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We study the bosonization of massless fermions in three-dimensional space-time. Using the

path-integral approach as well as the operator formalism, we investigate new duality relations between

fermionic and bosonic theories. In particular, we show that a theory of massless fermions is dual, within a

quadratic approximation in the fields, to three different but equivalent bosonic theories: a nonlocal

Maxwell–Chern-Simons–type theory, a nonlocal self-dual–type vector theory, and a local free massless

bosonic theory. The equivalence is proven at the level of current correlation functions and current algebra

analysis.

DOI: 10.1103/PhysRevD.88.025033 PACS numbers: 11.10.Kk, 11.10.Lm

I. INTRODUCTION

Bosonization of fermionic models in d ¼ 3 space-time
dimensions has been discussed in the past following differ-
ent approaches. Based in an order-disorder duality, Marino
[1] was able to completely express a massless d ¼ 3
fermion field in terms of a bosonic vector field. In this
way, fermionic current correlation functions can be repro-
duced in the framework of the bosonic theory described by
a quadratic Lagrangian which contains a Chern-Simons
and a nonlocal Maxwell-like term.

Concerning massive fermions, bosonization rules were
established in Ref. [2] within the path-integral framework.
The dual bosonic Lagrangian, calculated to leading order
in 1=m (with m the fermion mass) was shown to corre-
spond to a Chern-Simons Lagrangian coupled to an ordi-
nary (local) Maxwell term. The same result was obtained
calculating the one-loop quadratic part of the effective
bosonic action, a method which is valid for arbitrary
massm [3] and reproduces in them ! 0 limit the massless
result. The current algebra of such a quadratic bosonic dual
theory was proven to exactly reproduce the fermionic
current algebra [4], and the extension to the non-Abelian
case was developed in Ref. [5]. Both in the massless and in
the massive cases, the Chern-Simons term, introduced in
the pioneering works of Deser, Jackiw, and Templeton [6],
plays a central role in all these results.

There has been recently a renewed interest in d ¼ 3
bosonization after the report of new results on Chern-
Simons theories coupled to scalars and fermion fields, in
the large N limit [7–11] and their relation with Vassiliev
higher spin theories [12,13]. In particular, Aharony et al.
[10] found, exploting the AdS/CFT correspondence, that
the theory of N massless scalars coupled to a level k UðNÞ
Chern-Simons term is equivalent, for large N, to the

Legendre transform of a theory of k massless fermions
coupled to a level N UðkÞ Chern-Simons term. Moreover,
it has been conjectured that the equivalence of the two
theories could be valid also at finite N [10].
It is the purpose of this paper to discuss the fermion/

boson connection in d ¼ 3 for massless fields using the
approach developed in Refs. [2–5]. In particular, we search
for new duality relations that may provide a link with the
results of Ref. [10]. Our work is organized as follows. We
review in Sec. II the derivation of bosonization rules for
massless fermions in d ¼ 3 space-time dimensions using
the path-integral approach [2–4]. We then derive in Sec. III
new dualities between the massless fermion theory and
different bosonic theories with actions related to the
Maxwell–Chern-Simons theory [6], the self-dual theory
[14], and a theory of decoupled scalars with a higher-
derivative kinetic term. In Sec. IV we show the equivalence
between one of the bosonic duals of massless fermions in
2þ 1 dimensions and a massless spin zero bosonic model,
thus establishing a fermion-boson duality which resembles
that found in Ref. [10] particularized to the Uð1Þ case.
Finally, we discuss our results in Sec. V.

II. BOSONIZATION OF MASSLESS FERMIONS
IN THREE SPACE-TIME DIMENSIONS

IN TERMS OF VECTOR FIELDS

We work within the path-integral approach focusing in
the Abelian case where the bosonization rule for fermion
currents takes the form, in d ¼ 3 dimensional Euclidean
space-time [1,2],

j�ðxÞ � i �c ðxÞ��c ðxÞ ! � 1ffiffiffiffiffiffiffi
4�

p ����@�A�ðxÞ;

� ¼ 1; 2; 3: (1)

The vector field A� is the bosonic field dual to the original

fermion field. An analogous formula for general space-
time dimension d was obtained in Ref. [4],
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j�ðxÞ ! Cd��1�2...�d
@�2

��3...�d
ðxÞ; (2)

with Cd a normalization constant and ��3...�d
ðxÞ an anti-

symmetric d� 2 Kalb–Ramond field in d dimensional
space-time [15]. Note that dualization of antisymmetric
Kalb–Ramond fields in terms of derivatively coupled
scalars is possible for all d [16,17]; this could open a route
to d ¼ 3 bosonization in terms of scalar bosons as in
Ref. [10]. We shall see, however, that in this case the scalar
field is trivially decoupled in the path-intgeral generating
functional of current correlation functions, a result already
discussed in Ref. [15].

It should be stressed that although the bosonization rules
(1) and (2) are exact, the bosonic Lagrangian dual to the
original free fermionic theory is not in general known in
closed form since, as we shall see, this would require
having an exact expression for the determinant of the
Dirac operator in a gauge field background. As it is well-
known, only in the d ¼ 2 case the determinant can be
calculated exactly. Concerning the d ¼ 3 case, we recall
that the parity-odd contribution to such a determinant—a
Chern-Simons term—is known in closed form (see for
example Ref. [18]), while the parity-even one can only
be calculated using some approximation method, namely
order by order in powers of the bosonic fields, using the
�-function method in the case of massless fermions, or in
powers of @=m for the case of fermions with mass m. Now,
it is precisely the Chern-Simons term that induces, on the
bosonic side, the current bosonization rule given in Eq. (1)
and a fortiori the current algebra. Moreover, that is the
reason why it reproduces, in the bosonic dual theory, the
exact Schwinger term result for the equal-time current
commutators of the original d ¼ 3 fermionic theory calcu-
lated in Ref. [19].

Let us briefly describe the main steps leading to Eq. (1).
The partition function for d ¼ 3 free massless fermions in
the presence of an external source s� for the fermion

current is

Zfer½s�� ¼
Z

D �cDc exp

�Z
d3x �c ði6@þ sÞc

�
: (3)

Performing a local change (Jacobian free) of the fermionic
variables, c ðxÞ ! gðxÞc ðxÞ, gðxÞ 2 Uð1Þ gives

Zfer½s�� ¼
Z

D �cDc exp

�Z
d3x �c ði6@þ sþ ig�1 6@gÞc

�

¼
Z

Db�D �cDc exp

�Z
d3x �c ði6@þ sþ 6bÞc

�
� 	½f�½b��; (4)

where f�ðbÞ ¼ ���
@�b
 and the 	 function in the second

line ensures that b is a flat connection, so that integration
on b� reproduces the first line.

Integrating out fermions and after the trivial shift b� þ
s� ! b�, the partition function becomes

Zfer½s� ¼
Z

Db� det ði6@þ 6bÞ	½f�½b� � f�½s��: (5)

It is at this point that the bosonic field dual to the original
fermion enters into play. Indeed, representing the delta
function in Eq. (5) in the form

	½f�½b� � f�½s��
¼

Z
DA� exp

�
i
Z

d3xðf�½b� � f�½s�ÞA�

�
; (6)

the fermionic partition function can be finally written as a
bosonic partition function Zbos½s�,

Zfer½s� ¼ Zbos½s�; (7)

where

Zbos½s� �
Z

DA� exp ð�Sbos½A�Þ exp
�
�i

Z
d3xf�½s�A�

�
(8)

with the bosonic action given by

exp ð�Sbos½A�Þ ¼
Z

Db� det ði6@þ 6bÞ

� exp

�
i
Z

d3xf�½b�A�

�
: (9)

We see that the bosonic field A�, dual to the original

fermion field, arises as the Lagrange multiplier enforcing
the flatness condition for the auxiliary field b� in Eq. (5).

Equation (8) shows that the external source s� has

factored out from the auxiliary field b� integration so

that already at this stage one can obtain the exact boson-
ization rule (1) by differentiating Zbos½s�:

hj�ðxÞi ¼ 1

Z

	Z

	s�ðxÞ
��������s¼0

¼
�
� 1ffiffiffiffiffiffiffi

4�
p ����@�A�ðxÞ

�
:

(10)

Of course one has still to determine the bosonic action
Sbos½A� so as to be able to effectively compute the vacuum
expectation value in the rhs in Eq. (10).
As already pointed out above, the derivation we

have presented can be easily extended to any number of
space-time dimensions, in which case instead of the vector
field A�, the field dual to the d-dimensional fermion will be

an antisymmetric Kalb–Ramond field ��3...�d
with the

bosonization rule for the fermion current given in Eq. (2).
Again, the dual bosonic field ��3...�d

arises as a Langrange

multiplier with its rank determined from the form of the
flatness conditions of the auxiliary field strength f��½b� in
different space-time dimensions.
It is interesting to note that in the d ¼ 2 case with an

appropriate choice of constant C2, the bosonization rule
Eq. (2) takes well-honored form [20],
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j�ðxÞ ! � 1ffiffiffiffi
�

p ���@��ðxÞ: (11)

The rhs of this formula is the topological current in d ¼ 2
space-time dimensions constructed from a bosonic scalar
�. Analogously, the rhs in Eq. (1) is nothing but the
topological current in d ¼ 3 dimensions for the vector
field A�.

As explained above, the parity-even part of the fermion
determinant appearing in the definition of Sbos½A�, Eq. (9),
cannot be computed in closed form for d > 2. One can
perform a quadratic approximation as developed in
Ref. [3], or, following Ref. [1], one can use an order-
disorder operator approach.

The quadratic approximation, and in general the field
expansion that we propose, can be interpreted in an effec-
tive field theory approach à la Weinberg (see for example
Refs. [21,22]) and corresponds to a low energy expansion
of the Lagrangian. This is evident in massive theories
where the decoupling theorem ensures that higher order
terms at energy E are suppressed by powers of E=mass. For
a massless theory the problem is slightly subtler: there is in
principle no natural mass to use in the expansion, and also
the low energy terms can be nonlocal. Nevertheless, the
effective field theory program can be implemented also in
this case (see Ref. [23] for a discussion). In general one
uses use the renormalization mass scale � (needed by
dimensional arguments) as the expansion parameter. In
our case we introduce such a mass scale through a constant

e with units of mass1=2. This parameter is needed by
dimensional grounds (the field b� has units of mass, so

we need a dimensionful parameter), and, moreover, this
constant can be related to a coupling constant in interacting
theories. Indeed, it appears as the dimensionful three-
dimensional electric charge when the fields interact with
an electromagnetic field or as the coupling constant multi-
plying the auxiliary vector field one introduces to handle
the quartic self-interaction term in Thirring-like models.
Thus, for the massless free fermion theory, the natural low
energy expansion in our approach will be one in powers of
E=e2, and hence the quadratic field expansion corresponds
to the leading order approximation in the low energy
expansion. The physical results of our bosonization rules
will be valid in this regime and could then be directly
applicable to study interacting theories.

Inserting the results of Ref. [3] for the fermion determi-
nant det ð6@þ 6bÞ in (9) and integrating over b�, one then

gets

Sbos½A� ¼
Z

d3x

�
1

2�
F��T

�1F�� � i

�
����A�@�A�

�
� STMCS½A�: (12)

We again stress that the Chern-Simons parity-violating
term does not pick up higher order corrections.
Concerning the Maxwell-like term, which does receive

corrections, we denote with T�1 the Green function of
the square root of the (minus) Euclidean d’Alambertian
(i.e., the d ¼ 3 Laplacian),

T � ð�hÞ1=2; ðT � T�1Þx;y ¼ 	ð3Þðx� yÞ: (13)

Since we are working in Euclidean space, one has

h ¼ @20 þr2; r2 ¼ @2x1 þ @2x2 (14)

�h exp ðikxÞ ¼ jkj2 exp ðikxÞ (15)

and using the natural definition of the square root of the
Laplacian; it can be proved that

T exp ðikxÞ ¼ jkj exp ðikxÞ (16)

and

T�1ðx; 0Þ ¼
Z d3k

ð2�Þ3
1

jkj exp ðikxÞ: (17)

A rigorous definition and properties of the square root of
Laplacians can be found in Refs. [24,25].
Were fermions massive, one would have a Maxwell term

ð1=ðjmjÞF2
�� instead of the first term in Eq. (12). In this

respect, since in the massless fermionic case there is no
dimensionful parameter, it is natural to find in the second
order term of the even-parity contribution to the fermion
determinant a T�1 factor leading to the correct dimension-
less Maxwell-like term.
Note that while the fermionic action is invariant under

global Uð1Þ transformations, the bosonic action exhibits a
local Uð1Þ gauge invariance, provided A� is endowed with

appropriate boundary conditions. This invariance is a con-
sequence of the natural choice of the gauge-invariant pro-
cedure adopted in the path-integral bosonization approach
that we employed and also arises within the order-disorder
operator algebra approach of Ref. [1]. As it will be dis-
cussed below, there is a regularization ambiguity parameter
� that for the moment we have chosen as � ¼ i in the
previous formulas. It should be stressed that, in spite of
being nonlocal, action STMCS is perfectly manageable.
Indeed, the choice of a retarded prescription shows that
the nonlocality preserves causality, and a canonical quan-
tization of the theory can be formulated [26].
Returning to the bosonization rule (1), one can easily see

that it reproduces the correct commutation relations, both
for the fermionic and the bosonic dual theories. Indeed, the
well-known current-current commutators for fermions giv-
ing a Schwinger term, which in d ¼ 3 takes the form [19]

½j0ð ~x; tÞ; jið ~x; tÞ� ¼ � 1

8�
lim
�!0

1

�
@i	

ð2Þð ~x� ~yÞ; (18)

can be obtained from the bosonic theory if, according to
Eq. (1), one identifies

j0 ! 1ffiffiffiffiffiffiffi
4�

p B; ji ! 1ffiffiffiffiffiffiffi
4�

p �ijEj (19)
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and uses the bosonic action STMCS to compute current
commutators using the Bjorken–Johnson–Low approach.
We have written Ei ¼ Fi0 the electric field and B ¼
�ij@iAj (i, j ¼ 1, 2) the magnetic field. Interestingly

enough, from this point of view, the origin of the
Schwinger term in the free fermion theory can be traced
back to the appearance of a Chern-Simons term in the dual
bosonic action (see Ref. [27] for a recent discussion on
this issue).

III. DUALITIES AMONG BOSONIC ACTIONS

We shall now see that the action STCSM is dual to a
self-dual bosonic action. This was proven for massive
fermions in Ref. [2]; here we extend the result to the
massless case. To this end, let us start by considering the
Maxwell-like term in the bosonic action (12),

1

2�

Z
d3xF��½A�T�1F��½A� ¼ 1

2

Z
d3xJ�½A�T�1J�½A�;

(20)

where

J�½A� ¼
ffiffiffiffi
2

�

s
"���@�A
: (21)

Using the identity

exp

�
�

Z
d3xJ�½A�T�1J�½A�

�

¼
Z

Da� exp

�
� 1

2
a�Ta� þ a�J�½A�

�
; (22)

Zbos½s� can be written as

Zbos½s� ¼
Z

DA�Da� exp

�
þ 1

2
a�Ta� � a�J�½A�

þ i

�
����A�@�A� þ 1ffiffiffiffiffiffiffi

4�
p ����s�@�A�

�
: (23)

If we now proceed to integrate over A�, we get

Z
DA exp

�
�
Z

d3x

�
i

�
����A�@�A�

� 2i����

�
a� � 1ffiffiffi

8
p s�

�
@�A�

��

¼ exp

�
� i

2

Z
d3x����

�
a�@�a� � 2ffiffiffi

8
p s�@�a�

� 1

8
s�@�s�

��
(24)

so that we end with a generating functional of the form

Zbos½s�¼
Z
Da�exp

�
�
Z
d3x

�
1

2
a�Ta�þ i

2
����a�@�a�

��

�exp

�
�
Z
d3x

�
1ffiffiffi
2

p s�@�a�þ1

8
s�@�s�

��
�ZTSD½a;s�: (25)

In this way we have proven at the quantum level an exact
duality identity between the bosonic actions STMCS and
STSD defined as:

STMCS ¼ 1

2�

Z
d3xðF��T

�1F�� � 2i����A�@�A�Þ

STSD ¼
Z

d3x

�
1

2
a�Ta� þ i

2
����a�@�a�

�
;

(26)

to be compared with the quantum duality between self-
dual (SD) and Maxwell–Chern-Simons (MCS) models
established in Ref. [14] within a canonical approach and
in Refs. [2,28] within the path-integral approach in the
massive case,

SMCS ¼ 1

2�

Z
d3x

�
1

jmjF��F�� � 2i����A�@�A�

�

SSD ¼
Z

d3x

�
1

2
ma�a� þ i

�
����a�@�a�

�
:

(27)

Let us end this section by describing a different
dualization that is possible due to the fact that one can
always trade antisymmetric Kalb–Ramond fields (in this
case just a vector field) to scalars with a higher-derivative
Lagrangian [16,17]. Following Ref. [15] we start from
Eq. (5) and add a gauge fixing term for b�,

Zfer½s�� ¼
Z

Db� det ði6@þ sþ 6bÞ	ðf�ðbÞÞe
1
2�

R
d3xð@�bÞ2 :

(28)

To enforce the constraint we introduce as before the vector
field A�,

Zfer½s�� ¼
Z

DA�Db� det ði6@þ sþ 6bÞ

� ei
R

d3xA�f�ðbÞe
1
2�

R
d3xð@�bÞ2 : (29)

The first exponential factor in the rhs can be written as
exp ðiR d3xb�f�ðAÞÞ making evident that the field A� is

also a gauge field. Shifting b� ! b� � s� we absorb the

source in the determinant obtaining

Zfer½s�� ¼
Z

DA�Db� det ði6@þ 6bÞ

� ei
R

d3xA�ðf�ðbÞ�f�ðsÞe
1
2�

R
d3xð@�ðb�sÞÞ2 : (30)

The next step is to integrate the field b�. To this end we

shall work to lowest order in the fields so that the fermion
determinant becomes
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det ði6@þ 6bÞ ¼ exp

�
�
Z

d3xb����b�

�
; (31)

where ���, is the d ¼ 3 vacuum polarization,

��� ¼ 1

�
ð@�T�1@� � 	��@�T

�1@�Þ þ 1

�
����@�: (32)

As it should be, the vacuum polarization is transverse,
@���� ¼ 0.

Substituting the value of the fermion determinant in the
partition function, we get

Zfer½s�� ¼
Z

DA�Db�e
�S½b;A;s�; (33)

where

S½b;A; s� ¼
Z

d3x

�
b��̂��b� þ b�

�
�if�ðAÞ þ 1

�
@�@ � s

�

þ is�f�ðAÞ � 1

2�
s�@�@�s�

�
(34)

and �̂�� ¼ ��� � 1
2� @�@�. Since this action is quadratic,

the path integral over b� can be performed in closed form

leading to

Zfer½s�� ¼
Z

DA�e
�S2½A;s�; (35)

where

S2½A;s�¼
Z
d3x

�
1

4
ðf�ðAÞ�̂�1

��f�ðAÞÞ

þ if�ðAÞ
�
1

2�
�̂�1

��@�ð@ � sÞþ s�

�

� 1

4�2
ð@�ð@ � sÞ�̂�1

��@�ð@ � sÞÞ� 1

2�
ðs�@�@�s�Þ

�
:

(36)

Now we trade the integration over A� by an integration

over f�ðAÞ using the identity

Z
DAF½f�ðAÞ� ¼

Z
DfF½f�	ð@ � fÞ: (37)

Introducing a scalar field ’ to enforce the 	 function, we
then get

Zfer½s�� ¼
Z

Df�D’e�S3½f;’;s�; (38)

with

S3½f;s�¼
Z
d3x

�
1

4
ðf��̂�1

��f�Þ

þ if�

�
1

2�
�̂�1

��@�ð@ � sÞþ s�þ@�’

�

� 1

4�2
ð@�ð@ � sÞ�̂�1

��@�ð@ � sÞÞ� 1

2�
ðs�@�@�s�Þ

�
:

(39)

The integral over f� is Gaussian and can be performed,

leading to

Zfer½s�� ¼
Z

D�e�Seff ½’;s�; (40)

with

Seff ¼
Z

d3x

��
s� þ 1

2�
�̂�1

��@�@ � sþ @�’

�

� �̂��

�
s� þ 1

2�
�̂�1

�
@
@ � sþ @�’

�

þ 1

2�
s�@�@�s� þ 1

4�2
s�@�@��̂

�1
�
@
@�s�

�
: (41)

Expanding this last expression, and using that ��� is

transverse, we finally have

Zfer½s�� ¼
Z

D’exp

�
�
Z

d3x

�
s����s� � 1

2�
’hh’

��
:

(42)

The source is decoupled from the field ’ which has a
higher-derivative propagator, a result which is identical
to the one found in Ref. [15] in any number of dimensions
including d ¼ 3. One should note that the s� term repro-

duces the correct result for the fermionic current algebra so
that, as observed in Ref. [15], its functional integral may be
completely ignored, contributing as it does just a field-
independent overall constant.

IV. BOSONIZATION IN TERMS OF
A CANONICAL FREE FIELD �

It has been proven in Ref. [6] that the field equations and
the commutation relations of the massive quantum
Maxwell–Chern-Simons theory are solved by a canonical,
free, massive spin 1 field (with the mass coinciding with
the Chern-Simons action coefficient). Following the ap-
proach developed in Ref. [6], we will show the equivalence
between the bosonic model with action STMCS½A� defined
in Eq. (12) and a massless free field model. Our results can
be seen as establishing a fermion-boson duality which
agrees, in the Uð1Þ case, with that discussed in Ref. [10].
Let us start from our the bosonized Lagrangian contain-

ing Maxwell-like and a Chern-Simons actions:
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STMCS½A� ¼
Z

d3x

�
1

2
F��T

�1F�� � �����A�@�A�

�
:

(43)

Here we have reintroduced the regularization parameter �
previously fixed to a particular value. The Gauss law
derived from action (43) takes the form

@iðT�1EiÞ ¼ �2�B; (44)

where as before Ei ¼ Fi0 and B ¼ �ij@iAj.

Following Ref. [6] we now propose to solve this
constraint in terms of a canonical free field �,

Ei ¼ �ijA@j�þB@i� B ¼ C�; (45)

where A, B, and C, are three kernels to be determined.
Using this expression to write the Gauss law, we obtain

@iðT�1 � EiÞ ¼ r2T�1 �B ��
so

r2T�1 � B ¼ �2�C: (46)

Given action (43), the corresponding Hamiltonian reads

H ¼ 1

2

Z
d2xðEiT

�1Ei þ BT�1BÞ:

Writing B ¼ aT3=2T̂�1 and choosing T̂ ¼ ð�r2Þ�1=2

with a an arbitrary parameter, one can see that the mag-
netic term in the Hamiltonian can be written as

Z
d2xBT�1B ¼ � a2

4�2

Z
d2x�r2�: (47)

Note that T̂ contains solely a spacial derivative. To obtain

this result we have used that T and T̂ commute (which can
be proven following Refs. [24,25]).

Concerning the electric contribution to the Hamiltonian,Z
d2xEiT

�1Ei ¼
Z
d2xðB@i�ÞðT�1B@i�Þ

þ2
Z
d2xð�ijA@j�ÞðT�1B@i�Þ

þ
Z
d2xð�ijA@j�ÞðT�1�ikA@k�Þ; (48)

one has Z
d2xðB@i�ÞðT�1B@i�Þ ¼ a2

Z
d2x�h�

Z
d2xð�ijA@j�ÞðT�1B@i�Þ ¼ 0

Z
d2xð�ijA@j�ÞðT�1�ikA � @k�Þ ¼

Z
d2x�2:

(49)

To get the third line result we have chosen

A ¼ T1=2 � T̂�1.

With all this one has for the dual Hamiltonian

H ¼ 1

2

Z
d2xðEi � T�1 � Ei þ B � T�1 � BÞ

¼ 1

2

Z
d2x

�
�2 þ a2�h�� a2

4�2
�r2�

�

¼ 1

2

Z
d2x

�
�2 � a2 _�2 þ a2

�
1� 1

4�2

�
�r2�

�
(50)

so that, choosing the arbitrary parameter a as a ¼ 2�,
we get

H ¼ 1

2

Z
d2x

�
�2 � 4�2 _�2 þ a2

�
1� 1

4�2

�
�r2�

�
:

Using @H=@� ¼ _� one gets _� ¼ � leading to

H ¼ ð1� 4�2Þ
2

Z
ð�2 þ�ð�r2Þ�Þ; (51)

which is the Hamiltonian for a massless boson. A field �
redefinition together with a consistent choice of regulari-
zation parameter � leads to the free field massless
Lagrangian

L� ¼
Z

d3xð@��Þ2: (52)

With the choice of A, B y C that we made, the electric
and magnetic fields, as given by Eq. (45), become

Ei ¼ T1=2ð�ijT̂�1@j�þ 2�TT̂�1@i�Þ (53)

B ¼ T1=2T̂�: (54)

We can also express the generator of spatial translations of
the theory in terms of � finding that it coincides with that
of a scalar field,

Pi ¼
Z

d2x�ijEjT�1B ¼
Z

d2x�@i�: (55)

Massless representations of the three-dimensional
Poincaré group describe particles with no spin [29]. This
implies that the parity-violating massless Dirac theory as
well as its dual bosonic theory with Hamiltonian (51)
describes spinless fermions and bosons respectively (see
Ref. [6] for a discussion on this issue).

V. DISCUSSION

We summarize in Fig. 1 the duality relations that we
established in this work between generating functionals for
current correlation functions of a free massless fermion
model in d ¼ 3 space-time dimensions and several bosonic
models. We have not included in the graph the connection
found at the end of Sec. III with a higher-derivative theory
involving purely scalars since in that case the scalar field
completely decouples from the external source. Although
in that case the scalar can be ignored, the dependence of the
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complete bosonic generating function on the source (which
can be thought of as an electromagnetic potential) leads to
the correct massless fermions current algebra.

Concerning the dualities represented in the graph, they
extend, for the massless case, those obtained in the massive
case. Indeed, for m � 0 fermions in d ¼ 3 dimensions, the
connection with the topologically massive gauge theory
(i.e, Maxwell–Chern-Simons theory) was established in
Refs. [2–4], the mass in the fermionic theory being related
to the Chern-Simons coefficient. As already shown in
Ref. [14], the Maxwell–Chern-Simons theory is in turn
dual to a self-dual theory, and this closes the triangle
in Fig. 1 joining the three generating functionals.
Interestingly enough, the role of the mass in the bosonic
models dual to massive fermions is played in the
massless case by the square root of the d ¼ 3 Laplacian,
an operator that can be rigorously defined leading to
nonlocal bosonic theories that are the natural extension
of the Maxwell–Chern-Simons and self-dual theories. As
mentioned at the end of Sec. III, canonical quantization of
these kinds of nonlocal theories can be formulated preserv-
ing causality, as discussed in detail in Ref. [26].

An important point in the dualities discussed in the
previous paragraph concerns the fact that, although the
dual bosonic actions were calculated within a quadratic
approximation, the parity-violating part, which is the one
leading to the correct current algebra, does not receive
higher order corrections so that the bosonization rule (1)
is in this sense an exact one.

Section IV was dedicated to find still another duality
between d ¼ 3 fermion and boson models following a

procedure similar to that developed in Refs. [6,14] to prove
that a topologically massive gauge theory and self-dual
theory can be written in terms of a canonical, free, massive
field � with a Lagrangian that looks like that of a spinless
field. In that case a careful analysis of the Lorentz gener-
ators as functionals of � shows that the spin is in fact �1.
Interestingly enough, the square root of the (spatial)
Lagrangian plays a central role in this massive case in
finding the connection between the vector field A� and

the � field [6].
Wewere able to extend the procedure described above to

the case of the massless bosonic theories that we prove to
be equivalent to the massless free fermion theory, and also
in this case the square root of two-dimensional and three-
dimensional Laplacians enter into the game. In this way we
were able to write the massless bosonic model with a
vector field A� and dynamics governed by a Maxwell-

like Chern-Simons action in terms of single field �, which
in this case, due to peculiarities of the Lorentz group in
d ¼ 3 dimensions, has spin 0, as it is the case for d ¼ 3
massless fermions.
The duality between the d ¼ 3 massless fermion

Lagrangian and the bosonic one given in Eq. (52) can be
seen as the N ¼ 1 version of the bosonization 1=N results
obtained in Ref. [10] based in the AdS/CFT conjecture.
Since the path-integral approach is particularly adequate to
treat d ¼ 3 non-Abelian bosonization, one could expect
that the extension of the results for massive fermions [5]
should lead, in the massless case, to results analogous to
those presented in Ref. [10] concerning the equivalence,
for largeN, of the theory ofN massless scalars coupled to a
level k UðNÞ Chern-Simons term with the Legendre trans-
form of a theory of k massless fermions coupled to a level
N UðkÞ Chern-Simons term. Moreover, the authors of
Ref. [10] conjecture that the fermionic/bosonic duality is
valid for finite values of N, making our results for N ¼ 1
consistent with that claim. We hope to discuss this issue in
a forthcoming work.
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