond lifetime.

For a system of N classical particles that interact through
a pair potential vsri ,r jd, we define a density correlation func-
tion rsr1 ,r2 ,p1 ,p2d that is NsN−1d times the probability
density of finding two particles at the phase space configu-
rations sr1 , p1d and sr2 , p2d, respectively:

rsr1,r2,p1,p2d =
NsN − 1d

h3NN ! QsN,V,Td

3E p
i=1

N

expF− b
pi

2

2mGpi=1

N

p
j.i

N

3expf− bvsri,r jdgdrN−2dpN−2. s1d

Here h is Planck’s constant and QsN ,V ,Td the canonical par-
tition function of the system. Then, in the same spirit of Hill
and Coniglio et al. f18,19g, we separate expf−bvsri ,r jdg into
connecting s†d and blocking s*d parts,

expf− bvsri,r jdg = f†sri,r j,pi,p jd + f*sri,r j,pi,p jd + 1.
s2d

Here f†sri ,r j ,pi ,p jd represents the basic probability density
that two particles in configuration sri ,r j ,pi ,p jd are bonded.
We will sometimes use the shorthand notation
fgsri ,r j ,pi ,p jd; f i,j

g , where g can be either † or *. Substitu-
tion of Eq. s2d in Eq. s1d yields

rsr1,r2,p1,p2d =
NsN − 1d

h3NN ! QsN,V,Td
expf− bvsr1,r2dg

3E p
i=1

N

expF− b
pi

2

2mG o hp f i,j
† fk,l

* j
3drN−2dpN−2, s3d

where the sum is carried out over all possible arrangements
of products of functions f i,j

† and fk,l
* .

We note that the functions f i,j
† and f i,j

* can depend on the
momenta as well as on the positions of the two particles, but
the sum of f i,j

† and f i,j
* must be momentum independent in

order to conform to Eq. s2d. Except for this last condition,
the functions f i,j

† and f i,j
* are otherwise arbitrary for thermo-

dynamic purposes. Of course, we choose them in such a way
that the desired definition of bonded particles for chemical
clusters is achieved, i.e.,

f†sri,r j,pi,p jd = Hexpf− bvsri,r jdg, uri,jstdu , d ∀ t ø t ,
0, otherwise,

s4d
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f*sri,r j,pi,p jd = H− 1, uri,jstdu , d ∀ t ø t ,
expf− bvsri,r jdg − 1, otherwise,

s5d

where ri,jstd is the relative position of the particles i and j at
time t within the time interval f0,tg. We assume that
sri ,r j ,pi ,p jd is the configuration of the set at t=0. We see
that in fact Eq. s2d is satisfied by Eqs. s4d and s5d. Equation
s4d states that two particles i and j are bonded if they remain
separated by a distance shorter than d for at least a time
interval of length t. This coincides with our definition of
chemical clusters. Time is explicitly introduced here by tak-
ing the set hrN ,pNj as initial conditions for t=0 and solving
the equations of motion of the N particles under their mutual
interaction.

In order to calculate ri,jstd exactly for any t we must solve
a many-body problem. An approximation to this can be ob-
tained by reducing the calculation to a two-body problem.
This is done by using the potential of mean force
veffsri ,r jd=−lnfgsri ,r jdg /b f34g, where gsri ,r jd is the system
pair distribution function sPDFd. In this way, ri,jstd is ob-
tained in terms of just the initial values ri ,r j ,pi, and p j.

Each term in the integrand of Eq. s3d can be represented
as a diagram consisting of two white e1 and e2 points, N−2
black ei points and some f i,j

† and f i,j
* connections except be-

tween the white points. Here we take ei;expf−bspi
2 /2mdg.

White points are not integrated over whereas black points are
integrated over both their positions and momenta. All the
machinery normally used to handle standard diagrams in
classical liquid theory f32g can now be extended to treat
these new type of diagrams. By following Coniglio’s recipe
to separate connecting and blocking parts in the PDF,
gsr1 ,r2d=g†sr1 ,r2 ,p1 ,p2d+g*sr1 ,r2 ,p1 ,p2d, we obtain an
Ornstein–Zernike-like integral equation for g†sr1 ,r2 ,p1 ,p2d,

g†sr1,r2,p1,p2d = c†sr1,r2,p1,p2d

+E rsr3,p3dc†sr1,r3,p1,p3dg†sr3,r2,p3,p2d

3dr3dp3. s6d

Here rsr1 ,p1drsr2 ,p2dg†sr1 ,r2 ,p1 ,p2d is NsN−1d times the
joint probability density of finding two particles at positions
r1 and r2 with momenta p1 and p2, respectively, and belong-
ing to the same cluster, where the bonding criterion is given
by Eqs. s4d and s5d, while

rsr1,p1d =
1

N − 1
e rsr1,r2,p1,p2ddr2dp2. s7d

The function c†sr1 ,r2 ,p1 ,p2d denotes the sum of all the non-
nodal diagrams in the diagrammatic expansion of
g†sr1 ,r2 ,p1 ,p2d. We recall here that a nodal diagram con-
tains at least one black point through which all paths be-
tween the two white points pass. For a homogeneous system,
we have

g†sr12,p1,p2d = c†sr12,p1,p2d +
r

s2pmkBTd3/2

3E expF− b
p3

2

2mGc†sr13,p1,p3dg†sr32,p3,p2d

3dr3dp3. s8d

To obtain a closed integral equation with Eq. s6d or Eq.
s8d, we need a closure relation between g†sr1 ,r2 ,p1 ,p2d and
c†sr1 ,r2 ,p1 ,p2d. Here we will use the Percus-Yevick ap-
proximation gsr1 ,r2dexpfbvsr1 ,r2dg=1+Nsr1 ,r2d, where the
function Nsr1 ,r2d is the sum of the nodal diagrams in the
expansion of gsr1 ,r2d. Separation into connecting and block-
ing parts, gsr1 ,r2d=g†sr1 ,r2 ,p1 ,p2d+g*sr1 ,r2 ,p1 ,p2d and
Nsr1 ,r2d=N†sr1 ,r2 ,p1 ,p2d+N*sr1 ,r2 ,p1 ,p2d, yields

g†sr1,r2,p1,p2d = ff*sr1,r2,p1,p2d + 1gfg†sr1,r2,p1,p2d

− c†sr1,r2,p1,p2dg

+ expfbvsr1,r2dggsr1,r2df†sr1,r2,p1,p2d ,
s9d

or, for a homogeneous system,

g†sr12,p1,p2d = ff*sr12,p1,p2d + 1gfg†sr12,p1,p2d

− c†sr12,p1,p2dg

+ expfbvsr12dggsr12df†sr12,p1,p2d .
s10d

Equation s6d joined with Eq. s9d or Eq. s8d joined with
Eq.s10d give a closed set of equations for g†sr1 ,r2 ,p1 ,p2d.

From the function g†sr1 ,r2 ,p1 ,p2d we define the pair cor-
relation function for chemical clusters,

gchemsr1,r2d =E rsr1,p1drsr2,p2dg†sr1,r2,p1,p2ddp1dp2.

s11d

This function is the joint probability density of finding two
particles within the same chemical cluster at positions r1 and
r2, respectively. Then the mean cluster size Schem and the
percolation density rp are calculated as

Schemsrd = 1 +
1

sN − 1d E gchemsr1,r2ddr1dr2, s12d

lim
r→rp

−
Schemsrd = ` . s13d

III. SOLUTION OF THE INTEGRAL EQUATION

A. Equivalence with an integral equation for polarizable fluids

Our problem consists in solving Eq. s8d for g†sr12,p1 ,p2d
closed by the connectedness Percus-Yevick relation s10d with
f†sri ,r j ,pi ,p jd and f*sri ,r j ,pi ,p jd given by Eqs. s4d and s5d.
In the closure relation s10d, gsr12d is the thermal PDF of the
system. We consider here a Lennard-Jones fluid whose par-
ticles interact through the pair potential
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vsrd = 4«FSs

r D
12

− Ss

r D
6G . s14d

In this work we take gsr12d from the solution of the thermal
Ornstein–Zernike sOZd equation in the Percus-Yevick ap-
proximation f32g.

An equation mathematically equivalent to Eq. s8d has
been previously solved in II by one of us in the study of
nonpolar polarizable molecules. Explicitly, the equation con-
sidered there, which is a generalized OZ equation, relates the
fluid total correlation function sTCFd hsr12,p1 ,p2d
=gsr12,p1 ,p2d−1 fwith gsr12,p1 ,p2d the PDFg and the direct
correlation function sDCFd csr12,p1 ,p2d,

hsr12,p1,p2d = csr12,p1,p2d

+ rE fsp3dcsr13,p1,p3dhsr32,p3,p2ddr3dp3,

s15d

where pi denotes the instantaneous dipolar moment induced
on molecule i by the remaining molecules of the system. The
function fspd gives the instantaneous dipolar moment ther-
mal distribution which, in II, is assumed to have a Gaussian
form

fspd =
1

s2pa/bd3/2expS−
bp2

2a
D , s16d

where a is the effective polarizability of the molecules.
We observe that Eqs. s8d and s15d are the same equation if

we identify h with g†, c with c†, the induced dipolar moment
pi with the kinetic momentum pi and the polarizability a
with the particle mass m. There are, however, some differ-
ences between the connectivity problem and the polarizable-
molecule problem described in II. The form of fspd does not
need to be Gaussian in II; moreover, fspd is coupled to the
TCF. Therefore, the value of the effective polarizability a
depends on the density and temperature of the system. In the
connectivity problem, however, the equivalent of fspd,
rsr ,pd /r, is intrinsically Gaussian and independent of the
thermodynamic macrostate of the system.

Another difference between the connectivity problem here
and the problem described in II is that our closure relation
must be complemented with the condition given by Eq. s4d.
This means that we have to calculate the path of a given pair
of molecules over a period of time t. In addition, the closures
are different. Here we consider the connectedness version of
Percus-Yevick whereas an almost exact relation between
DCF and TCF svan Leeuwen–Groeneveld–De Boer f35g ex-
act relation with approximate bridge functiond is used in II.
Nevertheless, these differences do not affect the general
method of solution developed in II and we can apply the
same principle of expansions in orthogonal functions.

Thus, following II, we start by reassigning the unknown
function to be the indirect correlation function

g†sr12,p1,p2d = g†sr12,p1,p2d − c†sr12,p1,p2d , s17d

rather than g†sr12,p1 ,p2d, and rewriting Eq. s8d in Fourier
transform representation,

g̃†sk,p1,p2d =
r

s2pmkBTd3/2 E dp3expF− b
p3

2

2mGfg̃†sk,p1,p3d

+ c̃†sk,p1,p3dgc̃†sk,p3,p2d . s18d

The closure given by the Percus-Yevick relation fEq. s10dg
together with the conditions s4d and s5d yield

c†sr12,p1,p2d

= Hgsr12d − g†sr12,p1,p2d, ur12stdu , d ∀ t ø t ,
sexpf− bvsr12dg − 1dg†sr12,p1,p2d, otherwise.

s19d

The connectivity part of the PDF is then computed from g†

as

g†sr12,p1,p2d = Hgsr12d ur12stdu , d ∀ t ø t ,
expf− bvsr12dgg†sr12,p1,p2d, otherwise.

s20d

The Fourier transform in Eq. s18d and its inverse are defined
as

f̃skd =E dr fsrde−ik·r, s21d

fsrd =
1

s2pd3 E dk f̃skdeik·r. s22d

The standard method for solving Eqs. s18d and s19d is to
explicitly break out the angular dependence of all functions
in the form of expansions in spherical harmonics f36g. The
general expansions for pair functions in real as well as in
transformed spaces are shown in the Appendix.

Introducing the expansion for g̃†sk ,p1 ,p2d and the corre-
sponding expansion for c̃†sk ,p1 ,p2d, one finds that the OZ-
like equation in Fourier space fEq. s18dg goes over into a set
of matrix equations for the respective coefficients,

g̃l1l2m
†n1n2skd = s− 1dmr o

n3,l3
fg̃l1l3m

†n1n3skd + c̃l1l3m
†n1n3skdgc̃l3l2m

†n3n2skd .

s23d

B. Numerical procedure

To obtain a numerical solution for the set of equations s8d
and s10d one needs the discrete versions of the expansion for
g†sr ,p1 ,p2d fEq. sA9dg and the quadratures for the coeffi-
cients gl1l2m

†n1n2srd fEq. sA11dg; these are

g†sr,i1,i2,k1,k2, jd = 4p o
n1,n2,l1,l2,m

gl1l2m
†n1n2srdQn1l1si1dQn2l2si2d

3 Pl1msk1dPl2msk2dnmTmsjd s24d

and
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gl1l2m
†n1n2srd = o

i1,i2,k1,k2,j=1

Np

wsi1dwsi2dwsk1dwsk2dwsjd

3g†sr,i1,i2,k1,k2, jdQn1l1si1dQn2l2si2d

3Pl1msk1dPl2msk2ds− 1dmTmsjd . s25d

In Eq. s24d, n0=1 and nm=2 for m.0. In Eq. s25d, Gaussian
quadratures are being used, with the argument i standing for
ti=bpi

2 /2m, the ith root of LNp
1/2std, k for xk=cos uk, the kth

root of PNp
sxd, and j for yj =cos f j, the jth root of TNp

syd,
where LNp

1/2std, PNp
sxd, and TNp

syd are the associated Laguerre,
Legendre, and Chebyshev polynomials, respectively, all of
order Np; here the associated Legendre functions Plmsxd are
normalized to 2. The w are the corresponding Gaussian
weights,

wsid = htifLNp
1/28stidg2j−1, s26d

wskd = hs1 − xk
2dfPNp

8 sxkdg2j−1, s27d

wsjd = Np
−1, s28d

where the prime denotes derivative.
The solution follows an iterative procedure. The prepara-

tory stages of the calculation consist of sid computing the
thermal PDF gsr12d for the Lennard-Jones fluid over a suit-
able mesh using the Percus-Yevick equation, siid reducing the
momentum space to the discrete set of points pi,k,j
;spi ,uk ,f jd with i ,k , j=1,2 , . . . ,Np, and siiid identifying the
subset of states —within all possible configurational states
sr12,p1 ,p2d of a pair of particles— that correspond to a
bonded pair.

The third preparatory step above is carried out as follows.
The relative distance r12 between particles 1 and 2 and the
momenta p1;i,k,j ;sp1i ,u1k ,f1j and p2;i,k,j ;sp2i ,u2k ,f2jd are
made to run over all the mesh values and the reduced mo-
mentum space fstep siidg, respectively. Thus, for each set
sr12,p1;i,k,j ,p2;i,k,jd taken as initial condition, we consider the
equation of motion of the two particles

m
2

]2rstd
]t2 = −

]vefffrstdg
]r

+
L2

m
2

frstdg3
, s29d

where rstd= ur1std−r2stdu, vefffrstdg=−kBTln gfrstdg, and L
= uLu= urstd3pstdu=const. In the last equality we have rstd
=r1std−r2std and pstd=p1std−p2std. Equation s29d must be
solved with the initial conditions

rstd = ur1std − r2stdut=0 = ur1 − r2u = r12 s30d

and

U ]rstd
]t U t=0

= uṙ1std − ṙ2stdut=0 = Up1std
m

−
p2std

m U
t=0

= Up1

m
−

p2

m U =
p12

m
. s31d

Thus, for each set of values sr12,p1 ,p2d we must solve the
differential equation s29d with the initial conditions given by
Eqs. s30d and s31d. This problem can be put in a more ad-
equate form to be solved using the Runge-Kutta method:

drstd
dt

= sstd ,

dsstd
dt

= ffrstdg ,

urstdut=0 = r12,

usstdut=0 = Udrstd
dt U t=0

=
p12

m
,

Udsstd
dt U t=0

= ffrst = 0dg , s32d

where

fsrd =
1

m
2

bgsrd

dgsrd
dr

+
sr12p12d2s1 − x12

2 d

Sm
2 D

2
r3

. s33d

From the numerical solution of the equation of motion, we
construct a logical array Bsr12,p1;i,k,j ,p2;i,k,jd of dimension
seven whose value is TRUE if the configurational state of the
pair of particles corresponds to a bonded state, i.e., if r12std
,d ∀tøt. If instead the condition r12std,d ∀tøt is not
satisfied, then Bsr12,p1;i,k,j ,p2;i,k,jd is FALSE.

The iterative solution of Eqs. s23d and s19d starts by
guessing the initial values of the coefficients gl1l2m

†n1n2sr12d.
Then, if Bsr12,p1;i,k,j ,p2;i,k,jd is TRUE, following Eq. s20d we
take

gl1l2m
†n1n2sr12d = Hgsr12d, if n1 = n2 = l1 = l2 = m = 0,

0, otherwise.
s34d

If instead Bsr12,p1;i,k,j ,p2;i,k,jd is FALSE then, following Eq.
s20d, we take

gl1l2m
†n1n2sr12d = expf− bvsr12dggl1l2m

†n1n2sr12d . s35d

Knowing gl1l2m
†n1n2sr12d and gl1l2m

†n1n2sr12d for all the mesh points
and allowed indices, we can calculate fsee Eqs. s17d or s19dg

cl1l2m
†n1n2sr12d = gl1l2m

†n1n2sr12d − gl1l2m
†n1n2sr12d . s36d

We now need to transform the coefficients cl1l2m
†n1n2sr12d in

real space into coefficients c̃l1l2m
†n1n2skd in Fourier space. How-

ever, as we have mentioned, they are not themselves Fourier
transforms of each other. Thus, we have to assemble the
complete function first using the equation analogous to Eq.
s24d for c†sr , i1 , i2 ,k1 ,k2 , jd and then use a generalized fast-
transform algorithm f33g to calculate c̃†sk , i1 , i2 ,k1 ,k2 , jd. Us-
ing the equation analogous to Eq. s25d in k space we then
have the coefficients c̃l1l2m

†n1n2skd for the complete set of indices
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and all the values of k on an adequate mesh. The coefficients
g̃l1l2m

†n1n2skd are then easily calculated by using the OZ-like
equation in Fourier space fsee Eq. s23dg. Again we assemble
the complete function g̃†sk , i1 , i2 ,k1 ,k2 , jd fusing the Fourier
space version of Eq. s24dg. The inverse transform
g†sr12, i1 , i2 ,k1 ,k2 , jd is calculated with the fast-transform al-
gorithm and so new coefficients gl1l2m

†n1n2sr12d fobtained from
Eq. s25dg are again available to reinitiate the iterative cycle.
The iterations end when convergence is reached, as mea-
sured by

ufgl1l2m
†n1n2sr12dgss+1dth iteration − fgl1l2m

†n1n2sr12dgsth iterationu , e

s37d

for the complete set of indices. The tolerance e is set to
0.0001.

The pair correlation function for a chemical cluster fsee
Eq. s11dg is finally given by

gchemsr12d = g000
†00sr12d , s38d

where the orthonormality condition fsee Eq. sA12dg has been
used.

IV. RESULTS AND DISCUSSION

Following the method of the previous section, we have
solved the integral equation s8d for a Lennard-Jones fluid
with a pair potential given by Eq. s14d and we have calcu-
lated the corresponding gchemsr12d according to Eq. s38d. In
order to check the theory, MD simulations on the same sys-
tem have been performed; the simulation details are given
elsewhere f20g. All the quantities reported here are in re-
duced units: r*=r /s, r*=rs3, T*=kBT /«, d*=d /s and t*

=ts−1Î« /m for the density, temperature, connectivity dis-
tance, and residence lifetime, respectively. For the results
shown below we have used d*=1.5 and t*=0.5.

In Figs. 1–3 we show the theoretical cluster correlation
functions gchemsr12d calculated for r*=0.155, T*=1.4; r*

=0.155, T*=2.0; and r*=0.26, T*=2.0, along with the corre-

sponding simulation results. In Fig. 1 we also show the clus-
ter correlation function gStillsr12d obtained from molecular
dynamics when the Stillinger connectivity criterion, namely
when t*=0, is used instead. In addition, the thermal PDF
gsr12d from MD is shown as a guide. It should be mentioned
that the percolation density rp

* for our chemical clusters is
about 0.26 for T*=1.4 and 0.32 for T*=2.0 according to our
simulations. The density r*=0.155 corresponds to the perco-
lation density for Stillinger clusters at T*=1.4.

The qualitative behavior of these curves agrees with the
general trends encountered in connectedness studies in con-
tinuum systems. The discontinuity at r12=d for Stillinger
ssee Fig. 1d as well as for chemical clusters is a typical fea-
ture: the probability for two particles to be connected at r12
.d, even for r12→d+, depends on the presence of an inter-
mediate third particle directly connected to the other two and
thus the probability of belonging to the cluster notably de-
creases. For clusters defined according to the Stillinger cri-
terion st=0d, two particles which are separated by a distance
shorter than the connectivity distance belong to the same
Stillinger cluster with certainty. Thus, for r12,d, the func-
tion gStillsr12d coincides with the ordinary PDF gsr12d. As
expected, the probability density of finding two particles
connected according to the chemical criterion stÞ0d is
smaller than gStillsr12d for any r12. This is to be expected

FIG. 1. Cluster pair correlation function. Full line and circles
correspond to chemical clusters with d*=1.5 and t*=0.5 as ob-
tained from the integral equation and MD, respectively. Triangles
correspond to Stillinger clusters st*=0d with d*=1.5 as obtained
from MD. Dashed line is the thermal PDF as obtained from MD.
The system is at T*=1.4 and r*=0.155.

FIG. 2. The pair correlation functions for chemical clusters with
d*=1.5 and t*=0.5 at T*=2.0 and r*=0.155. Results from the in-
tegral equation theory sfull lined and from MD simulation scirclesd
are shown.

FIG. 3. The pair correlation functions for chemical clusters with
d*=1.5 and t*=0.5 at T*=2.0 and r*=0.26. Results from the inte-
gral equation theory sfull lined and from MD simulation scirclesd are
shown.
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since a dynamic restriction is required in addition to the geo-
metrical one. In particular, for r12,d, gchemsr12d is always
smaller than the thermal PDF. The function gStillsr12d in Fig.
1 is long ranged because, as mentioned above, the density
considered in that case corresponds to the percolation density
for Stillinger clusters at the given temperature. The mean
cluster size SStill diverges at that density.

From these figures we can conclude that, at least for the
densities and temperatures considered, the integral equation
results reproduce rather well those obtained from MD simu-
lations.

In Fig. 4 we present the gas–liquid coexistence curve in
the T-r plane obtained by Panagiotopoulos f39g, using Gibbs
ensemble Monte Carlo simulations, together with the perco-
lation loci for the chemical clusters st=0.5d and Stillinger
clusters st=0d. These percolation curves separate the phase
diagram in two parts: percolated shigh densitiesd and nonper-
colated slow densitiesd. They were calculated from our
theory using Eqs. s12d and s13d, and also from MD ssee Ref.
f20g for detailsd.

To calculate the critical density rp for a given temperature
we use the critical power law

Schemsrd , ur − rpu−g s39d

as an extrapolation formula. The fitting was performed in
two alternative ways: sid fixing the exponent at the value g
=2, and siid allowing g to vary freely. The value g=2 is the
known mean field critical exponent obtained from the
Percus-Yevick approximation when only a geometric restric-
tion is required in the cluster definition swhich is the case of
the Stillinger clusters f40gd. The critical exponent g for Still-
inger clusters in Lennard-Jones fluids, obtained from MD
simulations, was reported by Heyes and Melrose f41g as be-
ing near the universal value g=1.8 observed in lattice sys-
tems. In Fig. 4, the theoretical percolation curves for t=0.5
and t=0 calculated by using the two fitting procedures and
that obtained from MD can be seen. For t=0.5 we clearly

observe that the theoretical curve extrapolated using g vari-
able agrees with the simulation data better than the curve
obtained by using g;2, although the theoretical prediction
is slightly shifted to lower densities with respect to the MD
prediction. For Stillinger clusters, things are less clear at
first sight. However, if we calculate the mean quadratic
error, Drp

*=ÎoT*srtheor
* −rsimul

* d2, we observe that fDrp
*gg=2

,fDrp
*gg variable, which suggest that the agreement with the

MD percolation loci is better when a constant exponent 2 is
used.

From Fig. 4 we can observe that the predictability of the
theory is as good for tÞ0 as for t=0. However, for values
of t much larger than the one shown here, the corresponding
percolation density will be significantly higher and the ap-
proximation introduced by the potential of mean force in the
equation of motion will eventually fail. It is worth mention-
ing that the deviations observed between MD and the theo-
retical results are not entirely due to the approximations in-
troduced in the numerical solution of Eq. s8d. In practice, in
a MD simulation f20g, the percolation density is calculated
as the density at which 50 percent of the configurations
present a percolating cluster. This technique is rather differ-
ent to the extrapolation described above for the theoretical
prediction of the percolation density.

V. CONCLUSIONS

We have numerically solved a connectedness integral
equation theory that describes clusters where the particle-
particle bonds are identified by setting a connectivity dis-
tance d plus a lifespan t. The technique used consists in
expanding the pair correlation functions in orthogonal poly-
nomials. These same polynomials were considered originally
in the study of the “thermal” correlation function of polariz-
able molecules. The numerical results within the Percus-
Yevick approximation that are obtained here agree rather
well with earlier MD simulations, at least at the densities
studied, in the case of Lennard-Jones particles.

The use of an explicit lifetime for the bonding criterion is
especially important when one tries to compare cluster prop-
erties extracted from the theory with those measured in ex-
periments. The sol-gel transition in weakly attractive col-
loids, for example, is associated with the percolation of the
clusters due to weak colloidal interactions. However, if the
transition is measured by linear viscoelastic rheology, the
position of the sol-gel line depends on the testing frequency
f42g. High frequencies are able to detect only very short-
lived bonds and clusters whereas low frequencies detect
more long-lasting bonds and clusters. A discussion on the
relationship between this frequency effect and the chemical
clusters considered in this paper can be found in Ref. f30g.

Since MD is a very costly technique to study long lasting
clusters f20g, we expect that our numerical approach will be
particularly useful to estimate the percolation line for mod-
erately large values of t. Large values of t are of particular
interest since they lead to the identification of more stable
clusters that are easier to detect in experiments.
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APPENDIX: EXPANSION OF THE PAIR FUNCTIONS
IN ORTHOGONAL POLYNOMIALS

The essential point in the integral equation solution
method f33g is the expansion of all the pair functions, like
g†sr12,p1 ,p2d, in terms of orthogonal polynomials. Here we
sketch how these expansions follow. First we expand:

g†sr12,p1,p2d = g†sr,p1,p2,v1,v2d

= 4p o
l1,l2,m

gl1l2m
† sr,p1,p2dYl1msv1dYl2msv2d ,

sA1d

where v1v2, are the directions of the momenta p1 and p2,
m=−m, and m=−l ,−l+1, . . . , l. In this and similar expres-
sions, the vector r12 has been implicitly chosen as the z di-
rection in the specification of the Euler angles v= su ,fd. The
spherical harmonics satisfy the orthogonality condition

E dv YlmsvdYl8m8
* svd = dll8dmm8, sA2d

so that the coefficients of the expansion sA1d are immedi-
ately obtainable as

gl1l2m
† sr,p1,p2d =

1

4p
E dv1dv2g†sr,p1,p2,v1,v2d

3Yl1msv1dYl2m
* sv2d . sA3d

Similarly, we can break out the kinetic momentum depen-
dence in the form of expansions in polynomials of p,

gl1l2m
† sr,p1,p2d = o

n1,n2

gl1l2m
†n1n2srdQn1l1sp1dQn2l2sp2d , sA4d

which are constructed to be orthogonal with Gaussian weight
function

fspd =
1

s2pm/bd3/2expf− bp2/2mg , sA5d

namely,

4pE
0

`

dp p2fspdQnlspdQn8lspd = dnn8. sA6d

The coefficients of the expansion are then again obtainable
by quadratures,

gl1l2m
†n1n2srd = E

0

`

dp1dp2f4pp1
2fsp1dgf4pp2

2fsp2dg

3 gl1l2m
† sr,p1,p2dQn1l1sp1dQn2l2sp2d . sA7d

Given the Gaussian form of the weight function fspd, the
associated polynomials are f37g

Qnlspd = FGs 1
2 sn − ld + 1dGs 3

2 d

Gs 1
2 sn + ld + 3

2 d G1/2Sbp2

2m Dl/2
Lsn−ld/2

l+1/2 Sbp2

2m D ,

sA8d

where Ln
bstd is an associated Laguerre polynomial f38g and

Gszd is the gamma function.
Accordingly, all the functions in r space are expanded in

the form

g†sr,p1,p2d = 4p o
n1,n2,l1,l2,m

gl1l2m
†n1n2srdQn1l1sp1dQn2l2sp2d

3Yl1msv1dYl2msv2d , sA9d

where the z axis is along r and the summation indices satisfy
the constraints

n = 0,1,2, . . . ,

l = n, n − 2, n − 4, . . . ,1 or 0,

m = 0, ± 1, ± 2, . . . , ± l . sA10d

The coefficients of Eq. sA9d can be obtained as

gl1l2m
†n1n2srd = 4pE dp1dp2fsp1dfsp2dg†sr,p1,p2d

3 Qn1l1sp1dQn2l2sp2dYl1m
* sv1dYl2m

* sv2d

sA11d

with fspd given by Eq. sA5d. The complete orthonormality
condition is

4pE dpfspdQnlspdQn8l8spdYlmsvdYl8m8
* svd = dnn8dll8dmm8.

sA12d

The functions in k are expandable in a similar way. Set-
ting the z axis along k, we write

g̃†sk,p1,p2d = 4p o
n1,n2,l1,l2,m

†n1n2

g̃l1l2m
†n1n2skdQn1l1sp1dQn2l2sp2d

3Yl1msv1dYl2msv2d . sA13d

However, the angles v1,v2 are referred to different axes in
Eqs. sA9d and sA13d, so that the coefficients in these expan-
sions are not themselves mutual Fourier transforms.
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