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Phase diagram of neutral quark matter in nonlocal chiral quark models
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We consider the phase diagram of two-flavor quark matter under neutron star constraints for two
nonlocal, covariant quark models within the mean-field approximation. In the first case (Model I) the
nonlocality arises from the regularization procedure, motivated by the instanton liquid model, whereas in
the second one (Model II) a separable approximation of the one-gluon exchange interaction is applied. We
find that Model II predicts a larger quark mass gap and a chiral symmetry breaking (CSB) phase transition
line which extends 15–20% further into the phase diagram spanned by temperature (T) and chemical
potential (�). The corresponding critical temperature at � � 0, Tc�0� ’ 140 MeV, is in better accordance
to recent lattice QCD results than the prediction of the standard local NJL model, which exceeds 200 MeV.
For both Model I and Model II we have considered various coupling strengths in the scalar diquark
channel, showing that different low-temperature quark matter phases can occur at intermediate densities: a
normal quark matter (NQM) phase, a two-flavor superconducting (2SC) quark matter phase and a mixed
2SC-NQM phase. Although in most cases there is also a gapless 2SC phase, this occurs in general in a
small region at nonzero temperatures, thus its effect should be negligible for compact star applications.
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I. INTRODUCTION

Within the last decade the investigation of the thermo-
dynamics and phase structure of strongly interacting matter
has been driven by the results of the experimental programs
with ultrarelativistic heavy ion beams at CERN-SPS and
BNL-RHIC [1] as well as by the unprecedented quality of
data from lattice QCD simulations [2]. A new picture of the
state of matter created in these experiments has emerged,
according to which the physical nature of the sought-for
quark-gluon plasma (QGP) is a perfect liquid of strongly
correlated hadronlike resonances rather than an ideal gas of
quasifree quarks and gluons [3,4]. The persistence of a
strong, nonperturbative coupling in the QGP can be sup-
posed as a prerequisite of a successful modelling of the
QCD phase diagram. Turning to the domain of finite
chemical potentials, guidance from lattice QCD is limited
to � � T (where Taylor expansion techniques can be
applied), and experimental programmes such as CBM at
FAIR Darmstadt are yet in the stage of preparation with a
planned begin of operation in 2014. Therefore, predictions
for the QCD thermodynamics at low temperatures and high
baryon densities � � T, where the critical point and the
regions of color superconducting quark matter are ex-
pected in the QCD phase diagram [5], have to be developed
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within effective models for nonperturbative QCD and to be
tested against observational constraints from neutron stars
[6]. For a recently developed testing scheme we refer to
[7].

After the early discussion on color superconducting
dense quark matter [8] was revived for nonperturbatively
strong couplings within effective quark models [9], a great
variety of possible diquark pairing patterns and corre-
sponding phases has been explored [5] and estimates for
the order of magnitude of the pairing gaps have been given.
One of the central questions for phenomenological appli-
cations in compact stars, where electric and charge neutral-
ity has to be imposed [10,11], concerns the number of
active flavors. It turns out that at low temperatures one
obtains a sequential melting pattern of the light and strange
quark chiral condensates, which is rather insensitive to the
details of the four-momentum dependence of the interac-
tion, but crucially dependent on whether also the strange
quark mass is determined self-consistently (see [12] for an
early work within the covariant chiral quark model). The
present ’state-of-the-art’ for the description of color super-
conducting phases is represented by the fully self-
consistent mean-field three-flavor Nambu-Jona-Lasinio
(NJL) model calculations of Refs. [13–15]. The results of
these studies indicate that under compact star conditions,
i.e. color and electric charge neutrality together with
�-equilibrium, the two-flavor color superconducting
(2SC) phase is favored over the three-flavor color-flavor-
locking (CFL) one. This outdates earlier results along the
lines of, e.g., Ref. [11] where the strange quark mass has
been set to a constant, small value. Even if the third quark
-1 © 2006 The American Physical Society
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flavor occurs at not too high densities to be in principle
realized in compact star interiors, the star configurations
with CFL quark cores turn out to be hydrodynamically
unstable [16]. For a more detailed introduction to the
recent status of dense quark matter in the NJL model, see
[17].

Studies of neutral 2SC quark matter consider also the
presence of a so-called gapless (g2SC) phase [18], which is
found to occur at intermediate temperatures and chemical
potentials. Going beyond the NJL theory, results arising
from a noncovariant nonlocal quark model [19,20] with
Gaussian regulator functions show that the 2SC phase is
not present in asymmetric quark matter for standard values
of the diquark coupling [21]. In this model, however, for
strong diquark couplings one does find a 2SC phase, to-
gether with a g2SC and a mixed normal quark matter
(NQM)-2SC phase in which the electric charge neutrality
is satisfied only globally [22–24].

As the structure of the quark matter phase diagram
within NJL-type models is settling, it is important to
investigate the situation in the case of effective models
that go beyond those used in Refs. [11,13–15,21], in the
sense that they include fully covariant nonlocal interac-
tions. Nonlocality arises naturally in the context of several
quite successful approaches to low-energy quark dynamics
as, for example, the instanton liquid model [25] and the
Schwinger-Dyson resummation techniques [26]. The same
happens in lattice QCD [27]. It has been also argued that
nonlocal models have several advantages over the local
ones (e.g., the NJL model [28] and its generalizations).
Indeed, nonlocal interactions regularize the model in such
a way that anomalies are preserved [29] and charges prop-
erly quantized, the effective interaction is finite to all
orders in the loop expansion and there is no need to
introduce extra cut-offs. Soft regulators such as Gaussian
functions lead to small next-to-leading order corrections
[30,31], etc. This type of models has been successfully
used to investigate meson [32–35] and baryon [36–38]
properties at vanishing temperature and chemical potential.
The phase diagram of isospin symmetric matter has also
been studied within this context [39–43]. The aim of the
present work is to extend these analyses to the case in
which compact star conditions are imposed. We will con-
sider two-flavor versions of the models, since (as men-
tioned below) effects arising from the strange quark can be
safely neglected in the region of intermediate chemical
potentials to be covered. The investigation of the question
whether the results of the above referenced studies will
remain qualitatively unchanged after the inclusion of cor-
relations beyond the mean-field level goes beyond the
scope of the present work and deserves a separate study.
It should be noticed, however, that in the nonstrange case
considered here the relevant color superconducting con-
densate transforms as a singlet representation of the global
SU�2�L 
 SU�2�R chiral group. Thus, no global symmetry
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is broken by the 2SC ground state, which implies that there
are no Goldstone bosons that could further condense.

The paper is organized as follows. In Sec. II we intro-
duce the model and derive some useful analytical expres-
sions. In Sec. III we present the numerical results obtained
for the case of a Gaussian regulator, considering different
ratios between the coupling constants. Then, in Sec. IV we
discuss the features of the obtained phase diagrams, and in
Sec. V we present our conclusions.
II. FORMALISM

Let us begin by stating the Euclidean action for the
nonlocal chiral quark model in the case of two light flavors
and antitriplet diquark interactions,
 

SE �
Z
d4x

�
� �x��ÿi@6 �m� �x� ÿ

G
2
jfM�x�j

f
M�x�

ÿ
H
2
�jaD�x��

yjaD�x�
�
: (1)

Here m is the current quark mass, which is assumed to be
equal for u and d quarks. The nonlocality can be intro-
duced now in different ways [44]. In what follows we will
work within two alternative scenarios, that we call
‘‘Model I’’ and ‘‘Model II’’, in which the mesonic current
jM�x� and the diquark current jD�x� in Eq. (1) are given by
nonlocal operators. In the case of Model I [33,34], the
effective interactions are based on an instanton liquid
picture of QCD. The nonlocal currents read

 jfM�x� �
Z
d4yd4zr�yÿ x�r�xÿ z� � �y�ÿf �z�;

jaD�x� �
Z
d4yd4zr�yÿ x�r�xÿ z� � C�y�i5�2�a �z�;

(2)

where we have defined  C�x� � 24
� T�x� and ÿf �

�1; i5 ~��, while ~� and �a, with a � 2, 5, 7 stand for Pauli
and Gell-Mann matrices acting on flavor and color spaces,
respectively.

On the other hand, Model II [32,45] arises from a
separable form of the effective one-gluon exchange
(OGE) picture. In this case the nonlocal currents jM;D�x�
are given by

 jfM�x� �
Z
d4zg�z� � 

�
x�

z
2

�
ÿf 

�
xÿ

z
2

�
;

jaD�x� �
Z
d4zg�z� � C

�
x�

z
2

�
i5�2�a 

�
xÿ

z
2

�
:

(3)

The functions r�xÿ y� and g�z� in Eqs. (2) and (3) are
nonlocal regulators characterizing the corresponding inter-
actions. It is convenient to translate them into momentum
space. Since Lorentz invariance implies that they can only
be functions of p2, we will use for the Fourier transforms of
these regulators the forms r�p2� and g�p2� from now on.
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The current-current interaction in Eq. (1) is quite com-
mon to effective theories for low-energy QCD such as the
NJL model. The momentum dependence introduced by the
functions r�p2� and g�p2� is a generalization of that model,
and can be chosen in such a way that the dynamical mass
function of the quark propagator reproduces some features
obtained in lattice QCD analyses. It could entail, e.g., the
possibility of complex conjugate mass poles of the quark
propagator, in agreement with results arising from the
Schwinger-Dyson equation approach to QCD. The index
structure of the vertices ÿf and also the ratio of the cou-
pling constants H=G can be obtained from a Fierz re-
arrangement of e.g. the OGE interaction, as detailed in
[17] (see also references therein). For the OGE, as well as
for the instanton liquid model, one obtains H=G � 0:75.
However, since a precise derivation of the effective cou-
plings from QCD is not known, there is a significant
theoretical uncertainty in this value. In fact, so far there
is no strong phenomenological constraint on H=G, except
for the fact that values larger that H=G� 1 are quite
unlikely to be realized in QCD, since they might lead to
color symmetry breaking in the vacuum. We will leave this
ratio as a free parameter, analyzing the results obtained for
values lying within a range from 0.5 to 1.

The partition function of the system at temperature T
and quark chemical potentials �fc is given by

 Z �
Z

D � D eÿSE��fc;T�; (4)

where the Euclidean action is obtained from Eq. (1) by
going to momentum space and performing the replace-
ments

 p4 ! !n ÿ i�fc;
Z d4p

�2��4
! T

X1
n�ÿ1

Z d3 ~p

�2��3
: (5)
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Here p4 is the fourth component of the (Euclidean) mo-
mentum of a quark carrying flavor f and color c, and !n
are the Matsubara frequencies corresponding to fermionic
modes, !n � �2n� 1��T. We are assuming here that
quark interactions depend on the temperature and chemical
potentials only through the arguments of the regulators.
Note that, as required for the applications we are interested
in, we have introduced in Eq. (4) different chemical po-
tentials for each quark flavor and color.

To proceed it is convenient to perform a standard bo-
sonization of the theory. This procedure is described, e.g.,
in Refs. [44,45]. Thus, we introduce the bosonic fields �,
�a and �a, and integrate out the quark fields. In what
follows, we work within the mean-field approximation
(MFA), in which these bosonic fields are replaced by their
vacuum expectation values ��a � 0, �� and ��a. Moreover,
we adopt the usual 2SC ansatz ��5 �

��7 � 0, ��2 �
��. We

have assumed other possible condensates to be negligible,
following previous analyses carried out in the NJL model
framework [5,17]. Within the MFA, and employing the
Nambu-Gorkov formalism, the thermodynamical potential
per unit volume can be written as
 
MFA � ÿ
T
V

lnZMFA

�
��2

2G
�
j ��j2

2H
ÿ
T
2

X1
n�ÿ1

Z d3 ~p

�2��3

� lndet
�

1

T
Sÿ1� ��; ���

�
: (6)
Here the inverse propagator Sÿ1� ��; ��� is a 48� 48 matrix
in Dirac, flavor, color and Nambu-Gorkov spaces, given by
 

ÿ6p�ur��ur 0 0 0 0 0 5�c2� 0
0 ÿ6p�ub��ub 0 0 0 0 0 0
0 0 ÿ6p�dr��dr 0 ÿ5�c2�� 0 0 0
0 0 0 ÿ6p�db��db 0 0 0 0
0 0 5�

c
2�� 0 ÿ6pÿur��ur

� 0 0 0
0 0 0 0 0 ÿ6pÿub��ub

� 0 0
ÿ5�

c
2� 0 0 0 0 0 ÿ6pÿdr��dr

� 0
0 0 0 0 0 0 0 ÿ6pÿdb��db

�

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

(7)
where we have used the definitions

 p�fc � �!n � i�fc; ~p�; (8)

 �fc � m� ��h�p�fc; p
�
fc�; (9)

 � � ��h�p�ur; p
ÿ
dr�; (10)
with f � u, d and c � r, g, b. The functions h�p; q� have
been introduced in order to have a common notation for
both Model I and Model II. One has

 h�s; t� �

8<
:
r�s2�r�t2� �Model I�

g
��

s�t
2

�
2
�
�Model II� (11)

We have taken into account that, as we will see below, the
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usual 2SC ansatz implies �fr � �fg. In Eq. (7), entries
with subindices ur and dr are intended to be multiplied by
an 12�2 matrix in rg space, while �c2 stands for a �2 Pauli
matrix acting in this space.

The determinant of Sÿ1 can be analytically evaluated,
leading to

 
MFA �
��2

2G
�

��2

2H
ÿ T

X1
n�ÿ1

Z d3 ~p

�2��3
X

c�r;g;b

ln
jAcj2

T8 ;

(12)

where
 

Ac � �p
�2
uc � �2

uc��p
ÿ2
dc � ��2dc� � �1ÿ �bc��

2

� ��2 � 2�p�uc � p
ÿ
dc� � 2�uc�

�
dc�: (13)

For finite values of the current quark mass, 
MFA turns
out to be divergent. The regularization procedure used here
amounts to define

 
MFA
�reg� � 
MFA ÿ
free �
free

�reg�; (14)

where 
free is obtained from Eq. (12) by setting �� � �� �
0, and 
free

�reg� is the regularized expression for the thermo-
dynamical potential of a free fermion gas,

 
free
�reg� � ÿ2T

Z d3 ~p

�2��3
X
f;c

fln�1

� eÿ�
����������
~p�m2
p

ÿ�fc�=T� � ln�1� eÿ�
����������
~p�m2
p

ÿ�fc�=T�g:

(15)

The mean-field values �� and �� are obtained from the
coupled gap equations

 

d
MFA
�reg�

d ��
� ���1ÿ 16HTDud� � 0; (16)

 

d
MFA
�reg�

d ��
� ��ÿ 4GT�Sud � Sdu� � 0; (17)

where we have defined

 Dij � Dji

� Re
X1

n�ÿ1

Z d3 ~p

�2��3
h2�p�ur; pÿdr�

�
�2 � �p�ir � p

ÿ
jr� � �ir�

�
jr

Ar
; (18)
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Sij � Re
X1

n�ÿ1

Z d3 ~p

�2��3

�
2h�p�ir ; p

�
ir�

�
�ir�p

ÿ2
jr ���2jr � � �2��jr

Ar

� h�p�ib; p
�
ib�

�ib

p�2
ib � �2

ib

�
: (19)

So far we have introduced different chemical potentials
for each quark flavor and color. However, not all of them
are in general independent quantities. For the description
of quark matter in the core of neutron stars, we require the
system to be color and electric charge neutral (for a further
discussion on the issue of color neutrality and color singlet-
ness we refer to Refs. [11,46]). Thus, within the previously
introduced 2SC ansatz, only one color-dependent chemical
potential is needed [47], and the �fc can be written in
terms of only three independent quantities: the baryonic
chemical potential �B, the quark electric chemical poten-
tial�Qq

and the color chemical potential�8. Defining� �
�B=3, the corresponding relations read

 �ur � �ug � ��
2

3
�Qq
�

1

3
�8

�dr � �dg � �ÿ
1

3
�Qq
�

1

3
�8

�ub � ��
2

3
�Qq
ÿ

2

3
�8

�db � �ÿ
1

3
�Qq
ÿ

2

3
�8

(20)

Now, in the core of neutron stars, in addition to quark
matter we have electrons. Thus, within the mean-field
approximation for the quark matter, and considering the
electrons as a free Dirac gas, the full grand canonical
potential is given by

 
full � 
MFA
�reg� �
e; (21)

where

 
e � ÿ
1

12�2

�
�4
e � 2�2T2�2

e �
7�4

15
T4

�
; (22)

�e being the electron chemical potential. For simplicity we
have neglected here the electron mass.

In addition, it is necessary to take into account that quark
matter has to be in �-equilibrium with electrons through
the beta-decay reaction

 d! u� e� ��e: (23)

Thus, assuming that antineutrinos escape from the stellar
core, we must have

 �dc ÿ�uc � ÿ�Qq
� �e: (24)
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If we impose the requirements of electric and color charge
neutrality, �e and �8 become fixed by the conditions of
vanishing electric and color densities:

 

�Qtot
� �Qq

ÿ �e �
X

c�r;g;b

�
2

3
�uc ÿ

1

3
�dc

�
ÿ �e � 0;

�8 �
1���
3
p

X
f�u;d

��fr � �fg ÿ 2�fb� � 0; (25)

where

 �e � ÿ
@


@�e
� ÿ

@
e

@�e
;

�fc � ÿ
@


@�fc
� ÿ

@
MFA
�reg�

@�fc
:

(26)

Consequently, in the physical situation we are interested in,
for each value of T and � we should find the values of ��,
��, �e and �8 that solve Eqs. (16) and (17), supplemented
by Eqs. (24) and (25).

The electron density can be evaluated analytically, lead-
ing to

 �e �
�e

3�2 ��
2
e � �2T2�: (27)

On the other hand, from Eqs. (12), (14), and (15), the quark
densities can be expressed as

 �MFA
�reg�fc � �MFA

fc ÿ �free
fc � �

free
�reg�fc: (28)

Then a straightforward calculation leads to

 �MFA
fc � 2T

X1
n�ÿ1

Z d3 ~p

�2��3
Re
�

1

Ac

@Ac
@�fc

�
; (29)

with

 

@Ac
@�uc

� ÿ2�i!n ��uc��pÿ2
dc � ��2dc��1� 2�uc�

0
uc�

ÿ 2�1ÿ �bc��
2�2��dc�

0
uc�i!n ��uc�

� i!n ÿ�dc� ÿ 4i�1ÿ �bc� �����2 � �p�uc � pÿdc�

��uc�
�
dc�
@h�t; pÿdc�

@t4

��������t�p�uc

; (30)

where we have defined �0fc � ��@h�t; t�=@t2jt2�p�2
fc

.

The corresponding expressions for �dc are obtained by
simply exchanging u and d and taking the complex con-
jugate, while the expressions for �free

fc can be easily ob-

tained from �MFA
fc by setting �� � �� � 0. Finally, �free

�reg�fc is
given by
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�free
�reg�fc � 2

Z d3 ~p

�2��3

��
1� exp

� ������������������
~p2 �m2

p
ÿ�fc

T

��
ÿ1

ÿ

�
1� exp

� ������������������
~p2 �m2

p
��fc

T

��
ÿ1
�
: (31)

III. NUMERICAL RESULTS

In this section we present our numerical results, showing
the features of the phase diagram and the behavior of
relevant physical quantities for Models I and II.
According to previous analyses carried out within nonlocal
scenarios [42], the results are not expected to show a strong
qualitative dependence on the shape of the regulator. Thus
we will concentrate here on simple and well-behaved
Gaussian regulator functions, taking (in momentum space)

 r�p2� � exp�ÿp2=2�2� �Model I� (32)

 g�p2� � exp�ÿp2=�2� �Model II� (33)

Here � is a free model parameter, playing the rôle of an
ultraviolet cut-off. We have chosen a different normaliza-
tion for Models I and II in view of the relation between the
respective regulating functions [see Eq. (11)], which de-
termine the low T and � phenomenology.

A. Parametrization

For definiteness, for both Models I and II we choose here
input parameters m, � and G which allow to reproduce the
empirical values for the pion mass m� � 139 MeV and
decay constant f� � 92:4 MeV, and lead to a phenomeno-
logically acceptable value for the chiral condensates at
vanishing T and �fc. For Gaussian regulators, taking into
account the chosen normalization of the cut-offs, it is seen
that within the MFA both models lead to the same expres-
sions for the considered physical quantities at T � � � 0.
However, this is not the case when one goes beyond the
MFA [48]. In particular, the expressions for the pion mass
and decay constant are different (they are still coincident
only in the chiral limit), and it is necessary to use different
sets of input parameters. The parameters considered here
for Model I are m � 5:14 MeV, � � 971 MeV and
G�2 � 15:41, while for Model II we have taken m �
5:12 MeV, � � 827 MeV and G�2 � 18:78. With these
sets we get for both models a phenomenologically reason-
able value for the chiral condensate, namely h0j �qqj0i1=3 �
ÿ250 MeV. The remaining free parameter is the coupling
strength H in the scalar diquark channel. In order to fix its
value by hadron phenomenology at zero T and �, one
would have to solve the Faddeev-type equations for bary-
ons as three-quark bound states which result from the
quantization of chiral quark models of the type considered
in the present paper after bosonization in meson and di-
quark channels (see [49] and Refs. therein; for more elabo-
-5
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rate recent calculations of nucleon properties see [37,50]).
Although in principle this is possible, we refrain from
fixing H by hadron phenomenology within the present
exploratory study of the quark matter phase diagram and
rather choose different values for the coupling ratioH=G in
the range from 0.5 to 1.

B. Order parameters and phase transitions

For fixed values of the temperature T and the chemical
potential� (� � �B=3), the mean-field values �� and ��, as
well as the chemical potentials �e and �8, can be numeri-
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FIG. 1 (color online). Behavior of the mean fields �� and �� and the
a function of the chemical potential, for three different values of the
lines correspond to T � 0, dashed lines to T � 40 MeV and dotted
stars and dots correspond to the 2SC and NQM phases, respectively
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cally obtained from the gap Eqs. (16) and (17), together
with the conditions of �-equilibrium and vanishing color
and electric charge densities, Eqs. (24) and (25). Let us
begin by considering the case H=G � 0:75, which is mo-
tivated by various effective models of quark-quark inter-
actions. Our results for ��, ��, �e and �8 are shown in
Fig. 1, where we plot these quantities as functions of � for
different representative values of the temperature. Left and
right panels correspond to Models I and II, respectively.

For T � 0 (solid lines), at low chemical potentials the
system is for both Models I and II in a chiral symmetry
broken phase (CSB), where quarks acquire large dynami-
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FIG. 2 (color online). Phase diagrams for Models I (left) and II
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indicate first and second order phase transition curves, respec-
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cal masses. By increasing the chemical potential one
reaches a first order phase transition, in which the chiral
symmetry is approximately restored, and a certain volume
fraction of the quark matter undergoes a transition to the
2SC phase coexisting with the remaining normal quark
matter (NQM) phase. The chemical potential �e (which
for T � 0 vanishes in the CSB region) also shows a dis-
continuity across the transition. The new 2SC-NQM mixed
phase is a way in which the system realizes the constraint
of electric neutrality globally: the coexisting phases have
opposite electric charges which neutralize each other, at a
common equilibrium pressure. In its simplest realization,
this mixed phase is treated within an approximation in
which Coulomb and surface energies are neglected (see
Ref. [51]). For color superconducting quark matter this
realization of charge neutrality has been considered e.g.
in Ref. [24] for the NJL model and in Ref. [21] for the
instantaneous nonlocal quark model. The discussion of
inhomogeneous mixed phases, which are not yet fully
understood, crucially depends on the assumptions for the
surface tension and charge screening effects (see e.g.
Ref. [52]) and goes beyond the scope of the present inves-
tigation. On the other hand, following Refs. [23,53], we
have imposed color neutrality as a local constraint. This is
based on the fact that the color Debye screening length is
expected to be short and comparable to the interparticle
distance in the regime of interest. As a consequence, �8

turns out to be different in the two components of the
mixed phase. However, it should be kept in mind that
this chemical potential is in fact an effective quantity that
has to be introduced in these kind of models in order to
account for the effect of the gauge fields. Namely, as
argued in Refs. [54–56], superconducting quark matter is
expected to be automatically color neutral in QCD. As
expected, the growth of the color chemical potential �8

in the 2SC component of the mixed phase is approximately
proportional to that of the corresponding ��, which governs
the amount of breakdown of the color symmetry due to
quark pairing.

When the temperature is increased (see dashed curves in
Fig. 1, corresponding to T � 40 MeV), the mixed phase is
no longer favored and the system goes into a pure 2SC
phase. For T � 40 MeV, this shows up as a second order
transition in the case of Model I, and a first order transition
in the case of Model II. Now, for both models, when one
moves along the first order transition line from T � 0
towards higher temperatures, one arrives at a triple point
(3P). At this point the CSB and 2SC phases coexist with a
third NQM phase, in which the chiral symmetry is approxi-
mately restored and there is no color superconductivity.
Finally, if T is still increased, one reaches an ‘‘end point’’
(EP) where the first order transition from CSB to NQM
phases becomes a smooth crossover. The behavior of the
dynamical masses and the electric chemical potential �e

along this smooth transition is shown in Fig. 1, see curves
114019
corresponding to T � 40 MeV (Model I) and T �
100 MeV (dotted lines, Models I and II).
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C. Quark matter phase diagrams

The described features of the phase diagrams for
Models I and II can be visualized in the graphs shown in
Fig. 2, where we plot the transition curves on T ÿ�
diagrams for different ratios H=G, and show the regions
corresponding to the different phases and the position of
triple and end points. In the graphs, solid and dotted lines
correspond to the mentioned first order and crossover
transitions, respectively, (in the case of the crossover, the
transition point can be defined by considering the maxi-
mum of the chiral susceptibility [41]). Between NQM and
2SC regions we find that in all cases there is a second order
phase transition, which corresponds to the dashed lines in
the diagrams of Fig. 2. Close to this phase border, the
dashed-dotted lines in the graphs delimit a band that cor-
responds to the so-called gapless 2SC (g2SC) phase. Here,
in addition to the two gapless modes corresponding to the
unpaired blue quarks, the presence of flavor asymmetric
chemical potentials �dc ÿ�uc Þ 0 gives rise to another
two gapless fermionic quasiparticles [18]. Although the
corresponding relations cannot be derived analytically ow-
ing to the nonlocality of the interactions, the border of the
g2SC region can be numerically found. This is done by
determining whether for some value of j ~pj the imaginary
part of some of the poles of the Euclidean quark propagator
vanish in the complex p4 plane. From the graphs it is seen
that this g2SC band may become relatively significant for
low values of H=G. However, it never extends up to zero
temperatures, therefore this should not represent a robust
feature for compact star applications.

IV. DISCUSSION

Let us discuss some qualitative features of the curves
displayed in Figs. 1 and 2. On one hand, for both models
the 2SC phase region becomes larger when the ratio H=G
is increased. This is not surprising, since H is the effective
coupling governing the quark-quark interaction that gives
rise to the pairing. In any case, as a general conclusion it
can be stated that, provided the ratio H=G is not too low,
these nonlocal schemes favor the existence of color super-
conducting phases at low temperatures and moderate
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FIG. 3 (color online). Phase diagrams for symmetric matter
corresponding to Models I (left) and II (right). Here we have
taken H=G � 0:75.
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chemical potentials. Indeed, for the parameters considered
here, there is no 2SC phase only in the case of Model II,
H=G � 0:5. This is in contrast with the situation in e.g. the
NJL model [13,17], where the existence of such a phase
turns out to be rather dependent on the input parameters. In
addition, our results are qualitatively different from those
obtained in the case of the noncovariant nonlocal models
[21], where above the chiral phase transition the NQM
phase is preferable for values of the coupling ratio H=G &

0:75. In those models, a color superconducting quark mat-
ter phase can be found only for H=G � 1.

It is also interesting to compare our results with those
obtained for isospin symmetric quark matter. For the same
parameter sets, the corresponding phase diagrams for
H=G � 0:75 are shown in Fig. 3. By comparing them
with those of Fig. 2, it can be seen that the 2SC region
becomes reduced when one imposes color and electric
charge neutrality conditions. This is indeed what one
would expect, since the condition of electric charge neu-
trality leads in general to unequal u and d quark densities,
disfavoring the u-d pairing. We notice, however, that the
effect is relatively small, and the positions of triple and end
points as well as the shape of the critical lines remain
approximately unchanged. Concerning the shape of the
chiral phase transition line TCSB���, one observes at inter-
mediate temperatures 50 MeV & TCSB & 100 MeV,
which are relevant for the future CBM experiment, an
approximately linear behavior. This can be seen as an
interpolation between a convex shape obtained in NJL or
bag models and a concave shape for confining Dyson-
Schwinger equation models, see e.g. Ref. [57]. It is re-
markable that thus in the nonlocal covariant models pre-
sented here a similarity with confining quark models
occurs and that the chiral/deconfinement transition line in
the phase diagram resembles very closely the positions of
freeze-out parameters in heavy ion collisions.

Finally, we have studied the dependence of the phase
transitions on the model parameters, changing the input
value of the chiral condensate within a phenomenologi-
cally reasonable range 220 MeV � ÿh0j �qqj0i1=3 �
280 MeV. From this analysis, it is seen that the qualitative
features of the phase diagrams are not significantly modi-
fied. In particular, it is seen that one finds in general color
superconducting phases at low temperatures and moderate
chemical potentials, for intermediate values of the ratio
H=G. In addition, the values for the critical temperature at
� � 0 are quite stable, yielding about 120 MeV for
Model I and 140 MeV for Model II. This would favor the
description given by Model II, in which the result is closer
to the values provided by lattice calculations.
V. CONCLUSIONS

We have considered the phase diagram of two-flavor
quark matter under neutron star constraints for two non-
local, covariant quark models within the mean-field ap-
-8
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proximation. In the first one the nonlocality was due to the
regularization procedure, motivated by the instanton liquid
model (Model I), whereas in the second model a separable
approximation of the one-gluon exchange interaction was
applied (Model II). Although for the Gaussian regulators
considered in this work the vacuum gap equations are
identical, both models differ in their fluctuation spectrum
and therefore in their parameters (current quark mass m,
coupling strength G, UV cut-off �), which have been fixed
by using input values for the pion mass, the pion decay
constant and the chiral condensate. As result of the nu-
merical evaluation of the corresponding gap equations at
finite temperature and chemical potential, we have ob-
tained that Model II predicts a larger quark mass gap and
a chiral symmetry breaking phase transition line which
extends 15–20% further into the T ÿ� plane when com-
pared to Model I. The prediction for the critical tempera-
ture at � � 0 in Model II, TCSB � 140 MeV, is closer to
the results of recent lattice QCD simulations than the
prediction of both Model I and the well-known local NJL
model. Considering different values for the coupling
strength in the scalar diquark channel, we have found
that under neutron star constraints different low-
temperature quark matter phases can occur at intermediate
densities: normal quark matter (NQM), pure superconduct-
ing (2SC) quark matter and mixed 2SC-NQM phases. The
critical temperature for the 2SC phase transition is a rising
114019
function of � in the case of Model I whereas it is rather
independent of � for Model II, due to the different �
dependences associated with the scalar diquark gaps. A
band of gapless 2SC (g2SC) appears at the border between
2SC and normal quark matter. At large values of the H=G
ratio it is given by a tiny strip in the phase diagram, and
grows broader at low diquark couplings. However, the
g2SC region does not reach zero temperatures, thus it
should not represent a robust feature for compact star
applications. Our present investigation has been limited
to the mean-field approximation and the neglect of the
strange quark flavor. None of these approximations is
expected to be crucial for compact star applications, and
the detailed study of their impact on our results has been
left for further development of the present approach.
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[41] D. Gómez Dumm and N. N. Scoccola, Phys. Rev. C 72,
014909 (2005).

[42] R. S. Duhau, A. G. Grunfeld, and N. N. Scoccola, Phys.
Rev. D 70, 074026 (2004).

[43] D. Blaschke, H. Grigorian, A. Khalatyan, and D. N.
Voskresensky, Nucl. Phys. B, Proc. Suppl. 141, 137
(2005).

[44] G. Ripka, Quarks Bound by Chiral Fields (Oxford
University Press, Oxford, 1997).

[45] S. M. Schmidt, D. Blaschke, and Y. L. Kalinovsky, Phys.
Rev. C 50, 435 (1994).

[46] P. Amore, M. C. Birse, J. A. McGovern, and N. R. Walet,
Phys. Rev. D 65, 074005 (2002).

[47] M. Buballa and I. A. Shovkovy, Phys. Rev. D 72, 097501
(2005).
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