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Time fluctuations in isolated quantum systems of interacting particles

Pablo R. Zangara,1 Axel D. Dente,1 E. J. Torres-Herrera,2 Horacio M. Pastawski,1 Anı́bal Iucci,3 and Lea F. Santos2

1Instituto de Fı́sica Enrique Gaviola, CONICET-UNC, Facultad de Matemática, Astronomı́a y Fı́sica,
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Numerically, we study the time fluctuations of few-body observables after relaxation in isolated dynamical
quantum systems of interacting particles. Our results suggest that they decay exponentially with system size in both
regimes, integrable and chaotic. The integrable systems considered are solvable with the Bethe ansatz and have
a highly nondegenerate spectrum. This is in contrast with integrable Hamiltonians mappable to noninteracting
ones. We show that the coefficient of the exponential decay depends on the level of delocalization of the initial
state with respect to the energy shell.
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I. INTRODUCTION

The nonequilibrium dynamics of quantum many-body sys-
tems is a challenging and little understood subject of modern
physics. Step by step, numerical, analytical, and experimental
studies have been trying to put the pieces of the puzzle together
by identifying properties and behavior common to different
quantum systems. Our main goal in this paper is the search
for a general picture of the behavior of few-body observables
in isolated quantum many-body systems after equilibration.
In particular, we investigate whether their time fluctuations
depend on regime, initial states, and observables.

Equilibration in isolated quantum systems can happen in a
probabilistic sense. It requires that: (i) The time fluctuations
of the observables, after the transients have died out, become
very small, implying proximity to the stationary state for the
vast majority of time, and (ii) the fluctuations decrease with
system size, vanishing in the thermodynamic limit. Based
on semiclassical arguments and on fully chaotic systems
[1–6], it has been shown that the mean squared amplitude of
temporal fluctuations after relaxation decrease exponentially
with system size. This derivation is independent of the details
of the initial state, which is assumed to be an arbitrary pure state
[5,6]. However, the underlying association with full random
matrices overrides some of the facets of finite real systems,
which are of relevance to experiments. Real systems have
few-body and usually short-range interactions, whereas, full
random matrices imply many-body long-range interactions
[7–9]. In real systems, the density of states is Gaussian [7],
so chaotic eigenstates where the probability amplitudes of the
basis vectors are many, small, and uncorrelated are restricted
to the middle of the spectrum. More recent studies for the
bounds of the time fluctuations relaxed the condition on
full random matrices and relied on Hamiltonians without
too many degeneracies of eigenvalues and energy gaps and
on initial states made of large superpositions of energy
eigenstates [10–13]. The fluctuations were again shown to
scale exponentially with system size. Yet, in the particular
case of an integrable Hamiltonian quadratic in the canonical
Fermi operators or mapped onto one where the nonresonant
conditions are not satisfied, it was shown analytically [14] and
numerically [15–17] that the time fluctuations of one-body

or quadratic observables scale as 1/
√

L, L being the system
size.

These findings motivate the questions: How do the time
fluctuations scale with L in the case of integrable systems that
cannot be mapped to free particles? How about chaotic systems
where the energy of the initial state is far from the middle of the
spectrum? We explore these questions with one-dimensional
spin-1/2 models in both integrable and chaotic domains. Our
results indicate that the answer for the two questions is, once
again exponential scaling. Integrable models not mappable
onto free particle systems are significantly less degenerate than
noninteracting ones. As for initial states close to the edges of
the spectrum and, therefore, not substantially delocalized in
the energy representation, the coefficient of the exponential
decay becomes small, but exponential fittings are still better
than power law. It is only in the case of the noninteracting
spin-1/2 model that the power-law fitting is superior, provided
the initial state is not thermal.

To evaluate the level of delocalization of the initial state,
we employ the concept of the energy shell as established
in many-body quantum chaos [18,19]. In this field, the
total Hamiltonian of the system is often separated in an
unperturbed part, which describes the noninteracting particles
(or quasiparticles), and a perturbation, which represents the
inter(quasi)particle interactions and may drive the system into
the chaotic domain. The Hamiltonian matrix is then written
in the basis corresponding to the unperturbed vectors (the
mean-field basis). The distribution in energy of the components
C

j
α of the mean-field basis vectors |j i = P

α C
j
α |αi, |αi being

the eigenstates of the total Hamiltonian, is known as the
strength function or local density of states [20]. The energy
shell corresponds to the maximal strength function obtained
in the limit of very strong interactions. The energy shell has
a Gaussian shape and a dual role: It determines the maximum
possible spreading of the unperturbed states in the energy
representation as well as the maximum level of delocalization
of the eigenstates in the mean-field basis. In real systems with
few-body finite-range interactions, the states become more
delocalized as the perturbation increases, but they do not get
totally extended as in full random matrices. Chaotic states
are then defined as states that fill the energy shell ergodically
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so that their components can be seen as random variables
following a Gaussian distribution [18,19,21,22].

We borrow the ideas above and apply them to the context of
nonequilibrium dynamics. The total Hamiltonian dictating the
dynamics of the system is written in a basis that incorporates
the initial state as one of its vectors. The width of the energy
distribution of the initial state corresponds to the width of
what we call, here, the energy shell. The lifetime of the initial
state depends on how large this width is and on the filling of
the shell. As we show, when the width of the energy shell is
small compared to the width of the density of states and when
it is not well filled, which happens for initial states close to
the edges of the spectrum, the relaxation process can become
very slow. This scenario is further aggravated by integrable
Hamiltonians, the presence of symmetries, and the observable
studied.

This paper is organized as follows. In Sec. II, we describe
the spin-1/2 model, the initial states, the observables consid-
ered, as well as the numerical method employed for the time
evolution. Section III examines the spectrum and the level of
delocalization of the initial states with respect to the energy
shell. The scaling analysis of the time fluctuations with system
size are presented in Sec. IV, and results for the relaxation
process are discussed in Sec. V. Concluding remarks are made
in Sec. VI.

II. SYSTEM AND QUANTITIES STUDIED

We consider a one-dimensional lattice of interacting spins
1/2 with open boundaries and an even number L of sites. The
Hamiltonian contains nearest-neighbor (NN) and possibly also
next-nearest-neighbor (NNN) couplings,

Ĥ = ĤNN + λĤNNN,

ĤNN =
L−1X
n=1

J (Ŝx
n Ŝx

n+1 + Ŝy
n Ŝ

y

n+1 + 1Ŝz
nŜ

z
n+1), (1)

ĤNNN =
L−2X
n=1

J (Ŝx
n Ŝx

n+2 + Ŝy
n Ŝ

y

n+2 + 1Ŝz
nŜ

z
n+2).

Above, h̄ = 1 [23] and Ŝ
x,y,z
n are the spin operators on site

n. The coupling strength J determines the energy scale
and is set to 1, the anisotropy 1 and the ratio λ between
NNN and NN exchanges are positive. The flip-flop term
Ŝx

n Ŝx
n+1 + Ŝ

y
n Ŝ

y

n+1 (Ŝx
n Ŝx

n+2 + Ŝ
y
n Ŝ

y

n+2) moves the excitations

through the chain, and Ŝz
nŜ

z
n+1(Ŝz

nŜ
z
n+2) corresponds to the

Ising interaction between NN (NNN) spins. The Hamiltonian
conserves total spin in the z direction [Ĥ ,Ŝz] = 0, where
Ŝz = PL

n=1 Ŝz
n. Other symmetries include parity, invariance

under a global π rotation around the x axis when Ŝz = 0, and
conservation of total spin Ŝ2 = (

PL
n=1

ESn)2 when 1 = 1. The
model is integrable and is solved with the Bethe ansatz when
λ = 0 [24], and it undergoes a crossover to the chaotic regime
as λ increases [22,25].

The properties of the spin-1/2 chain (1) depend on
the values of the parameters. Accordingly, a nomenclature
was developed for different special points. For λ = 0, the
noninteracting model (1 = 0) is usually referred to as the
XX model, whereas, for 1 6= 0, it is known as the XXZ
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FIG. 1. Density of states L = 16, Sz = 0. (a) 1 = 0.5, λ = 0;
(b) 1 = 1, λ = 0; and (c) 1 = 0.5, λ = 1.

model [26]. At the isotropic point 1 = 1, the XXZ model is
sometimes called XXX. The value of 1 determines whether
the flip-flop term or the Ising interaction is dominant. When
|1| > 1, an energy gap between the lowest eigenvalues and
the ground state appears, and the system is said to be in the
gapped phase. 1 = 1 is the critical point separating the gapped
from the gapless phase. As the value of 1 decreases from 1 to
0, bound states of quasiparticles progressively dissolve into
elementary excitations until the free fermion limit is reached.
In this process, a quantitative change in the spectrum occurs at
the midpoint 1 = 1/2 where the system develops additional
nontrivial symmetries [27–29].

We investigate the dynamics of the system for the following
choices of parameters:

(1) Integrable isotropic NN Hamiltonian Ĥ1=1,λ=0,
(2) integrable anisotropic NN Hamiltonian Ĥ1=0.5,λ=0,
(3) weakly chaotic isotropic Hamiltonian Ĥ1=1,λ=0.4,
(4) strongly chaotic isotropic Hamiltonian Ĥ1=1,λ=1,
(5) strongly chaotic anisotropic Hamiltonian Ĥ1=0.5,λ=1.
The gapped NN Hamiltonian Ĥ1=1.5,λ=0 and the noninter-

acting case Ĥ1=0,λ=0 are also discussed on certain occasions
but are not the focus of this paper.

Independent of the regime of our system, the density of
states has a Gaussian shape as seen in Fig. 1. This is typical of
systems with few-body interactions and is in clear contrast
with the semicircular density of states obtained with full
random matrices [30–32]. The Gaussian shape reflects the
reduced numbers of energy levels available in the edges of the
spectrum. Delocalized states are, therefore, not to be found
too far away from the middle of the spectrum, even when the
system is chaotic. Notice also that the distributions are not
exactly symmetric when 1 6= 0. The tail gets more extended
to low energies when λ = 0 and 1 increases, whereas, it goes
further to the right when λ > 1.

The width ω and the average energy hEi obtained from a
Gaussian fit for the Hamiltonians studied here are shown in
Table I. The density of states obviously gets broader with the
anisotropy and the inclusion of NNN couplings. Its center is
also displaced from zero as the Ising interaction increases.

A. Initial states

The Hamiltonian matrix is written in a basis in which each
site has a spin either pointing up or pointing down in the z

direction. These vectors correspond to the eigenstates of the
Ising part of the Hamiltonian. We refer to it as the site basis.
The system is prepared in an initial state |9(0)i ≡ |inii that
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TABLE I. Width and center of the Gaussian fit for the density of
states; L = 16; Sz = 0.

ω hEi
Ĥ1=0,λ=0 1.444 0.000
Ĥ1=0.5,λ=0 1.532 −0.039
Ĥ1=1,λ=0 1.761 −0.119
Ĥ1=1.5,λ=0 2.078 −0.234
Ĥ1=1,λ=0.4 1.868 −0.368
Ĥ1=1,λ=1 2.399 −0.571
Ĥ1=0.5,λ=1 2.108 −0.356

corresponds to one of the following basis vectors:
(1) Domain wall |DWi = |↑↑↑ · · · ↓↓↓i,
(2) Néel state |NSi = |↑↓↑↓ · · · ↑↓↑↓i,
(3) pairs of parallel spins |PPi = |↓↑↑↓↓↑↑↓↓ · · ·i.
These states are, in principle, accessible to experiments in

optical lattices [33]. The preparation of a sharp domain wall
requires a magnetic field gradient as realized in Ref. [34], and
the possibility for achieving the Néel state has been discussed
in Refs. [35,36]. In addition to the experimental motivation,
these states are chosen for their enhanced effects of the Ising
interaction and NNN couplings. They all belong to the same
subspace Sz = 0 with dimension D = ( L

L/2 ).
We also analyze unpolarized random initial states:
(4) in the subspace Sz = 0,|ξSz=0i,
(5) in the whole Hilbert space |ξ2Li.
They are random superpositions of the site-basis vectors.

The probability amplitude for each of these site-basis vectors
has the same modulus 1/

√
D and a random phase ei2πϕ , where

ϕ is a uniformly distributed random variable in [0,1). These
random states manifest thermal features since the evaluation
of local observables yields the same outcomes as that for a
mixed state of infinite temperature. In particular, they exhibit
a self-averaging property that can be employed to evaluate
ensemble spin dynamics [37], and they have already been
used to compute high-temperature correlation functions [38,
39]. Since they are already at thermal equilibrium, they can be
used to set the minimum amplitude of the time fluctuations.

B. Few-body observables

We study the relaxation and time fluctuations of the
following few-body observables.

(1) Kinetic energy,

cKE =
L−1X
n=1

J
¡
Ŝx

n Ŝx
n+1 + Ŝy

n Ŝ
y

n+1

¢

+ λ

L−2X
n=1

J
¡
Ŝx

n Ŝx
n+2 + Ŝy

n Ŝ
y

n+2

¢
. (2)

(2) Interaction energy,

bIE =
L−1X
n=1

J 1Ŝz
nŜ

z
n+1 + λ

L−2X
n=1

J 1Ŝz
nŜ

z
n+2. (3)

The time fluctuations for cKE and bIE are the same since the two
observables add up to the constant total energy, so we show
results only for cKE.

(3) Spin-spin correlations in the z and x directions,

Ĉz(x)
nm = Ŝz(x)

n Ŝz(x)
m . (4)

We present results for n = L/2 and m = L/2 + 1 but also
studied m = L/2 + 2 and L/2 + 3. Since the interactions
considered here are short range, these correlations decay with
the distance between spins n and m. The restriction to sites in
the middle of the chain is to minimize boundary effects.

(4) Structure factors in z and x,

ŝ
z(x)
f (k) = 1

L

LX
n,m=1

eik(n−m)Ŝz(x)
n Ŝz(x)

m . (5)

They are the Fourier transform of the spin-spin correlations
with k = 2πp/L and p as an integer, p = 1, . . . ,L. For
the fluctuations, we present results only for k = π since
this momentum exists for all system sizes considered here,
10 6 L 6 22. We have also studied the sum over all k’s, and
the results are qualitatively very similar. The time evolution,
however, shows visible differences associated with the value
of k. This is discussed in Sec. V.

C. Numerical method

Exact diagonalization is employed for describing static
properties of the system with L = 16 (Sz = 0) and L =
18 (Sz = −3). The dynamics, however, involves chains with
up to L = 24, which rules out the possibility of using full
exact diagonalization. Instead, the time evolution of the pure
states defined above is evaluated by means of a fourth order
Trotter-Suzuki (TS) decomposition [40,41].

The TS method is a standard strategy in which an evo-
lution operator Û (δt) = exp[−iĤ δt] is approximated by an
appropriate sequence of partial evolution operators in the form
Ũ (δt) = Q

k exp[−iĤkδt]. Here, {Ĥk} is a set of Hermitian
operators properly chosen for the purpose of providing a
simple and efficient implementation of each partial evolution.
We choose Ĥk so that it only contains a two-spin operation in
a given direction (x, y, or z), e.g., Ŝ

y
n Ŝ

y
m [40,41]. This avoids

manipulating and diagonalizing the total Hamiltonian Ĥ . The
evaluation of the dynamics for an arbitrary finite time t requires
the successive application of the steplike evolutions Ũ (δt).
Even though the approximated dynamics always remains
unitary, the accuracy of the approximation relies on the TS
time step δt being sufficiently small. In particular, it must
be much smaller than the maximum local time scale, which
is determined by the local second moment of Ĥ . We have
tuned the TS time step so that, for the largest system sizes
L = 22,24, relative errors bounds are estimated at 10−6 for
maximum evolution times of J t = 5 × 103.

We implemented the TS method on general purpose
graphical processing units. Such hardware enables a massive
parallelization scheme in the site basis, which yields a
substantial speedup of our simulations [42]. We stress that our
approach is exact within the TS approximation, and it does
not require any specific symmetry to be assumed. This means
that there are no truncations of the Hilbert space. Since the full
Hilbert space is available, there are no truncation errors that
would drastically limit the access of long-time asymptotics.
This is rather crucial as it is often the major obstacle when
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addressing long-time dynamics in interacting many-body
systems using standard strategies, such as time-dependent
density-matrix renormalization-group [43] and tensor network
techniques [44].

III. SPECTRUM AND ENERGY SHELL

The initial state |inii evolves according to |9(t)i =P
α C ini

α e−iEαt |αi, where C ini
α = hα|inii and Eα and |αi are

the eigenvalues and eigenstates of the Hamiltonian dictating
the dynamics of the system.

The expectation value of an observable Ô at time t is given
by

hÔ(t)i = h9(t)|Ô|9(t)i
=

X
α

|C ini
α |2Oαα +

X
α 6=β

C∗ini
α C ini

β Oαβei(Eα−Eβ )t , (6)

where Oαβ = hα|Ô|βi are the matrix elements of the ob-
servable. The variance of the temporal fluctuations of the
observable about its equilibrium value corresponds to

σ 2
O = |hO(t)i − hO(t)i|2

=
X
α 6=β

γ 6=δ

C∗ini
α C ini

β C∗ini
γ C ini

δ OαβO
†
γ δe

i(Eα−Eβ+Eγ −Eδ )t , (7)

where O = T −1
R T

0 O(t)dt is the time average over the
interval [0,T ].

Under the condition of nondegenerate energy gaps,

Eα = Eβ and Eδ = Eγ ,

Eα − Eβ = Eδ − Eγ ⇒ or (8)

Eα = Eδ and Eβ = Eγ ,

and for T → ∞, it has been shown that [10,11]

σ 2
O 6 (Omax − Omin)2Tr[ρ2] = (Omax − Omin)2

IPRini , (9)

where Omax(min) is the maximum (minimum) eigenvalue of
the operator Ô, ρ = P

α |C ini
α |2|αihα| is the diagonal density

matrix [45], and

IPRini = 1P
α |C ini

α |4 (10)

is the inverse participation ratio of the initial state in the energy
eigenbasis. The bound above has been further improved, and
the condition of absence of degenerate gaps was substituted
by not too many degenerate gaps [12].

IPR measures the level of delocalization of a state in a
certain basis. In full random matrices, the eigenstates are
maximally delocalized. For random matrices from a Gaussian
orthogonal ensemble [31], it is found that IPR ∼ D/3 [46],
whereas, for a Gaussian unitary ensemble [31], IPR ∼ D/2.
Here, none of the initial states taken from basis vectors reach
such large values for IPRini, which is not surprising since
they are not eigenstates from random matrices. In contrast,
the thermal states, indeed, have IPRini ∼ D/2. For few-body
observables, a delocalized initial state with IPRini ∝ D leads
to the exponential decay of σO with system size since D grows
exponentially with L.

Below, we first present results for the level spacing
distribution and number of degenerate energy gaps. They
reinforce the expectation of an exponential decay with L for the
time fluctuations of few-body observables in chaotic spin-1/2
systems and integrable ones with 0 < 1 6 1. Next, we present
the level of delocalization of the initial states for these systems.
They set the bounds for σO in Eq. (9) and help justify the value
of the coefficient of the exponential decay found numerically
in the following section. We notice that, even though the
bound also depends on the range of the eigenvalues of Ô,
the observables considered here hardly affect the value of the
coefficient (see Sec. IV).

A. Spectrum

Absence of degeneracies goes hand in hand with chaotic
systems where the energy levels are correlated and crossings
are avoided. The distribution P (s) of spacings s between
neighboring unfolded energy levels is Wigner-Dyson (WD)
[30–32]. The exact shape of this distribution depends on the
symmetries of the system. In the case of time-reversal sym-
metry, we have PWD(s) = (πs/2) exp(−πs2/4). In integrable
systems, the eigenvalues tend to cluster and are not prohibited
from crossing. The level spacing distribution is Poissonian,
PP (s) = exp(−s). As λ increases from zero in Eq. (1), a WD
distribution eventually is obtained as shown in panel (f) of
Fig. 2 [47]. We show results for the subspace Sz = −3 and
1 6= 1 to avoid symmetries associated with global π rotation
around x and Ŝ2. Only parity needs to be taken into account,
so the statistics is still very good; for L = 18 and even parity,
we have ∼104 energy levels.

In the presence of too many degeneracies or in localized
systems, one observes deviations from PP (s) with the emer-
gence of the Shnirelman peak [48–50]. This is seen in panel
(a) of Fig. 2 where we show the level spacing distribution for
the XX model (1 = λ = 0). The number of small spacings
there goes much beyond the Poisson distribution. However,
as 1 increases (the XXZ model), the excessive degeneracies
rapidly fade away [compare the distribution for 1 = 10−3 in
panel (b) with that for 1 = 10−2 in panel (c)].

0 1 20

2

4

6
P

0 20

2

4

6

0 1 2 3 40

0.5

1

0 2 4

0 1 2 3 4
s

P

0 2 40

0.5

1
0 1 20

1

2

3

0 2

0 1 2 3 4
s

0 2 40

0.5

1

0 1 2 3 4
s

0 2 40

1

2

(a) (b) (c)

(d) (e) (f)

FIG. 2. (Color online) Level spacing distribution for a single
subspace: L = 18, Sz = −3, and eigenstates with even parity. For
comparison, the Poisson and Wigner-Dyson distributions are shown
with dashed lines. (a)–(e) have λ = 0 and 1 = 0.0, 10−3, 10−2, 0.1,
and 0.5, respectively. (f) 1 = 0.5 and λ = 1.
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TABLE II. Total number of energy differences where gapαβ <

10−8 and of gap differences where δgap < 10−8; L = 15; Sz = −3,
eigenstates with even parity.

gapαβ < 10−8 δgap < 10−8

Ĥ1=0,λ=0 2088 336 508 464
Ĥ1=0.01,λ=0 0 4202
Ĥ1=0.1,λ=0 0 4020
Ĥ1=0.5,λ=0 192 347 844
Ĥ1=0.5,λ=1 0 2632

Panels (d) and (e) show results for the NN system with
1 = 0.1 and 0.5, respectively. Notice that, for the special value
1/2, the form of the distribution also departs from PP (s),
although the Poisson distribution is recovered by changing it
slightly, for example, by using 1 = 0.48.

In addition to no (few) energy degeneracies gapαβ =
|Eα − Eβ | 6= 0, a main condition for the exponential decay
of the temporal fluctuations in Eq. (9) is the existence of no
(few) degenerate energy gaps δgap = |gapα0β 0 − gapαβ | 6= 0.
In Table II, we compare the total number of energy differences
where gapαβ < 10−8 and the total number of gap differences
where δgap < 10−8 for systems with NN couplings and
1 = 0, 0.01, 0.1, and 0.5 as well as for the chaotic system
with λ = 1 and 1 = 0.5.

As seen in Table II, the number of energy and gap
degeneracies in the XX model (first row) is enormous. It
drops abruptly with the introduction of the Ising interaction,
even for strengths as low as 1 = 0.01. For L = 15, δgap is
5 orders of magnitude smaller for the integrable models with
anisotropy (second and third rows) than for 1 = 0. For these
cases, the number of gap degeneracies is comparable to that
in the chaotic model (last row). This justifies the expectation
for an exponential decay of the time fluctuations with L for
integrable systems with 0 < 1 6 1.

Notice, however, the special behavior of the XXZ model
with 1 = 1/2 (fourth row). This point shows energy degen-
eracies as also seen in Fig. 2(e) and a large number of gap
degeneracies, even though δgap is still 3 orders of magnitude
smaller than for the XX model. Our choice of 1 = 1/2 in the
numerical studies of Sec. IV is, therefore, not arbitrary. If an
exponential behavior is observed, even for this particular case,
then it is certain to occur for the other gapless XXZ chains.

B. Energy shell

Since our systems only have two-body interactions, a
maximum delocalized |inii is the one that fills the energy
shell ergodically. The energy shell is a Gaussian, centered at
the energy of the initial state,

Eini =
X

α

|C ini
α |2Eα = Hini,ini, (11)

with squared width,

δE2
ini =

X
α

¯̄
C ini

α

¯̄2
(Eα − Eini)

2 =
X
j 6=ini

|Hini,j |2. (12)

The last equality in the two equations above holds when the
initial state is one of the basis vectors. In this case, we do

not need to diagonalize the Hamiltonian to obtain the energy
shell, we simply need the elements Hi,j of the Hamiltonian
matrix [22,51]. The diagonal elements, which determine Eini,
only depend on the NN and NNN Ising terms. Pairs of parallel
NN and NNN spins in the z direction contribute positively
to the energy of the state, whereas, pairs of antiparallel spins
contribute negatively.

We can see, for instance, that the domain wall state has

EDW
ini = J1

4
[(L − 3) + (L − 6)λ], (13)

where both NN and NNN Ising interactions contribute with
positive signs to the energy and

δEDW
ini = J

2

p
1 + 2λ2. (14)

Notice that the width of the shell for this state does not depend
on the system size.

Figure 3 shows the distribution of |C ini
α |2 in the eigenvalues

Eα for the Néel state for the Hamiltonians with λ = 0 (1 =
1,0.5), λ = 0.4(1 = 1), and λ = 1 (1 = 1,0.5). The width
of the energy shell is the same for all cases because the direct
coupling between |NSi and the other site-basis vectors is only
due to the NN flip-flop term, so

δENS
ini = J

2

√
L − 1. (15)

The number of contributing levels, on the other hand, differs
significantly from one model to the other. As 1 decreases and
λ increases,

ENS
ini = J1

4
[−(L − 1) + (L − 2)λ] (16)

approaches the middle of the spectrum where the density of
states is large, and so the energy shell gets better filled as in
Fig. 3(e). Closer to the edges of the spectrum, the distribution
is less homogenous, spiky, and asymmetric as in Fig. 3(a).

The level of delocalization of the initial state depends on the
combined relationship between |inii and Ĥ . A better notion of
the role of the initial state may be gained from Fig. 4 where
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FIG. 3. (Color online) Distribution of the weights of the ini-
tial Néel state in the energy representation L = 16, Sz = 0. The
Hamiltonians and Eini are as follows: (a) Ĥ1=1,λ=0 and −3.750,
(b) Ĥ1=0.5,λ=0 and −1.875, (c) Ĥ1=1,λ=0.4 and −2.350, (d) Ĥ1=1,λ=1

and −0.250, and (e) Ĥ1=0.5,λ=1 and −0.125. The solid line corre-
sponds to the energy shell: Gaussian of width δEini = 1.936.
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FIG. 4. (Color online) Top panels: distribution of the weights of
the initial state in the energy representation for Ĥ1=1,λ=0, L = 16, and
Sz = 0. (a) |DWi, Eini = 3.250, and δEini = 0.500; (b) |NSi, Eini =
−3.750, and δEini = 1.936; (c) |PPi, Eini = −0.250, and δEini =
1.414; and (d) |ξSz=0i, Eini = −0.246, and δEini = 1.719.

we fix the Hamiltonian and change |inii. We select the most
restrictive case among the Ĥ ’s with 0 < 1 6 1, that is, the
integrable isotropic Hamiltonian Ĥ1=1,λ=0. The distribution
of the components of the initial state goes as follows. The
domain wall and the Néel state are both at the edges of the
spectrum, the first at very high energy and the second at very
low energy. The distribution for |DWi is narrow and spiky
[Fig. 4(a)], and δEini is much smaller than ω (cf. Table I and
caption of Fig. 4). The distribution for |NSi is broad, in fact,
δEini & ω, but the shell is not well filled. This is noticed from
the many spikes in Fig. 4(b) and from the low value of the IPRini

in Table III. The distribution for |PPi, which is a state close
to the middle of the spectrum, is relatively broad, δEini . ω,
and the shell is relatively well filled [Fig. 4(c)]. It is only when
the initial state is one of the thermal states |ξSz=0i or |ξ2Li that
the distribution becomes independent of the Hamiltonian, the
energy shell being filled ergodically for any Ĥ and δEini ∼ ω.
This is illustrated in Fig. 4(d) for |ξSz=0i.

The two factors together, broadening and filling of the
energy shell, improve from (a) to (d) in Fig. 4 and are reflected
in the values of IPRini in Table III. The domain wall is the most
localized of the states. For Ĥ1=1,λ=0, IPRini then increases
from |NSi to |PPi but, of course, never reaches the level of
delocalization of eigenstates from random matrices. Only for
the thermal states, is IPRini ∼ D/2 for any of the Hamiltonians
considered (not shown). In this same order, we expect the
decay of the fluctuations with L and the time evolution of the
observables to become faster.

Notice from Table III that the level of delocalization of |PPi
is larger than that of |NSi when λ is small, but this changes for
λ = 1. The NNN Ising term contributes negatively to |PPi, so it
pushes the state away from the middle of the spectrum towards
low energies, this being accentuated for large λ. As a result,
at the isotropic point IPRini for |PPi is larger for weak chaos
(λ = 0.4) than for strong chaos (λ = 1). This is surprising
because the majority of the states get more delocalized as the
level of chaoticity increases. In contrast, for the Néel state, the

TABLE III. Inverse participation ratio of the initial states corre-
sponding to site-basis vectors for L = 12,14,16 in Sz = 0.

IPRini
L=12 IPRini

L=14 IPRini
L=16

Ĥ1=1.5,λ=0

|DWi 2.862 1.436 1.432
|NSi 15.782 23.865 35.981
|PPi 22.870 39.528 64.051

Ĥ1=1,λ=0

|DWi 16.986 24.541 34.858
|NSi 24.580 42.003 72.153
|PPi 45.814 95.851 200.570

Ĥ1=0.5,λ=0

|DWi 37.259 63.718 104.334
|NSi 38.575 70.555 129.782
|PPi 50.697 109.737 241.171

Ĥ1=1,λ=0.4

|DWi 15.643 22.593 31.948
|NSi 64.316 147.957 336.776
|PPi 73.936 218.272 592.725

Ĥ1=1,λ=1

|DWi 14.380 20.521 28.690
|NSi 168.345 514.499 1805.249
|PPi 31.851 68.373 129.883

Ĥ1=0.5,λ=1

|DWi 50.567 123.785 368.140
|NSi 158.029 548.877 2071.923
|PPi 77.661 228.241 586.557

NNN Ising interaction adds energy and counterbalances the
effects of the NN term, which is negative [Eq. (16)], so larger
λ implies a state closer to the middle of the spectrum and,
therefore, more spread.

We are not able to perform a scaling analysis with the
values of IPRini because only three system sizes are available.
We then look for indications of the exponential decay of the
time fluctuations with L directly in the numerical studies of
the observables. However, some observations can already be
made at this point. From the definition of the thermal states,
it is clear that IPRini grows exponentially with L and so will
the reciprocal of σO for few-body observables [Eq. (9)]. As
seen in Table III, the value of the ratio IPRini/D for the Néel
state in the strongly chaotic Hamiltonian Ĥ1=0.5,λ=1 is also
constant (∼1/6), so here again, the exponential behavior of σO

is guaranteed. For the other initial states and Ĥ ’s, IPRini grows
slower thanD, especially for |DWi in the isotropic points, but it
may as well be an exponential growth. The only clear exception
is the domain wall in the gapped phase (1 = 1.5), which as
expected, further localizes as L increases. A discussion about
the relaxation process of this state in the gapped and gapless
phases is presented in Sec. V.

IV. NUMERICAL RESULTS FOR THE
TIME FLUCTUATIONS

Our numerical results, indeed, suggest that the standard
deviation of the time fluctuations for chaotic and integrable
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FIG. 5. (Color online) Logarithmic plot of the standard deviation
of the time fluctuations of different observables vs L for (circles)
Ĥ1=1,λ=0, (squares) Ĥ1=0.5,λ=0, (plus) Ĥ1=1,λ=0.4, (up triangle)
Ĥ1=1,λ=1, and (down triangle) Ĥ1=0.5,λ=1. |inii is the Néel state, [100,
500] is the time interval for the averages, and σN

O = σO/O. The solid
lines correspond to logarithmic fits.

systems with 0 < 1 6 1 decay exponentially with system
size σO ∝ e−κL. The value of the coefficient κ of this decay
increases significantly with the level of delocalization of the
initial state and, when comparing observables, it is usually
slightly larger for cKE. In order to elucidate the fluctuations
decay law, we analyze each observable, initial state, and
Hamiltonian in log-linear and log-log scales. Linear fittings
in these scales enable a quantitative comparison between
the two possibilities, based on the standard coefficient of
determination R2.

In Fig. 5, results for σO are shown for different observables
in the case where |inii is the Néel state. The dispersion is
computed in a time interval after the observables reached a
stationary state. The exponential decay with L is evidenced
by excellent linear fits for the log-linear plots of integrable
and chaotic Hamiltonians. When comparing with power-law
fittings, the values of R2 are systematically worse, although
not overwhelmingly worse [some examples are given in
Sec. IV A]. There is just one case for cKE and Ĥ1=0.5,λ=0

where R2 for the power law barely exceeds the exponential
fitting. The irrefutable rejection of a power-law behavior would
require system sizes beyond the ones considered here 10 6
L 6 22. Nevertheless, we emphasize that the exponent b in
the power-law fitting σO ∝ L−b is always much larger than the
value 0.5 found in systems of quasifree particles [14–17]. For
the Néel state and the observables studied in Fig. 5, the smallest
factor was b ∼ 2, which was found for Ĥ1=1,λ=0 and ŝ

z(x)
f (π ).

The coefficient κ in the exponential fittings of Fig. 5
decreases with 1 and increases with λ. As the anisotropy in-
creases, |inii becomes less spread in the energy representation
as seen in Fig. 3 and Table III. The excitations in the system lose
mobility as it passes the isotropic point (1 = 1) where total
spin is conserved and then enters the gapped phase (1 > 1)
where well separated bands of energies are formed [52]. On
the other hand, as λ increases from zero, the crossover to chaos
takes place, thus, favoring the delocalization of the Néel state.
The competition between NN and NNN interactions brings
this state close to the middle of the spectrum [Eq. (16)]. The
value of κ reflects the width of the energy shell as well as

TABLE IV. Coefficient κ in the exponential fittings σO ∝ e−κL of
Fig. 5 for |inii = |NSi.

κ for |NSi
Ô = cKE Ĉz

L/2,L/2+1 ŝz
f (π )

Ĥ1=1,λ=0 0.184 0.157 0.111
Ĥ1=0.5,λ=0 0.206 0.175 0.151
Ĥ1=1,λ=0.4 0.301 0.246 0.196
Ĥ1=1,λ=1 0.345 0.324 0.366
Ĥ1=0.5,λ=1 0.354 0.320 0.369

its filling. For the particular case of |NSi where the width of
the shell is always the same (cf. Fig. 3), it is the filling of the
shell that leads to the different coefficients in Fig. 5. In the
figure, the smallest value is κ ∼ 0.11 for Ĥ1=1,λ=0 and ŝz

f (π ),

and the largest is κ ∼ 0.37 for Ĥ1=0.5,λ=1 and ŝz
f (π ) as seen

in Table IV.
The Néel state behaves as a thermal state for the chaotic

Hamiltonian Ĥ1=0.5,λ=1. It fills the energy shell very well,
and IPRini ∼ D/6 (cf. Fig. 3 and Table III). This explains
the value κ ∼ 0.35, which is the same as that obtained for
the initial random states |ξSz=0i and |ξ2Li. As mentioned
earlier, these latter states fill the energy shell ergodically for
any of the Hamiltonians, therefore, their time fluctuations
are the minimum possible ones. According to Eq. (9) and
using D = 2L from |ξ2Li, we see that σ 2 ∼ 2−L, which yields
the value of κ = 1

2 log 2 ≈ 0.35. Therefore, at least when the
initial state fills the energy shell, the agreement between the
analytical prediction and our numerical results is excellent.

Contrary to |NSi, the domain wall does not reach high
levels of delocalization since it is far from the middle of the
spectrum. The values of κ are significantly smaller, especially
at the critical point 1 = 1. Even for Ĥ1=0.5,λ=1, κ does not
reach the maximum 0.35. It gets close to it for cKE (κ ∼ 0.33),
but it does not pass 0.28 for the other observables.
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FIG. 6. (Color online) Logarithmic plots of the standard deviation
of the time fluctuations for different observables vs L for (circles)
|DWi, (squares) |NSi, (plus) |PPi, (up triangle) |ξSz=0i, and (down
triangle) |ξ2L i. The solid lines correspond to logarithmic fits, and
σN

O = σO/O. All panels: Ĥ1=1,λ=0 and averages performed in the
time interval [100, 500], except for the domain wall state which used
[5 × 102,5 × 103].
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TABLE V. Coefficient κ in the exponential fittings σO ∝ e−κL of
Fig. 6 for Ĥ1=1,λ=0.

κ for Ĥ1=1,λ=0

Ô = cKE Ĉz
L/2,L/2+1 ŝz

f (π )
|DWi 0.109 0.133 0.109
|NSi 0.184 0.157 0.111
|PPi 0.246 0.215 0.244
|ξSz=0i 0.354 0.331 0.325
|ξ2L i 0.370 0.343 0.345

In Fig. 6 as in Fig. 4, the Hamiltonian is fixed rather than
the initial state. We select the integrable isotropic Ĥ1=1,λ=0.
The value of κ once again mirrors the width and filling of the
energy shell (cf. Tables III and V and Figs. 4 and 6). For the
initial nonrandom states |DWi, |NSi, and |PPi, the coefficient
κ is always much smaller than 0.35. None of these site-basis
vectors behave as a chaotic state for Ĥ1=1,λ=0. The minimum
κ ∼ 0.11 occurs for |DWi and both observables cKE and ŝz

f (π ).
Even here, the R2 for the exponential fitting is slightly larger
than for the power-law one. Furthermore, the power-law fitting
in this case has b ∼ 1.65, which, again, is much larger than
the 0.5 for the quasifree particle systems [14–17].

The |PPi suffers from strong border effects. The first site
of this state always has a spin pointing down, but the spin on
the last site can either point down when L/2 is even or point
up when L/2 is odd. This causes the oscillations seen in Fig. 6
and the lower value of R2 when compared to the other states.

Another feature that calls for attention in Fig. 6 is the result
for |DWi and |NSi for the structure factors: σ

s
z(x)
f

is larger

for |DWi than for |NSi. We notice, however, that κ for the
Néel state is larger, so the curves will eventually cross. This
crossing is seen already for our system sizes for Ĥ1=0.5,λ=1,
for example (not shown).

A. Exponential vs power-law decay

In Fig. 7, we provide some examples for the comparison
between the exponential and the power-law fitting. The
left panels show the values of 1 − R2 for the temporal
fluctuations of the spin-spin correlation Ĉx

L/2,L/2+1 for the five
Hamiltonians considered. 1 − R2 is at least 1 order of
magnitude smaller for the exponential fitting, and it reaches
particularly small values when the initial state is thermal
[Fig. 7(b)].

The right panels show the decay of the fluctuations for cKE
with system size for three different combinations of initial
states and Hamiltonians. The exponential fitting is visibly
better, especially away from the pair domain wall and isotropic
NN Hamiltonian. Also noticeable is the substantial decrease
in σKE for the same system size as we go from the top to the
bottom panels, that is, as the initial state further delocalizes.

B. The X X model

For the XX model, the bound in Eq. (9) should not be
valid anymore due to the many degeneracies of this model
as discussed in Sec. III A. There are analytical and numerical
studies supporting the power-law decay of the time fluctuations
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FIG. 7. (Color online) Left panels: 1 − R2 values for the (square)
exponential and (circle) power-law fits of the decay of the temporal
fluctuations of Ĉx

L/2,L/2+1 with system size. The initial states are
(a) |NSi and (b) |ξSz=0i. Right panel: logarithmic plots of the standard
deviation of the time fluctuations of cKE vs L for (c) |DWi with
Ĥ1=1,λ=0, (d) |NSi with Ĥ1=0.5,λ=0, and (e) |ξSz=0i with Ĥ1=0.5,λ=0.
The solid line corresponds to the fitting for the exponential decay, and
the dashed line corresponds to the power-law decay. The averages are
performed in the time interval [100, 500], except for the domain wall
state, which used [5 × 102,5 × 103].

for systems of noninteracting particles [14–17]. In terms of
numerics since quadratic Hamiltonians are trivially solvable,
very large systems have been considered [15–17]. Comparing
the results of our numerical method with these previous
findings is, therefore, a good way to assess its validity.

For |DWi and |NSi, the power-law fitting is, indeed, the
best choice for some observables but not all. More convincing,
here, is the value of b, which is more than twice as large for
1 6= 0 than for the XX model. For

P
k ŝz

f (k), both states in
fact lead to b ∼ 0.6 for the noninteracting Hamiltonian, which
is very close to the analytical prediction 0.5.

We emphasize that, even for the XX Hamiltonian, the
thermal initial states |ξSz=0i and |ξ2Li clearly lead to expo-
nential decays of the time fluctuations. This reinforces the
importance of the initial state in studies of nonequilibrium
dynamics, a point that has been explored more in the context
of thermalization [53–57] and of the fluctuation-dissipation
theorem [58] in isolated quantum systems.

Another difference between the noninteracting XX and
the interacting XXZ models, which is concomitant to the
differences in degeneracies, refers to the intrinsic nature of
the fluctuations around the steady state. By analyzing the fre-
quency spectrum of the fluctuations for the local magnetization
on site L/2 using the fast Fourier transform, we see that the XX

model has few well-defined narrow frequencies for both |DWi
and |NSi, which is to be contrasted to the XXZ model with
1 < 1. On the other hand, when the initial state is thermal, the
spectrum is noisy, independent of the Hamiltonian.
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FIG. 8. (Color online) Time dependence of the kinetic energy for
|inii = |DWi. (a) Ĥ1=1,λ=0 and L = 24,18,12 from top to bottom.
(b) Ĥ1=1,λ=0, Ĥ1=0.5,λ=0, and Ĥ1=1.5,λ=0 from top to bottom, L = 22.

V. RELAXATION

The smallest values of κ for 1 6= 0 are associated with
the domain wall. The coefficient decreases significantly as we
go from 1 = 0.5 to 1 = 1 and then to 1 = 1.5 where the
system is already in the gapped phase. The poor performance
of this state reflects its proximity to the edge of the spectrum
[Fig. 4(a)] and consequent low connectivity. It is pushed there
by the Ising interaction. The NN (NNN) Ising contribution to
the energy of the site-basis vectors increases with the number
of NN (NNN) pairs of parallel spins in the z direction. The
domain wall has the largest number of NN pairs L − 2, and it
has L − 4 NNN pairs [see Eq. (13)]. In terms of connectivity,
the state is directly coupled to only one basis vector when Ĥ is
the integrable Hamiltonian and only three vectors when λ > 0.
Thus, according to Eq. (12), the width of the shell is very small,
and it does not change with system size [see Eq. (14)].

From the remarks above, its is clear that the relaxation
process of |DWi must be much slower than for the other initial
states, especially for large 1. In fact, when 1 À 1, the domain
wall freezes in time [59,60]. To study the temporal fluctuations,
we needed to consider much longer time intervals than for the
other initial states to guarantee that it had, indeed, relaxed.
Moreover, the time taken to reach a steady state obviously
increases with L as we need to break more pairs of adjacent
parallel spins [60].

An illustration of the dependence on size and anisotropy
is provided in Fig. 8. In panel (a), we see that the transient
oscillations remain for longer times as L increases. Here, a
particularly bad combination is considered where the initial
state is the domain wall and the Hamiltonian is Ĥ1=1,λ=0.
When 1 = 1, the number of states taking part in the evolution
is smaller than for 1 6= 0 because, in addition to conservation
of spin in the z direction, there is also conservation of total
spin. The special role of the isotropic point for |DWi is well
illustrated in panel (b). For values away from the critical point,
that is for 1 = 1.5 and 1 = 0.5, a steady state is reached after
a few tens of J t , whereas for the case 1 = 1 the plateau is not
reached even at J t ∼ 500.

In Fig. 9, we compare the relaxation process for
|DWi, |NSi, and |ξSz=0i. We choose the structure factor
as observable because its time evolution has an interesting
dependence on the momentum k [61], depending on the initial
state and the Hamiltonian evolving it. In the top and middle
panels, we show the evolution of ŝz

f (k) when |inii = |DWi.
In the case of small k’s and at the isotropic point, the

FIG. 9. (Color online) Relaxation of the structure factor in the z

direction; L = 22, Sz = 0. Momentum: (black circles) k = 2π/11,
(red squares) 3π/11, (green up triangles) 4π/11, and (blue down
triangles) 5π/11. Top panels: |inii = |DWi, (a) Ĥ1=1,λ=0 and (b)
Ĥ1=0.5,λ=0. Middle panels: |inii = |DWi, (c) Ĥ1=1,λ=1 and (d)
Ĥ1=0.5,λ=1. Bottom panels: Ĥ1=1,λ=0, (e) |inii = |NSi and (f) |ξSz=0i.

relaxation process is very slow, and the fluctuations are large
[Figs. 9(a) and 9(c)]. This occurs even for the strongly chaotic
isotropic Hamiltonian Ĥ1=1,λ=1 [Fig. 9(c)]. If we break the
symmetries associated with the isotropic point, the relaxation
process becomes faster, and the fluctuations become smaller
for all k’s [Fig. 9(b)], this being even better in the chaotic
domain [Fig. 9(d)]. Nevertheless, in all four panels (a)–(d), the
saturation value is not the same for all values of momentum,
which suggests some residual memory of the initial state.

Fast relaxation and small fluctuations occur for other initial
states, even for the integrable isotropic Hamiltonian Ĥ1=1,λ=0,
provided the width of the energy shell is not too narrow and
|inii is delocalized in the shell. This already is suggested
by |inii = |NSi, although some reminiscent dependence on
k is still noticeable [Fig. 9(e)]. It becomes evident for the
thermal state |ξSz=0i [Fig. 9(f)] where the dependence on k is
completely lost. Compare this behavior with the energy shells
in Figs. 4(b) and 4(d), respectively.

VI. CONCLUSIONS

Our results confirm that the exponential decay with L of
the time fluctuations of few-body observables after relaxation
prevails in systems without excessive degeneracies, whether
integrable or chaotic. The coefficient of this decay depends
on the level of delocalization of the initial state with respect
to the Hamiltonian dictating its evolution, in agreement with
analytical predictions [10–13]. Therefore, it is not the initial
state or the Hamiltonian separately that determines the size
of the fluctuations, but the interplay between both. The
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quantification of this relation is embodied by the filling of
the energy shell.

Interestingly, for the thermal initial states at infinite temper-
ature, the exponential decay holds, even for the noninteracting
integrable model.

Among the initial states considered, the domain wall has
the smallest decay coefficient for the fluctuations and the
slowest dynamics, especially when the system gets close to
the isotropic point. This is a consequence of the presence of
additional symmetries and the proximity of the state to the
edge of the spectrum where the density of states is low. As
L increases, the domain wall takes longer to reach the steady
state. The study of larger system sizes, which is essential to
the absolute rejection of a power-law behavior for the time
fluctuations, will be particularly challenging for this state.

The initial states analyzed here can, in principle, be
achieved in experiments with ultracold atoms. The system
sizes considered are also of relevance to these experiments
where tubes with as few as ten atoms are handled.
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