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We report on the reinforcement of superconductivity in a system consisting of a narrow superconducting
wire weakly coupled to a diffusive metallic film. We analyze the effective phase-only action of the system by
a perturbative renormalization group and a self-consistent variational approach to obtain the critical points and
phases at T=0. We predict a quantum phase transition toward a superconducting phase with long-range order
as a function of the wire stiffness and coupling to the metal. We discuss implications for the dc resistivity of
the wire.
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I. INTRODUCTION

The interplay between fluctuation and dissipation phe-
nomena in quantum systems is presently under intensive re-
search. Fluctuations are particularly strong in low dimen-
sions, as reflected by the lack of long-range order in one-
dimensional s1Dd systems with short-range interactions.1,2

On the other hand, dissipation counteracts fluctuations ef-
fects, decreasing the lower critical dimension.3–6

Some physical realizations of dissipative low-dimensional
systems are the well-known resistively shunted Josephson
junctions arrays, where the effect of local ohmic dissipation
has been intensively studied,7–11 superconducting grains em-
bedded in metallic films,12–15 and Luttinger liquids coupled
to dissipative baths.16–18

Narrow superconducting wires with diameter d!j0
swhere j0 is the bulk superconducting coherence lengthd are
low-dimensional systems in which strong fluctuations of the
order parameter affect low-temperature properties.

It was originally suggested by Little,19 and subsequently
discussed by Langer and Ambegaokar sLAd sRef. 20d and
McCumber and Halperin sMHd sRef. 21d that resistivity %sTd
in thin wires would be finite for all temperatures below the
bulk critical temperature Tc. Thermal fluctuations cause the
magnitude of the order parameter to temporarily vanish at
some point along the wire, allowing its phase to slip by 2p
sthe so-called thermally activated phase slipsd and dissipate

through the Josephson relation V=" /2e Du̇, where Du is the
phase difference across the wire.

According to the LA-MH theory, thermal fluctuations in-
duce a resistivity %sTd,VsTdexpf−DF0 /Tg, where DF0 is
the Ginzburg-Landau free-energy barrier between different
current-carrying states in the wire and VsTd is an algebra-
ically decreasing function of T. However, deviations from
the LA-MH theory in the regime T!Tc were first observed
by Giordano22,23 and more recently by other experimental
groups,24–28 leading to the conclusion that for very thin wires
at low temperatures current decay was produced by macro-
scopic quantum tunneling of the phase of the order parameter
through the same free-energy barriers sthe so-called quantum
phase slipsd, leading to a much weaker dependence of the
resistivity on T.

Moreover, it is believed that the destruction of the super-
conducting state in very thin wires occurs through the pro-
liferation of quantum phase slips/antiphase slips
pairs,23,24,27,29–33 in what constitutes the quantum analog in
1+1 dimensions to the classical Berezinskii-Kosterlitz-
Thouless sBKTd sRef. 34d transition in two dimensions s2Dd.

Contrary to other 1D systems such as dissipative ohmic
Josephson-junction arrays, isolated thin wires do not present
significant sources of dissipation at T!Tc.

30,33 However, ad-
ditional sources might be provided by a coupling to the en-
vironment, a possibility which has hardly been explored yet.
Although general theoretical frameworks have been pro-
posed to describe superconductor-normal sSNd
junctions,13,35,36 recent advances in superconducting nano-
wires fabrication techniques call for a more detailed analysis
of the effects of coupling to general dissipation
sources.22–24,27,31

In this paper we focus on the effect of weakly coupling a
superconducting wire to a diffusive 2D normal metal. We
show how the induced dissipation stabilizes superconductive
long-range order at T=0 despite the 1D nature of the wire. At
finite T, the effect of dissipation are manifested in an in-
crease in the superconductive stiffness of the wire.

The paper is organized as follows: in Sec. II we derive the
effective low-energy phase-only action of the coupled sys-
tem. Section III is devoted to the analysis of this model

FIG. 1. sColor onlined Representation of the system. At T!Tc

one-particle hopping is suppressed by the BCS gap-energy D0. At
next order in the hopping process, Cooper pairs can tunnel into the
metal and propagate coherently in a length jN, generating an effec-
tive coupling ,cosfusrd−usr8dg in the wire.
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within a perturbative renormalization group sRGd and a self-
consistent harmonic approximation and discuss implications
for the dc resistivity. Finally, in Sec. IV we discuss the main
physical consequences of our results and summarize them.

II. MODEL

We analyze the system depicted in Fig. 1, which repre-
sents a clean superconducting wire of length L and lateral
dimensions d!j0, weakly coupled to a diffusive 2D metal.
In the following we use the convention "=kB=1. We begin
our description with the action of the microscopic BCS
Hamiltonian for the isolated wire

Sw = E
0

b

dtE d3Ro
s

Hc̄ss]t − mdcs +
f¹c̄sgf¹csg

2m
J

+ UE
0

b

dtE d3Rc̄↑c̄↓c↓c↑. s1d

Here the fermionic field cs;cssR ,td describes an electron
in the wire with spin projection s at position R;sx ,y ,zd and
imaginary time t. The chemical potential m=kF

2 /2m is the
Fermi energy in the normal state and the local attractive in-
teraction U,0 is responsible for pairing at T,Tc.

Assuming for simplicity that the coupling to the metallic
film takes place along the line sx ,0 ,0d in the wire, the cou-
pling term is described by

S' = t'E
0

b

dtE dxo
s

fc̄ssx,tdhssx,td + H.c.g , s2d

where the fermionic field hssr ,td represents an electron at
position r;sx ,yd in the film. Here the compact notations
cssx ,td;cssR ,td uy=z=0 and hssx ,td;hssr ,td uy=0 have
been used. While certainly more realistic models for the cou-
pling, which take into account geometrical details of the SN
junction have been studied,13,35,36 the main physics which is
of interest to us is already captured by Eq. s2d.

Electronic motion in the metallic film is described by the
noninteracting action

S2D = E
0

b

dtE d2ro
s
Hh̄ss]t − m2Ddhs +

f¹h̄sgf¹hsg
2m

+ Vsrdh̄ssrdhssrdJ , s3d

where Vsrd is the sstaticd disorder potential. We assume weak
enough disorder, such that the localization length in the film
is jloc@L, allowing us to neglect strong localization effects.

For one given realization of the disorder potential Vsrd,
the effective action in the wire is obtained by integrating the
electronic degrees of freedom in the metallic film

Sw
eff = Sw + Sdiss,

Sdiss = − t'
2 E

0

b

dtdt8E dxdx8

3o
s

c̄ssx,tdg2Dsx,x8;t − t8dcssx8,t8d ,

where g2Dsr ,r8 ;t−t8d is the Green’s function in the film.
Note that the spin index has been dropped using the SUs2d
symmetry of the problem and that we used the notation
g2Dsx ,x8 ;t−t8d;g2Dsr ,r8 ;t−t8d uy=y8=0.

Since the disorder potential breaks the original translation
invariance in the wire, an average over different configura-
tions of the disorder is needed to restore it. Let us define the
partition function of the systems for one disorder realization
as

ZfVg ; E Dfcge−Sw−Sdiss,

Assuming for convenience that Vsrd is Gaussian distributed

Sd =
1

2V2E d2rV2srd ,

we can formally perform the average over different disorder
configurations as

Z =
eDfVge−SdZfVg

eDfVge−Sd
.

Expansion of ZfVg in powers of t' allows us to obtain an
explicit form of the partition function Z

Z =

eDfVge−SdeDfcge−Sw o
n=0

` 1

n!
Sdiss

n

E DfVge−Sd

,

=E Dfcge−Swo
n=0

`
1

n!
kSdiss

n ld. s4d

The low-energy effective action of this model is obtained by
introducing Hubbard-Stratonovich fields DsR ,td ,DpsR ,td in
the particle-particle channel to decouple the quartic term in
Sw.30,33,37,38 After integration of the fermionic degrees of
freedom in the wire, the action reads

SwfD̄,Dg = − Tr ln gw
−1 −

1

U
E

0

b

dtE d3RuDsR,tdu2, s5d

where

gw
−1 ; 3]t − m −

¹2

2m
DsR,td

D̄sR,td ]t + m +
¹2

2m
4

and where the Nambu notation
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CsR,td = Sc↑sR,td

c̄↓sR,td
D

is implicit. The Green’s function in the wire formally reads

gwsR,td ; FgsR,td fsR,td

f̄sR,td ḡsR,td G ,

where gsR ,td;kTtcsR ,tdc̄s0dl and ḡsR ,td
;kTtc̄sR ,tdcs0dl denote, respectively, the particle and hole
propagators in the wire while fsR ,td;kTtcsR ,tdcs0dl and

f̄sR ,td;kTtc̄sR ,tdc̄s0dl are the anomalous ones.39

For very narrow wires with diameter d!j0 at low ener-

gies, the dependence of the fields D̄sR ,td ,DsR ,td on trans-
verse dimensions can be neglected, reducing to DsR ,td
→Dsxd where the compact notation x= sx ,td has been used.
Moreover, at T!TMF fwhere TMF is the mean-field critical
temperature of Eq. s5dg and neglecting amplitude fluctua-
tions, the dynamical state of the wire is characterized by
Dsxd=D0eiusxd, where the quantity D0 corresponds to the
stemperature-dependentd BCS energy gap and usxd is the
space-dependent and time-dependent phase of the macro-
scopic BCS wave function.

The derivation of the phase-only action in the isolated
wire fi.e., the first term in the expansion of Eq. s4dg is ob-
tained by the means of an expansion in Gaussian fluctuations
in the gradients of the field usxd around the BCS saddle point
and takes the form of a Luttinger liquid action2,30,33,37,40

S0 =E dxF− iP]tu +
uK

2p
s¹ud2 +

u

2pK
spPd2G . s6d

Here P;Psxd is the momentum canonically conjugate to
usxd, formally defined through the relation fusxd ,Psx8dg
= idsx−x8d and representing fluctuations in the density of
Cooper pairs at point x. The operator ¹ denotes derivation
with respect to the spatial coordinate x. The Luttinger liquid
parameters u and K are defined as2,30

u ;ÎAwnssTd
4mksTd

,

K ; 2pÎAwnssTdksTd
4m

,

where
nssTd
4m is the superconducting stiffness of the wire fwith

nssTd the three-dimensional density of electrons in the con-
densate and m their massg, Aw is the cross-sectional area of
the wire, and ksTd is the compressibility scf. Ref. 30 for
more detailsd. u corresponds to the velocity of the plasma
sMooij-Schön41d mode. In the following, we assume the wire
to be in the thermodynamic limit L@LT=u /T.

The next terms in the expansion of the partition function
fEq. s4dg provide the effects of the coupling to the metallic
film. At order Ost'

2 d and at low temperatures sT!TMFd, the
transfer of individual electrons is strongly forbidden by the
energy gap D0, giving a probability ,e−D0/T for such a
charge-transfer channel.

The most relevant contribution of the coupling to the me-
tallic film appears at order Ost'

4 d and corresponds to the
Andreev reflection occurring at SN interfaces.12,13,35,36,42

This contribution physically represents processes in which
paired electrons sfor which there is no energy costd are ef-
fectively transferred from the wire to the film and vice
versa42

SA =
1

2
kSdiss

2 l = 2t'
4 fE dx9fsx9dg2

3E dxdx8Pcsx − x8dcosfusxd − usx8dg , s7d

where fsxd= fsR ,td uy=z=0. The kernel Pcsxd= Pcsr ,td uy=0 is
the cooperon propagator in the diffusive film, defined as42,43

Pcsr − r8,t − t8d ; kg2Dsr,r8,t − t8dg2Dsr,r8,t − t8dld,

s8d

representing the probability to find a coherent electron pair
traveling a distance ur−r8u in the interval t−t8 through the
disordered film43 ssee Fig. 1d. The diffusive propagation of
this electron pair remains phase coherent over a length jN
sassumed @j0d which depends on T, magnetic field, and the
strength of Coulomb interactions.43 In the absence of the
latter, jNsTd.ÎD

T , which leads to important nonlocal cou-
pling effects at low enough temperatures.

Explicit evaluation of Eq. s8d for a diffusive 2D metal,
assuming a Fermi-liquid description, yields ssee Appendixd

Pcsr,td <
r2D

2p2D
P̃csr,td , s9d

where we have defined

P̃csr,td = Re5 expS−
r

jN
+

ir2

4Dt̃
D

t̃2 GS0,
ir2

4Dt̃
D6 .

Here Gsa ,zd is the incomplete gamma function and t̃;t
+ ite, with te the elastic lifetime of electrons in the diffusive
film.43 Equation s9d is a valid expression for t@te and x
@ le, where le is the elastic mean-free path in the film. In
what follows, we set y=0 and consider the kernel as depend-
ing only on the coordinate x.

The coherence length jNsTd separates two distance re-
gimes of interest: sad the local regime x@jNsTd, where the
cooperon can be considered local in space, reducing to

P̃csxd <
jNdsxd
t2 lnS4Dt

jN
2 D

consistent with the expression for the Andreev conductance
in Refs. 35. Introducing the notation q;sk ,vmd, where vm is
the bosonic Matsubara frequency vm=2pmT, the approxi-
mated Fourier transform sneglecting the logarithmd is inde-
pendent of k for k,jN

−1 and reads

P̃csqd < 2jNF 1

te
− puvmuG

in the limit q→0.
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sbd The nonlocal regime of distances x,jNsTd, where Eq.
s9d can be approximated as

P̃csxd <
s4Dd2

x4 + s4Dtd2 s10d

with Fourier transform

P̃csqd < 2p2ÎDFÎp

te
− 2ÎDk2 + uvmuG

for q→0.
It is convenient to introduce the normal-state tunnel con-

ductance per unit of length in the SN junction44

Gt = S h

2e2DS 1

2p
D2

t'
2 rwVwr2DA2D

L
,

where rwsr2Dd is the normal-state local density of states in
the wire sfilmd and Vw sA2Dd is the volume of the wire sarea
of the filmd. Replacing the expression of the cooperon ap-
pearing in Eq. s9d and noting that the resistivity in a 2D film
is %2D= fe2 n2D

m teg−1= fe2r2DDg−1, we can express Eq. s7d as

SA =
GA

j0
2 E dxdx8P̃csx − x8dcosfusxd − usx8dg , s11d

where GA is the dimensionless Andreev conductance in the
SN junction35,36

GA = S 1

2p
D4

4e2Gt
2%2D.

In addition to the term SA of Eq. s7d, the coupling t' gener-
ates contributions Ost'

2 d and Ost'
4 d at scales x&j0 and t

&j0u−1, which renormalize the bare Luttinger parameters K
and u of Eq. s6d se.g., diffuson propagator43d. Although these
contributions do not change the physics at a qualitative level,
their effect is relevant for the comparison with real systems.
A microscopic study of the dependence of K and u on the
hopping t', as well as further renormalization arising from
Coulomb interactions between the wire and the film, is be-
yond the scope of the present paper and will be given
elsewhere.45 In the following we assume that the Luttinger
parameters appearing in Eq. s6d already include all these cor-
rections. Note also that the coupling to the metal modifies the
bare value of D0 through the well-known proximity effect in
which the diffusion of normal electrons in the supercon-
ductor produce a lowering of Tc.

46 However, since this is a
small effect of order Ost'

4 d and in addition we assume T
!Tc, this effect is irrelevant to our description and can be
effectively taken into account in renormalized values of D0
and Tc.

So far we have not included the effects of topological
defects sphase slipsd in the wire. As discussed in Sec. I, these
topological excitations produce finite resistivity at T!Tc and
are believed to be the origin of destruction of superconduc-
tivity in narrow wires30,33 and in dissipative Josepshon junc-
tions arrays.10,11 It can be shown2 that defining a field fsxd,
such that ¹fsxd;pPsxd, the generation of topological de-
fects in the field usxd can be described by a term

Sps = − o
n=1

`
lps

n u

j0
2 E dx cosf2nfsxdg , s12d

where lps=exph−Scorej is the “fugacity” of a phase slip and
Score is the action associated with the creation of a single
phase slip.30,33 The term cosf2nfsxdg represents the creation
of a kink of value 2pn in the u field at the space-time point
x. Assuming that lps!1, we can neglect in the following
contributions with n.1 in Sps.

Adding Eqs. s6d, s11d, and s12d we finally arrive at the
expression of the effective phase-only action at low tempera-
tures

S = S0 + SA + Sps, s13d

describing on an equal footing the effects of fluctuation, dis-
sipation, and topological excitations.

III. RESULTS

A. Renormalization-group analysis

To study the properties of the model of Eq. s13d at T=0,
we perform a RG analysis which is perturbative in the cou-
plings GA and lps. At lowest possible order, the RG equa-
tions are found by performing one-loop and two-loop correc-
tions in SA and Sps, respectively.

We adopt a renormalization procedure that rescales space
and time homogeneously, so as to preserve the Lorentz in-
variance of S0. The renormalization of SA involves a projec-
tion onto the most relevant sector of the coupling kernel

P̃csxd, which is very anisotropic in space and time, obeying a
functional RG flow in the general case. We can simplify the
analysis by studying different scales of interest in the renor-
malization procedure. Depending on the final scale Lsld
,L−1 fwhere Lsld=L0el is the renormalized momentum cut-
off and where L0

−1=j0g, we focus on the local part of the
cooperon for Lsld,jN

−1 or on the nonlocal, diffusive proper-
ties for Lsld.jN

−1.
We can motivate the RG analysis in the nonlocal regime

by noting that the kernel P̃csxd induce Josephson coupling of
phases over spatial distances Wstd,ÎDt. Indeed, an effec-

tive purely local kernel P̃c
effsxd can be obtained by integrating

the spatial coordinate in Eq. s10d, yielding at long times

P̃c
effsxd , t−2Wstddsxd for t @ D/u2. s14d

This approximate form is simpler to analyze and yields a
scaling dimension 3

2 . Note that this long-range temporal t−3/2

differs from the standard local ohmic coupling t−2 coupling7

and further quenches fluctuations of the phase. A more de-
tailed functional RG procedure involves an expansion of

P̃csxd in terms of Legendre polynomials and allows to extract

the scaling dimension of P̃c in the nonlocal limit in a sys-
tematic way scf. Appendixd. Using that kcosfusxd−us0dgl
,r−1/2K for r→` scf. Ref. 2d, we conclude that the scaling
dimension of the perturbative term SA is 3

2 − 1
2K .

In the local regime and for l̃ps=0, our the RG analysis
reduces to that obtained in Ref. 17, where details of their
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derivation can be found. In this case, the scaling analysis of

SA is simpler to obtain since in this limit P̃csxd is RG invari-
ant, yielding a scaling dimension of 1− 1

2K .
We obtain the flow equations

dKsld
dl

= G̃Asld − l̃ps
2 sldK3sld , s15d

dusld
dl

= G̃Asld
usld
Ksld

Bsxd − Bstd

Bsxd + Bstd , s16d

dG̃Asld
dl

= 5S1 −
1

2KsldDG̃Asld slocald ,

S3

2
−

1

2KsldDG̃Asld snonlocald ,6 s17d

dl̃pssld
dl

= f2 − Ksldgl̃pssld , s18d

where we have defined the dimensionless couplings G̃A

;GApsBsxd+Bstdd and l̃ps;lps
ÎA for convenience. The di-

mensionless quantities A and Bsx,td are nonuniversal and arise
from the renormalization of Sps and SA, respectively, at scales
hx ,utj,L−1sld and are defined as

A ;
1

4p
E
L−1sld

`

dr̃r̃3e−2KFLsr̃dFLsr̃d ,

Bsxd ;
1

2

1

L2sldu2E
0

2p

dfP̃c„L
−1sld,f…cos2 f ,

Bstd ;
1

2

1

L2sldu2E
0

2p

dfP̃c„L
−1sld,f…sin2 f ,

where r̃;LsldÎx2+ sutd2 and FLsxd= 1
2 ln r̃, and where P̃c

has been expressed in cylindrical coordinates fcf. Eq. sA8dg.
It is interesting to point out that while only one parameter A
arises in the rescaling of Sps due to space-time isotropy, the
anisotropy of SA generates different parameters Bsxd and Bstd.

Note that in the local regime fP̃c, P̃cstdg, the product uK
does not renormalize for lps=0 and thus Bsxd=0. Nonlocality
is thus captured by a Bsxd.0. Further, since the term SA
breaks the space-time isotropy within our Lorentz-invariant
RG analysis si.e., momentum shell integration homogeneous
in space timed, we expect a renormalization of the velocity
usld, cf. Eq. s16d. A numerical evaluation gives Bsxd /Bstd,1,
meaning that usld flows toward smaller values.

As for Eq. s18d, we note that it corresponds to the usual
BKT flow equation scf. Ref. 30 for a derivation in the con-

text of superconducting wiresd. In the limit hG̃Asld , l̃pssldj
→0, the properties of the system are dominated by the value
of Ksld. From Eqs. s17d and s18d, we can define the critical
values KA

p ; 1
2 s; 1

3 d for the local snonlocald regime and Kps
p

;2. For l̃ps=0 and K.KA
p , the coupling G̃Asld flows toward

strong coupling and eventually the perturbative RG analysis

is no longer valid. On the other hand, for G̃A=0 and K

,Kps
p the coupling l̃pssld becomes relevant and eventually

superconductivity is destroyed in the wire, due to the unbind-
ing of pairs of topological excitations.2,30 Note that it is not
possible to determine the nature of the T=0 fixed point in
this regime within our formalism. This issue is currently un-
der intensive research.33 Therefore, at T=0 and when neither

G̃A nor l̃ps vanish, the Luttinger liquid phase is never stable
and the ground state is determined by a competition between
SA and Sps.

B. Self-consistent Harmonic approximation

To further investigate the properties in the regime where

G̃A is the dominant parameter that flows to strong coupling,
we used a self-consistent variational approach, the so-called
self-consistent harmonic approximation.2,47 This method
consists in finding the optimal propagator gtrsqd of a har-
monic sGaussiand trial action

Strfug =
1

2bL
o

q

1

gtrsqd
uusqdu2

that minimizes the variational free energy

Fvar = Ftr + TkS − Strltr,

where

Ftr = − T lnE Due−Strfug.

The minimization of the free-energy Fvar with respect to
gtrsqd yields a self-consistent equation for gtrsqd

gtr
−1sqd = g0

−1sqd −
2GA

j0
2 E dxfcossqxd − 1g

3P̃csxdexpH−
1

bL
o
q8

f1 − cossq8xdggtrsq8dJ ,

s19d

where g0
−1sqd; K

puvm
2 + uK

p k2 is the propagator in the Luttinger
liquid phase. The solutions of Eq. s19d read

gtr
−1sqd = H g0

−1sqd + huvmu slocald ,

g0
−1sqd + hÎDk2 + uvmu snonlocald .

J s20d

The parameter h is found self-consistently for the general
case but in the limit GA→0 it reduces to

h

=532pGAjN expS g

2K
D

j0
2 4

2K/2K−1

Fpj0

4K
G1/2K−1 slocald ,

F8p2GA
ÎD

j0
2 G3K/3K−1F pj0

3u

4KÎD3G1/3K−1

snonlocald .6
Note that physical solutions of the Eq. s19d with hÞ0 are
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found only for K.KA
p , confirming the results of the RG

analysis. In the context of the variational approach, it be-
comes clear fcf. Eq. s20dg that the contribution of the coop-
eron propagator of Eq. s11d induces ohmic snonohmicd dis-
sipation in the local snonlocald regime. Evaluation of the
phase-correlation function at T=0 with the optimal gtrsqd of
Eq. s20d yields in the long-wavelength limit

keiusxd−ius0dl
keiul2 .51 +

1
Îph

1

x +Î8uK

ph
t

slocald ,

1 +
2ÎD

hp2

1

x2 + 4Dt
snonlocald ,6

s21d

where keiul is the value of the superconducting order param-
eter

keiul = 5 Fpj0h

4K
G1/4K

slocald ,

F pj0
3uh

4KÎD3G1/6K

snonlocald .6 s22d

This result indicates that the order parameter develops long-
range order and should be compared with the case of isolated
wires, where superconducting correlation functions follow a
power-law behavior and keiul=0 as a consequence of the
strong quantum fluctuations.1

C. dc transport properties

Now we address the experimentally relevant question of
the possibility to observe some signatures of our predictions
at T=0. To that end, we turn our attention to transport prop-
erties and calculate the dc resistivity. We use the theoretical
framework of the memory matrix, which is perturbative in
the processes that degrade the current-density operator2,29,48

Jsxd =
uK

p

2e

c
¹ usxd .

Current decay originated by phase slips induce finite resis-
tivity at T,Tc. At very low temperatures T!Tc thermally
activated phase slips are suppressed and resistivity is domi-
nated by quantum phase slips processes. In the absence of
dissipation sGA=0d, its expression is well known and
reads29,30

%sTd <
4p3l̃ps

2 L0

S2e

c
D2 B2SK

2
,1 − KDcos2SpK

2
DS2pT

uL0
D2K−3

,

s23d

where Bsx ,yd is the beta function. This is a valid expression
provided that a perturbation expansion in lps and GA is pos-
sible. At finite temperatures, the effect of these couplings can
be incorporated by replacing the bare parameters by the
renormalized ones obtained from the integration of the RG-

flow equations fEqs. s15d–s18dg up to a scale29 L−1sld
=usld /2pT.

Our results are shown in Fig. 2, where we calculate %sTd
normalized to the “high-temperature” value T0=j0 /u, fixed
by the short-time cutoff of the theory. According with our
estimations ssee Sec. IVd, we analyze only the local regime
Lsld!jN

−1. We start with the initial conditions Ks0d
=2.1, l̃pss0d=10−3, for G̃As0d=0 ssolid line in Fig. 2d. For
comparison, we show the sT /T0d2Ks0d−3 behavior predicted
for the resistivity due to phase slips in the absence of dissi-
pation effects sdot-dashed lined.29,30,33

Interestingly, starting the RG flow with the initial values

G̃As0d=0.01, 0.05, 0.1, and 0.2, the resistivity decreases
faster than the sT /T0d2Ks0d−3 law corresponding to the iso-
lated wire. This illustrates the stabilizing effect of dissipation
on superconductivity, which manifests itself through an in-
crease in the stiffness K, as can be seen from Eq. s15d when

parameter G̃A dominates over l̃ps. Note that since the inte-
gration of the renormalization-group flow sand consequently,
the calculation of the resistivityd is perturbative, it cannot be

carried beyond a point where either G̃Asld or l̃pssld become
of order unity.

IV. DISCUSSION AND SUMMARY

The result of the RG flow Eqs. s15d–s18d together with the
analysis in the strong-coupling regime, summarized in Eqs.
s21d and s22d, suggest that a weak coupling to the metallic
film favors a superconducting ground state with long-range
order of the order parameter at T=0, through a dissipation-
induced quench of phase fluctuations.

Note that this is not trivial since a strong coupling to a
disordered metallic film is detrimental to superconductivity
and lowers Tc through the well-known proximity effect.46

But in a low-dimensional situation at T!Tc, where phase
fluctuations are the dominant mechanism of destruction of
global phase coherence, the environment actually favors
long-range order.

FIG. 2. sColor onlined Normalized resistivity vs T /T0. As the

sdimensionlessd Andreev conductance G̃A is increased, the wire re-
sistivity % sTd deviates from the law ,T2K−3 predicted for an iso-
lated wire sRefs. 29, 30, and 33d as a consequence of the
dissipation-induced increase in the stiffness K fcf. Eq. s15dg.
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This picture is supported by experiments on disordered
granular Pb films coated with a thin Ag metallic film,49

where it was shown that while Tc decreases due to the prox-
imity effect, phase stiffness actually increases at low enough
temperatures. Also in the context of dissipative Josephson
junctions arrays, it is well known that the existence of cou-
pling to a normal metal stabilizes the superconducting
phases.7–11

A similar idea has been recently suggested to produce an
enhancement of Tc in bilayered materials50 in which one
layer has a high pairing scale but low superfluid density
while in the other layer the situation is the inverse. When
both materials are put into contact, the Tc of the coupled
system is higher than those of the isolated layers. In the
specific case of Luttinger liquids coupled to dissipative
baths, our results are in agreement with recent theoretical
works where the existence of superconductive long-range or-
der at T=0 has been suggested.17,18

In this paper, we have presented a rigorous study of a
realistic dissipative mechanism, provided by a coupling to a
diffusive metal, in the context of superconducting wires. Of
central importance in our analysis is the cooperon propagator

kernel P̃csx−x8d, which couples the field u at the space-time
coordinates x and x8 in the dissipative term SA fcf. Eq. s11dg.
The physics of the kernel P̃csx−x8d strongly depends on the
relation between jNsTd, the coherence length in the diffusive
film, and the length of the wire L. Consequently, two regimes
of interest appear: the local regime jNsTd!L, where the cou-
pling of phases is purely local in space and nonlocal in time;
and the nonlocal regime jNsTd.L, where the phase coupling
is nonlocal both in space and time. At this point, it is inter-
esting to determine to which regime actual superconducting
wires would correspond. At the experimentally relevant tem-
perature T.1K and using typical values of D in clean me-
tallic films51 D,102 cm s−1, we obtain the estimate
jNs1Kd,0.1 mm. On the other hand, the temperature con-
straints to observe nonlocal effects can be compactly written
as LTsTd!L!jNsTd. These conditions require that T@TNL
;"u2 /kBD swhere units have been restoredd while the length
has to be kept smaller than jNsTd. Estimating the velocity of
the Mooij-Schön as u,105 m s−1 for the wires in Ref. 22,
we obtain TNL,10–100 K, which exceeds the bulk-Tc val-
ues estimated in the range 6.9–7.1 K in In-Pb films.23 The
above estimates show that spatial nonlocal effects are elusive
in actual wires se.g., such as those studied in Ref. 27, where
L,10–100 mmd but may eventually be observed in super-
conducting wires with higher Tc, coupled to very clean sub-
strates.

In order to make contact with recent transport
experiments,22–24,27,31 we have calculated the linear dc resis-
tivity of a wire weakly coupled to a diffusive film for differ-
ent values of the Andreev conductance GA. The results of
Fig. 2, calculated for the local regime jNsTd!L, suggest that
signatures of the predicted long-range order phase at T=0
could be observed experimentally. Indeed, since the dissipa-
tive term SA renormalizes the superconducting stiffness K to
higher values as the temperature decreases fcf. Eq. s15dg,
sizable deviations from the predictions for an isolated
wire29,30 %sTd,T2Ks0d−3, where Ks0d is the bare stiffness,

could be achieved at low enough temperatures.
In summary, we have studied a thin superconducting wire

weakly coupled to a metallic film, focusing on the details of
dissipation provided by the metallic cooperons at low tem-
peratures. We have studied the phase diagram at T=0 within
the framework of renormalization group and a variational
harmonic approximation. We predict a quantum phase tran-
sition toward a superconductor with long-range order at T
=0 as a function of the Andreev conductance GA and the
superconducting stiffness K of the wire. Finally, we show
that some signatures of this ordered phase could be observed
in experiments of transport, manifested as an increase in the
superconducting stiffness and consequently the exponent of
%sTd,Tn at low temperatures.
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APPENDIX

1. Cooperon propagator

In this section we derive the expression for the cooperon
propagator assuming weak disorder in the metallic film. We
refer the reader to Ref. 43 for further details.

When evaluating averages over the disorder potential in
Eq. s8d

Pcsr − r8,t − t8d ; kg2Dsr,r8;t − t8dg2Dsr,r8;t − t8dld

a diagrammatic series sladder diagramsd is constructed upon
the repeated action of the Dyson’s equation sin operator no-
tationd

ĝ2D = ĝ2D
0 + ĝ2D

0 V̂ĝ2D,

where ĝ2D
0 is the unperturbed electron Green’s function in the

otherwise perfect metal and dsr−r8dVsrd= kruV̂ur8l is the
sstaticd disorder potential which verifies

kVsrdld = 0, sA1d

kVsrdVsr8dld = niV2dsr − r8d , sA2d

where ni is the concentration of impurities and V is the uni-
form component of Vsrd in Fourier space. The diagrammatic
series in Fourier space representation is given by scf. Ref.
43d

PcsQ;n,md =
Pc

0sQ;n,md

1 −
niV2

V
Pc

0sQ;n,md
,

where

Pc
0sQ;n,md ; o

p
g2Dsp,inndg2DsQ − p,inmd

and where V is the volume of the sample. Q=k+k8 repre-
sents the center-of-mass momentum of the two electron sys-
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tem, and k and k8 are the initial si.e., before colliding with
impuritiesd momenta of the individual electrons. Defining

ivl ; inm − inn,

zsQ;inn,ivld ;
niV2

V
Pc

0sQ;n,l + nd ,

the real-space representation of Pc reads

Pcsr,td = S 1

bV
D2

o
Q=k+k8

o
n,l

e−is2nn+vldteiQ·r

3

V

niV2zsQ;inn,ivld

1 − zsQ;inn,ivld
. sA3d

Using the definition of the mean-free path le;vFte and the
definition of the elastic lifetime sin Born’s approximationd43

1

te
; 2pr2DniV2, sA4d

we obtain in the diffusive limit sQle ,vlte!1d,

zsQ;inn,ivld < 1 − tesuvlu + DQ2d ,

where we have defined the diffusion constant in d spatial

dimensions D; vF
2te

d =
le
2

ted
. Replacing these results into Eq.

sA3d and noting that the contribution to zsQ ; inn , ivld is van-
ishingly small for nnsnn+vld.0, we obtain

Pcsr,td < 2pr2D
1

b
o
nn

e−i2nnt

3 U 1

bV
o
vl,Q

eiQ·re−ivlt

uvlu + DQ2U
nnsnn+vld,0

. sA5d

In addition, and since the condition nnsnn+vld,0 must be
fulfilled, we note that the limit uvlute→0 constrains the sum-
mation over Matsubara frequencies nn to values near nn<0.
Therefore, at low temperatures we find

Pcsr,td = 2r2D
1

bV
o
vl,Q

sinsuvlutd
t

eiQ·r

uvlu + DQ2 .

We can generalize this expression to take into account pro-
cesses that break phase coherence smagnetic fields, magnetic
impurities, etc.d

Pcsr,td = 2r2D
1

bV
o
vl,Q

sinsuvlutd
t

eiQ·r

uvlu + DQ2 + tw
−1 ,

sA6d

where tw is a phenomenological phase-breaking time. At T
=0 we can replace 1

bovl
→ 1

2pe0
`dv. Then, the sum over Q in

Eq. sA6d yields for a 2D system

Pcsr,td = ReH r2D

itp2D
E

0

`

dvevsit−tcdK0SÎv + tw
−1

D
rDJ ,

where K0sxd is the zeroth-order modified Bessel function. r
=Îx2+y2 is the distance in the x-y plane and tc is an ultra-
violet cutoff in time to make the integral in v convergent,
and which we set tc=te. Finally we arrive at the expression
of the cooperon in Eq. s9d

Pcsr,td =
r2D

2p2D
P̃csr,td , sA7d

where we defined

P̃csr,td = Re5 ie−r/jNeir2/4Dt̃GF0,
ir2

4Dt̃
G

t̃2 6 ,

t̃ = t + ite

and where Gfa ,zg is the incomplete gamma function.

2. Expansion in terms of Legendre polynomials

In order to investigate the scaling dimensions of the bare

kernel P̃c in the nonlocal regime, we can use the approximate
expression of Eq. s10d

P̃csxd <
s4Dd2

x4 + s4Dtd2

and express it in terms of cylindrical coordinates
hx=r cos f ,ut=r sin fj as

P̃csxd = P̃csr,fd <
s4Dd2

rD
4

1

r̃2 f̃sr̃,fd , sA8d

where the definitions

f̃sr̃,fd ;
1

r̃2 cos4 f + sin2 f
, sA9d

r̃ ;
r

rD
, sA10d

rD ;
4D

u
=

4vF

u
le sA11d

have been used and where vF is the Fermi velocity in the

metallic film. We now expand f̃sr̃ ,fd in Legendre polynomi-
als in order to separate radial and angular variables in a sys-
tematic way

f̃sr̃,fd = o
,=0

`

A,sr̃dP,scos fd ,

where the coefficients are defined as

A,sr̃d ;
2, + 1

2
E

−1

1

dscos fd f̃sr̃,fdP,scos fd . sA12d

Then,
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P̃csr,fd =
s4Dd2

rD
4

1

r̃2 o
,=0

`

A,sr̃dP,scos fd . sA13d

Changing variables to n;cos f, we can write Eq. sA12d as

A,sr̃d =
2, + 1

2
E

−1

1

dnP,snd f̃sr̃,nd

=
2, + 1

2
E

−1

1

dn
P,snd

r̃2n4 − n2 + 1
. sA14d

An asymptotic approximation of A,sr̃d in the regime r̃→`
gives

lim
r̃→`

A,sr̃d →
2, + 1

2
P,s0dE

−1

1

dn
1

r̃2n4 + 1
,

→
2, + 1

2
P,s0d

p

Î2r̃
sA15d

where from the Rodrigues formula52 we obtain P,s0d
= s−1d,/2

2,

,!
fs,/2d!g2 for , even fnote from Eq. sA14d that A,sr̃d

vanish for odd values of ,g. Therefore, from Eqs. sA13d and
sA15d we obtain in the asymptotic limit

P̃csr,fd →
r→`

p

Î2

s4Dd2

rD
4

1

r̃5/2 o
,=0

`
2, + 1

2
P,s0dP,scos fd ,

→
r→`

p

Î2

s4Dd2

rD
4

1

r̃5/2dscos fd ,

where in the last line the expansion of the Dirac-delta func-
tion in terms of the Legendre polynomials has been used.
Coming back to coordinates x and t, we obtain

P̃csxd →
r→`

pÎ4D
Î2

dsxd
t3/2 ,

which provides a rigorous derivation of Eq. s14d.
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