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We discuss a general mean field plus random phase approximation �RPA� for describing composite systems
at zero and finite temperature. We analyze in particular its implementation in finite systems invariant under
translations, where for uniform mean fields it requires just the solution of simple local-type RPA equations. As
test and application, we use the method for evaluating the entanglement between two spins in cyclic spin–1/2
chains with both long- and short-range anisotropic XY-type couplings in a uniform transverse magnetic field.
The approach is shown to provide an accurate analytic description of the concurrence for strong fields, for any
coupling range, pair separation, or chain size, where it predicts an entanglement range which can be at most
twice that of the interaction. It also correctly predicts the existence of a separability field together with full
entanglement range in its vicinity. The general accuracy of the approach improves as the range of the interac-
tion increases.
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I. INTRODUCTION

The random phase approximation �RPA� �1–3� is a well-
known technique in many-body physics. It can be considered
as the next step after the mean field approximation �MFA�,
being able to describe in a rather simple way some of the
effects induced by the residual interaction, such as collective
excitations �2�. In this work we want to examine its applica-
tion to the problem of evaluating pairwise-type entanglement
in general composite systems invariant under translations,
such as cyclic spin chains with long- or short-range cou-
plings in a uniform magnetic field, at both zero and finite
temperature. The fundamental importance of quantum en-
tanglement in different areas of physics is well recognized,
constituting an essential resource for quantum information
science �4,5� and providing a deeper understanding of quan-
tum correlations in many-body and condensed matter physics
�6–8�. Nonetheless, the evaluation or even the estimation of
entanglement in interacting many-body systems is in general
not an easy task, particularly for long-range couplings and
finite temperatures, lying beyond the scope of basic methods
like the MFA which rely on separable trial states.

Here we will show that the MF+RPA can provide a
simple general method for estimating pairwise entanglement,
with a complexity which does not exceed that of solving a
local MF+RPA problem in the case of translationally invari-
ant systems with uniform mean fields. Its accuracy actually
increases for long-range interactions or high connectivity,
i.e., for situations where numerical techniques for evaluating
ground states of spin chains �like quantum Monte Carlo �9�,
density matrix renormalization group �10�, and methods
based on matrix product states �11�� become normally more
complex to apply or less accurate. In any case it allows for a
rapid estimation of the main features and their behavior with
the control parameters, leaving the application of more accu-
rate approaches for a second step. We have previously shown
that for fully and symmetrically connected spin systems
�Lipkin-type models �12,13��, a MF+RPA treatment is in-
deed able to describe the pairwise entanglement at both zero

and finite temperatures �14�, becoming exact in the thermo-
dynamic limit. Its ability to reproduce pairwise entanglement
in more general systems was, however, not examined.

We will first briefly reconsider the general MF+RPA for-
malism derived from the path-integral representation of the
partition function, discussing its implementation in compos-
ite systems and in particular in those which are translation-
ally invariant. We next apply the method to finite cyclic
spin–1/2 chains with general range anisotropic XYZ-type
couplings. Comparison with numerical exact results is made
for finite chains with anisotropic XY interactions of distinct
ranges. The method is able to capture most essential features
of the entanglement between two arbitrary spins away from
MF critical regions, becoming accurate for strong magnetic
fields, where it provides an analytic description of the con-
currence. At weak fields the agreement with exact results is
less accurate but improves as the interaction range increases,
being as well able to predict the appearance of a factorizing
field �15–17� and an infinite entanglement range in its
vicinity.

II. FORMALISM

A. General mean field+RPA treatment

We consider a general system of n distinguishable con-
stituents with Hilbert space dimensions di, interacting
through a general quadratic Hamiltonian

H = b�O� −
1

2
V��O�O�, �1�

where we have adopted tensor sum convention for repeated
labels and O� stand for general independent linear combina-
tions of local operators, i.e., O�=�i=1

n O�i, with O�i= I1
� ¯ � Ii−1 � o�i � Ii+1 � ¯ � In ��O�i ,O�j�=0 if i� j�. We
will assume V��=V��, as commutators �O� ,O�� are again
linear combinations of local operators and can be included in
the linear term in �1�. A Hamiltonian linear in O� represents
obviously a noninteracting system, being diagonal in a basis
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of separable states and requiring just di�di local diagonal-
izations, whereas H demands in principle a �idi��idi diago-
nalization, its eigenstates being entangled in general.

The partition function Z=Tr exp�−�H� admits, however,
an exact representation in terms of linear Hamiltonians by
means of the auxiliary field path integral �18�

Z =� D���Tr T̂ exp�− �
0

�

H������d�	 , �2�

H��� =
1

2
V��

−1���� + �b� − ���O�, �3�

where �� are the auxiliary fields and T̂ denotes �imaginary�
time ordering. The operator under the trace in Eq. �2� is just
the imaginary time evolution operator associated with the
linear Hamiltonian H������, being then a product of local
evolution operators. Equation �2� can in principle be evalu-
ated through a Fourier expansion �����=�m=−�

� �m
�ei2�m�/�,

with D���=�m�det �2�V /��−1/2��d�m
��.

The MF+RPA treatment, to be abbreviated as corrected
mean field �CMF� �14�, is obtained by evaluating Eq. �2� in
the Gaussian approximation �3� around the static mean field
�m

� =	m0�� which maximizes

ZMF��� = Tr exp�− �H���� = e−�V��
−1����/2�

i

zi��� , �4�

where zi���=Tr exp�−��b�−���o�i� is a local partition
function. It then satisfies the self-consistent equations

�� = V��
O���, 
O��� = �−1�
i

� ln zi���
��� , �5�

such that 
H�����=b�
O���− 1
2V��
O���
O��� at a solution.

The final result can be written as

ZCMF = ZMF���C��� , �6�

C��� = �
m=0

�

Det�	�
� + V�
R
�

m �−1+	m0/2 �7�

=Det�	�
� + V�
R
�

0 �−1/2 �
��0

� sinh ����/2�
�� sinh ���/2�

, �8�

where R��
m =� j=1

n r��
m �j� are MF response matrices and

r��
m �j� = r��� j,

2�im

�
	 − 	m0�

�j


� j�o�j�� j�
�p�j

��� , �9�

r���j,� = �
�j��j�


� j�o�j�� j��
� j��o�j�� j�
p�j

− p�j�

��j
− ��j�

+ 
,

�10�

are local responses �r��
0 �j�=−�
o�j�� /��� is a local suscep-

tibility matrix�, with �b�−���o�j �� j�=��j
�� j�, 
� j �� j��=	�j�j�

,
and p�j

=e−��� j /zj���. C��� contains the static �	�0
�� and

quantum �	�m�0
� � Gaussian fluctuations around the mean

field and requires just local diagonalizations if evaluated
through Eq. �7�. In the closed form �8�, ����j

−��j�
, with �

labeling all pairs of distinct local eigenstates ���0
indicating � j �� j��, while � are the RPA energies, obtained
from

Det�	�
� + V�
R
����� = 0, �11�

where R��=� jr�j ,�. They are the poles of the RPA re-
sponse matrix �I+R��V�−1R�� and come in pairs of oppo-
site sign. They can also be obtained as the eigenvalues of the
RPA matrix

A��� = ��	��� + f�O�,−�V��O���, �12�

where f�= p�j
− p�j�

, O��= 
� j �o�j �� j��, of dimension � jdj

�dj −1�. Let us mention that under a linear transformation

O�=U�
� Õ� , we have b�→ b̃�=U�

�b�, V��→ Ṽ��=U

�U�

�V
�,
Eqs. �7� and �8� being of course independent of the represen-
tation.

Equation �6� can be applied away from MF critical points
�where the static determinant in �7� and �8� and the lowest
RPA energy will vanish, and where the approach can be im-
proved for T�0 by integrating exactly over the relevant
static variables �14,19,20��, becoming accurate for small VR.
In the presence of vanishing RPA, energies arising due to a
mean field which breaks a continuous symmetry of H �3�, the
product in �8� remains finite but � ,� in R��

0 should be re-
stricted to the intrinsic static fields, with static orientation
variables integrated out exactly and contributing with a pref-
actor to �8� �14�. If ��0∀�, we may rewrite �8� as

C��� = Det�	�
� + V��R���

0�−1/2 �
��0

sinh ����/2�
sinh ���/2�

, �13�

where R�0= �R0−R�0���1+VR�0��−1 vanishes for T→0 and
the last factor is just the ratio of partition functions of inde-
pendent bosons of energies � and ��. For T→0 the energy
ECMF=−� ln ZCMF /�� approaches the usual MF+RPA
expression �2� 
H�����+ 1

2����−���.
For a Hamiltonian representation in terms of purely local

operators O�i, we should replace O� and �� by O�i and ��i

in previous expressions, with

H = b�iO�i −
1

2
V�i�jO�iO�j �14�

and R�i�j
m =	ijr��

m �i�, such that V�
R
�
m →V�i
jr
�

m �j�. Equa-
tions �7� and �8� will then involve in general determinants of
matrices connecting all components. We can assume V�i�i

=0, as self-energy terms are local operators and can in prin-
ciple be also included in the linear term.

Although the representation �14� is not necessarily the
most convenient one for evaluating C���, it allows two site
averages to be evaluated directly as 
O�iO�j�
=2�−1� ln Z /�V�i�j, leading in the CMF approach to


O�iO�j� = 
O�i��
O�j�� +
2

�

� ln C���
�V�i�j . �15�

The reduced density matrix for the i− j subsystem can then
be recovered by considering a complete set of local opera-
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tors. For degenerate symmetry breaking mean fields, Eq. �15�
should be averaged in principle over the different solutions.

B. Translationally invariant systems

Let us now consider the case of identical components, i.e.,
identical Hilbert spaces �di=d� and operators �o�i=o�� at
each site, with b�i=b� and

V�i�j = v���i − j� , �16�

where v���n− j�=v���−j� for a finite cyclic chain. In this
situation we may conveniently rewrite Eq. �14� as

H = n�b�Õ�0 −
1

2�
k=0

n−1

ṽ���k�Õ�kÕ�,−k	 , �17�

where ṽ�k� is the �discrete� Fourier transform of v�j�,

ṽ���k� = �
j=0

n−1

e−i2�kj/nv���j� , �18�

and similarly Õ�k=n−1� j=1
n ei2�kj/nO�j �such that O�j

=�ke
−i2�kj/nÕ�k�. Thus, V�k�k�=n	k,−k�ṽ

���k� in Fourier
representation.

We will also assume a uniform mean field ��i=��, such
that 
O�i��= 
o��� and hence �Eq. �5��,

�� = ṽ���0�
o���, �19�

which is an effective local MF equation depending just on
the total coupling ṽ���0�=� jv���j�. Notice that in Fourier

space Eqs. �5� become ��k=nṽ���k�
Õ�,−k��, the uniform so-
lution corresponding to �̃�k=n	 k0�� and leading to

H�����=n�b�
o���− 1

2 ṽ���0�
o���
o����.
In this case r��

m �i�=r��
m is site independent, implying

R�k�k�
m =n−2� je

i2��k+k��j/nr��
m �j�=n−1	k,−k�r��

m and therefore,
�VRm��k�

�k =	k�
k ṽ�
�k�r
�

m , diagonal in k. Hence, Eq. �8�
becomes

C��� = �
k
�Det�	�

� + ṽ�
�k�r
�
0 �−1/2 �

��0

��k�sinh ����/2�
�� sinh ����k�/2�	 ,

�20�

with ��k� the roots of the local RPA equation

Det�	�
� + ṽ�
�k�r
���� = 0,

or equivalently the eigenvalues of the effective local RPA
matrix a����k�=��	���+ f�o�,−�ṽ���k�o���, of dimension
d�d−1�. C��� reduces then to the product of n single-site
correction factors with couplings ṽ���k�. These results also
hold for D-dimensional cyclic systems �for instance spins in
a torus� provided V�i�j=v���i− j�, replacing matrices ṽ�k� by
ṽ�k�=�j exp�−i2��l=1

D kljl /nl�v�j�.
Equation �15� will now depend just on the separation

i− j, becoming


O�iO�,i+j� = 
o���
2 +

2

n�
�

k

ei2�kj/n� ln C���
�ṽ���k�

. �21�

III. APPLICATION

A. Finite spin–1 Õ2 chain with general range
XYZ-type couplings

We now consider a finite spin–1 /2 cyclic chain in a uni-
form magnetic field. The local operators are the spin compo-
nents s�, �=x ,y ,z, and we will assume v���j�=	��v��j�
�j-independent principal axes�, with the magnetic field paral-
lel to one of these axes �z axis�. This wide class of systems
comprises well-known models such as the Ising and one-
dimensional XY models with nearest neighbor couplings
�6,21�, as well as the Lipkin model �2,12–14�, where every
pair is identically coupled. The Hamiltonian reads

H = b�
i

Szi − �
�,i�j

v��i − j�S�iS�j , �22�

where we will assume v��j�=v��n− j�=v��−j�. Equation
�22� always commutes with the “Sz parity” Pz=� je

i��Szj+1/2�,
entailing 
S�i�=0, 
S�iSzj�=0 for �=x ,y and j� i at any T
�0.

Equation �19� for a uniform MF becomes here

�� = ṽ0
��� − b�

�
tanh

1

2
�� , �23�

where ṽk
�=� jv��j�e−i2�kj/n, �=������−b��2, and b�

= �0,0 ,b�. We will focus on the anisotropic attractive case
ṽ0

x � �ṽ0
y�, ṽ0

z �0, where the lowest solution corresponds to
�y =0 and �i� �x=0 �normal solution�, valid for �b��bc= ṽ0

x

− ṽ0
z or T�Tc= �b� / ln��bc+ �b�� / �bc− �b��� if �b��bc, where

�z=−ṽ0
z tanh 1

2��, or otherwise �ii� �x= � ��x��0 �degener-
ate parity breaking solution�, where �= ṽ0

x tanh 1
2��,

�z=−ṽ0
zb /bc. The ensuing CMF treatment involves here just

2�2 diagonalizations with a single RPA energy for each
value of k:

ZCMF = exp�− n��
�

ṽ0
�
s���

2	
��2 cosh

1

2
��	n

�
k

ck
0 sinh ���/2�
sinh ��k/2�

, �24�

where, defining ��= ���−b�� /� and f =tanh 1
2��,

k = ���1 − f ṽk
y/���1 − f��z

2ṽk
x + �x

2ṽk
z�/�� , �25�

ck
0 =

1

�1 −
1

2
��1 − f2�

���z
2ṽk

z + �x
2ṽk

x� − f ṽk
xṽk

z

� − f��z
2ṽk

x + �x
2ṽk

z�

. �26�

The spin correlation ��j 
S�iS�,i+j� can be evaluated as

��j =
1

n�

� ln ZCMF

�v��j�
= 
s���

2 + ��j
c , �27�

where 
s���= 1
2��f and ��j

c = �1 /n���ke
i2�kj/n� ln C��� /�ṽk

�.
The reduced two-site density matrix in the standard basis can
then be recovered as
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i,i+j =�
pj

+ 0 0 �xj − �yj

0
1

4
− �zj �xj + �yj 0

0 �xj + �yj
1

4
− �zj 0

�xj − �yj 0 0 pj
−

� ,

where pj
�= 1

4 +�zj � 
sz� and 
sz�=−�−1� ln Z /�b.
We are here interested in the pairwise concurrence Cj

�22�, a measure of the entanglement between spins i and i
+ j, given in this system by Cj =Max�Cj

+ ,Cj
− ,0�, where

Cj
+ = 2���xj − �yj� + �zj − 1/4� , �28�

Cj
− = 2���xj + �yj� − ��1/4 + �zj�2 − 
sz�2� �29�

represent a parallel or antiparallel concurrence, respectively
�16�. Just one of Cj

� can be positive in a given state. Note
that Cj

��0 at the MF level ���j = 
s���
2 �.

B. Concurrence for strong fields

Let us first examine the concurrence for strong fields b
�bc, where the mean field solution is always normal �and
uniform� and the ground state �GS� is the fully aligned state
plus small corrections. Equation �25� becomes

k = ��1 − f ṽ k
+/� −

1

2
f2�ṽ k

−�2/�2 −
1

2
f3�ṽ k

−�2ṽ k
+/�3

+ O�fv/��4� , �30�

where �=b+ fvz, ṽk
�= 1

2 �ṽk
x� ṽk

y�, and we have assumed
v��j�=O�v�. In this regime the exact GS concurrence can
only be parallel. Up to O�v /��2, Eqs. �27�–�30� then lead at
T=0 to

Cj
+ � �v−�j�

�
+

�i=1
n−1v+�j − i�v−�i�

�2 � −
�i=1

n−1v−
2�i�

2�2 , �31�

where v��j�= �vx�j��vy�j�� /2. Hence, pairs connected by
v−�j� will exhibit in this limit a parallel concurrence of first
order in v /�, whereas those unconnected may still exhibit a
parallel concurrence of second order in v /� if linked by the
convolution of v+ with v−. This entails that for an anisotropic
interaction of range L �v��j�=0 for j�L and v−�L��0� the
T=0 entanglement range for �b��bc can be at most twice the
interaction range. Comparison with exact perturbation theory
indicates that, for high fields, Eq. �31� is actually exact for
any n but up to the first nonzero order. For instance, in the
nearest neighbor XY case, v��j�=v��	 j1+	 j,n−1� /2, with vz

=0, Eq. �31� leads to Cj
+=0 if j�2 and

C1
+ �

�v−�
2b

, C2
+ �

�v−���v+� − �v−��
4b2 , �32�

with v�= �vx�vy� /2, which coincide, up to O�v /b� and
O�v /b�2, respectively, with the exact result for the concur-
rence obtained with the Jordan-Wigner transformation.

Hence, in this limit there will be O�v /b�2 concurrence be-
tween second neighbors if �v+�� �v−�.

For T�0, the main thermal corrections to �31� will arise
from the decrease of the MF contribution 
s���

2 to ��j, lead-
ing to

Cj
+�T� � Cj

+�0� − 2e−��, �33�

for sufficiently low temperatures such that Cj
+�T��0, where

�=b+vz and Cj
+�0� is the T=0 value �31�. We have neglected

in �33� thermal corrections to ��j
c , which will lead to higher-

order terms in v /�. From �33� we may estimate the limit
temperature for pairwise concurrence at high fields,

Tj
+ � �/ln�2/Cj

+�0�� , �34�

which will increase almost linearly with increasing b
�Tj

+�O�b / ln�b /v���.

C. Separability field

Let us now assume a common range such that v��j�
=r�j�v�, with � jr�j�=1 �ṽ0

�=v��. Anisotropic chains with
vz�vy �vx and r�j��0 will exhibit a factorizing field
�15–17� bs=��vx−vz��vy −vz��bc where the degenerate
parity breaking MF states become exact ground states and Cj
vanishes for large n �17�, changing from antiparallel
��b��bs� to parallel ��b��bs�. It is verified that at T=0 and
b=bs, ��j

c =0 for j�0 in �27�, entailing Cj
�=0∀ j�0 also

in the CMF approach. Expansion of k around bs actually
leads at T=0 to

k = vx�1 − rk
vy

vx + rk
bs

bc

b − bs

vx + O�b − bs

vx 	2� ,

where rk=� je
−i2�jkr�j�, implying, up to O(�b−bs� /vx),

Cj
� � � � j

bs

bc

b − bs

vx , �35�

� j =
1

n
�

k

ei2�kjrk

1 − rkv
y/vx = �

m=0

� �vy

vx	m

rm+1�j� , �36�

where rm�j��ir�j− i�rm−1�i� �m�2� denotes the mth con-
volution of r�j�. For any finite coupling range satisfying
r�j��0 for 1� j�L and 0 otherwise, Eq. �36� yields � j
�0 for j=1, . . . ,n. Therefore, the CMF approach will pre-
dict in this case full entanglement range in the immediate
vicinity of bs, with Cj changing from antiparallel to parallel
as b crosses bs, which is in agreement with the general exact
result �17�. The slope of Cj

��b� at b=bs is, however, not
necessarily exact in the CMF method.

D. Comparison with exact results in finite chains

Illustrative results for anisotropic XY couplings
�vz�j�=0� with different ranges are shown in Figs. 1 and 2 as
a function of the transverse field. We first consider in Fig. 1
a long-range coupling of the form v��j��v� / �j�� for 1� �j�
�n /2, with ṽ0

�=v��0, where exact ground state results for
n=18 spins have been obtained by direct diagonalization. We
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have selected an anisotropy �vy /vx=1 /2, in which case
the factorizing field is bs=��bc�0.71bc, with bc=vx. As pre-
dicted by the CMF approximation, at b=bs the exact concur-
rence is seen to vanish for all �, reaching always full range
in its vicinity �for finite n the exact result actually approaches
at T=0 exponentially small � and j-independent finite lateral
limits �17� C�= �1−����n/2−1� / �1��n/2� at b=bs, with C�

�0.002 for n=18 and �=1 /2, not predicted by the CMF
approach�.

The �=0 case corresponds to the Lipkin model �13�,
where v��j�=v� / �n−1� and ṽk

�=v��n	k0−1� / �n−1�. In this
case Cj

�=C�∀ j, with C��2 /n �23� due to the monogamy
property �24�. The CMF approach is here quite accurate for
all field values away from bc, providing the exact result for
the rescaled concurrence nC for large n �14�.

As � increases, the CMF approach remains accurate for
high fields b�1.5bc, where the concurrence is correctly de-
scribed by Eq. �31�, i.e., Cj � �v− /b� / �j��. For sufficiently
large � Eq. �31� actually predicts a weak reentry of the con-
currence Cj at strong fields for large separations j, since the
last second-order term in �31� will be negative and greater
than the first-order term for not too strong fields if j is suf-
ficiently large. This reentry is confirmed in the exact results

for large separations, as seen here for �=2 �inset of bottom
right panel�. The CMF method loses precision for low fields
�b � �bc, although for ��1 it is still quite reliable for �b �
�bs, where its accuracy increases as j increases. Notice also
that for ��1 we obtain for n=18 full range concurrence at
all fields, whereas for �=2 the concurrence becomes very
short ranged at low fields �j�3�, being nonzero for large j
just in the vicinity of bs or at very strong fields, i.e., where
the nearest neighbor concurrence becomes small, in agree-
ment with the monogamy property. This behavior is qualita-
tively reproduced in the CMF approach. Let us finally men-
tion that for �=2 results for the first few Cj will remain
stable as n increases �as � j1 / j� is in this case convergent�,
those of the CMF approach remaining close to those depicted
for n=18.

Figure 2 depicts results for finite range couplings of con-
stant strength, i.e., v��j�= 1

2v� /L for �j � �L and 0 otherwise
�such that ṽ0

�=v��, at the same anisotropy. For nearest neigh-
bor coupling, which corresponds to the �→� limit of the
previous case, exact results for any finite n and T can be
obtained with the Jordan-Wigner transformation �21� plus
parity projection �17�. The CMF approach is again confirmed
to be accurate for high fields for both j=1 and 2 �Eq. �32��,
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v��i− j��v� / �i− j��, with �=vy /vx=1 /2 and n
=18 spins. The concurrences vanish at the factor-
izing field bs=��bc, where bc=vx denotes the MF
critical field. The inset depicts the reentry at high
fields of the concurrence of distant pairs for �
=2.
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while for �b � �bc it provides only a qualitative agreement
�with correct predictions like the full entanglement range in
the vicinity of bs�, even though it is still reliable for standard
observables like the spin correlation �x1 away from bc �inset
in the upper left panel�. The thermal behavior of Cj is also
correctly described by the CMF approximation away from
bc, as seen in the upper right panel, where exact results con-
firm the increase in the limit temperatures T1 and T2 for high
fields as predicted by Eq. �34�.

Nevertheless, the accuracy of the CMF approach at low
fields improves as soon as the range L is increased, i.e., as
v��j� /v� decreases. For instance, results at b /bc=0.1 signifi-
cantly improve already for L�2, as seen in the bottom right
panel, while for L=3 the CMF method is seen to provide the
correct general picture except in the vicinity of bc �bottom
left panel�. In particular, the concurrence range for high
fields is seen to be again twice the coupling range, in agree-
ment with Eq. �31� �actually, for j=6 both the first- and
second-order terms in Eq. �31� vanish for �=1 /2 and L=3,
and an expansion up to O�vx /b�3 is required, C6�b� being
still positive in both the CMF and the exact results�. The
splitting of the concurrences Cj for j=1,2 ,3 is also a
second-order effect.

IV. CONCLUSIONS

We have examined a general MF+RPA treatment for de-
scribing composite systems with quadratic interactions at

both zero and finite temperature, showing that it becomes
particularly simple for finite translationally invariant systems
with uniform mean fields. The approach is capable of repro-
ducing the main features of the pairwise entanglement, for
all pair separations, in cyclic spin–1 /2 chains with aniso-
tropic XY couplings of different ranges, away from MF criti-
cal regions. It also provides the correct asymptotic behavior
of the concurrence for strong fields, where it predicts inter-
esting features like the possibility of a reentry of the pairwise
concurrence for large separations, as well as an entanglement
range which can be at most twice that of the interaction for
finite range couplings, which were confirmed in the exact
results. It also predicts the factorizing field and the full en-
tanglement range in its immediate vicinity.

The method is specially suited for treating systems with
high connectivity or long-range interactions, where its accu-
racy improves. Let us remark that the individual components
are in principle arbitrary in the present formalism. They
could be also chosen as small arrays of coupled spins or
subsystems treated exactly, leaving the RPA for the remain-
ing interactions, a possibility that is currently under investi-
gation and that could improve results for finite range cou-
plings or dimer-type chains. The extension to higher
dimensions is also straightforward.
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