
GPU optimization of electroencephalogram
analysis

Federico Raimondo1, Juan Kamienkowski2, and Diego Fernández Slezak3

1 Instituto de Ciencias, Universidad Nacional de General Sarmiento
fraimondo@dc.uba.ar

2 Departamento de F́ısica, FCEyN, UBA, Pabellón 1, Ciudad Universitaria,
(C1428EGA) Buenos Aires Argentina

juank@df.uba.ar
3 Departamento de F́ısica, FCEyN, UBA, Pabellón 1, Ciudad Universitaria,

(C1428EGA) Buenos Aires Argentina
dfslezak@dc.uba.ar

Abstract. Nowadays, with the advent of new non-invasive techniques
of brain imaging, researchers have access to neural processes underlying
the cognition in humans. One of the main challenges in this techniques is
the detection of patterns in brain signals, generally very noisy and with
artifacts inserted by vital signs. One of the most successful techniques
for this is Independent Component Analysis which detects statistically
independent components that are produced from different sources. These
methods are very expensive in computational time, with many hours of
processing for a single experiment. We analyzed this algorithm and de-
tect two main types of operations: vector-matrix and matrix-matrix. We
implemented an ad-hoc solution that executes on GPU and compared
this with the original and CUBLAS versions. We obtained a 4x and 40x
of performance increase of vector-matrix and matrix-matrix operations,
respectively. These results are the first step towards real-time EEG pro-
cessing which may produce a significant advance into BCI applications.

1 Introduction

The new non-invasive brain imaging techniques provide access to neural pro-
cesses underlying the cognition in human. However, all these methods involve
two important limitations: (1) the high volume of data and (2) the signal and
noise ratio and artifacts inserted by some vital signs. To attack the second,
whether to eliminate the noise from signal or to identify the signal generated by
these vital signs, a significant number of methods have been developed that re-
quire more and more resources that seriously compromises the task and becomes
prohibitive for application in Brain Machine Interface.

A central problem in signal analysis is the search for a suitable representation
or transformation to explain the observed signal. This multivariate statistical
analysis for the separation of signals is a widely studied topic which is of great
complexity because the sources have a lot of noise inherent in this kind of signals.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 5



Many different approaches have been developed to separate the signals generated
by the study of those sources that contribute only noise, such as PCA [13], factor
analysis [8] and projection pursuit [7], among others.

In recent years, Independent Component Analysis (ICA) [3, 4] has come as
an effective method for source separation and removal of noise and artifacts that
proved to be useful in several scenarios. The most important are the separation
of audio sources in noisy environments [4] and, in particular, brain imaging
- electroencephalogram (EEG), magnetoencephalogram (MEG) and functional
magnetic resonance imaging (fMRI) [14] - both for the removal of artifacts arising
from eye movements [10] and for the analysis.

For example, the two most popular open packages for EEG analysis – EEGLAB
(http://sccn.ucsd.edu/eeglab/) and Fieldtrip (http://fieldtrip.fcdonders.
nl/) – make use of ICA strongly. In figure 1 we show an example of signals ana-
lyzed by ICA using EEGLAB. In the left panel, we show the scalp distribution of
one independent component. In the right panel we show both raw and processed
signals, observing that ICA extracts some unique features -as artifacts- included
in the signal..

(a) Scalp distribution (b) RAW time series (black line) and the processed with ar-
tifacts removed by ICA (red line)

Fig. 1: Example of signals analyzed by ICA using EEGLAB.

As we pointed out, this method has two main challenges for widespread use
into Brain-Computer Interface (BCI). A standard EEG experiment consists in
the collection of data from 132 channels, each consisting of a time series at 512Hz
of sampling rate. This data is stored in single-precision, which implies that a 3-
hour experiment approximates a dataset size of 2.7GB, per subject. Moreover,
analyzing this data with ICA requires a huge amount of computing power; for
example, the 2.7GB dataset would take roughly 72 hours on a current desktop
computer (Intel Core2Duo 4GB RAM), per subject using the implementations
including in the standard toolboxes.

Current standard CPU hardware include no effective tools to operate with
lots of floating point numbers. Today, these include advanced features such as
Streaming SIMD Extensions (SSE) that allow this process to limited data simul-

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 6



taneously which makes them inefficient for this type of calculation. One approach
to solving this problem is the use of Beowulf parallel computing clusters [11].
The main drawback of this implementation is the communication overhead that
is needed to synchronize the different compute nodes involved.

We present a detailed study of operations involved in Infomax ICA [4] and
implement GPU optimizations on relevant high-consumption functions for the
decomposition of EEG signals and removal of artifacts.

2 Independent Component Analysis

The independent component analysis (ICA) is a concept introduced in 1994
by Pierre Common [6]. This analysis, of a random vector, consists of searching
for a linear transformation that minimizes the statistic dependence between its
components. In order to define suitable search criteria, the expansion of mu-
tual information is utilized as a function of cumulants of increasing orders. The
concept of ICA can be seen as an extension of the principal component anal-
ysis (PCA), which can only impose independence up to the second order, and
consequently, defines directions that are orthogonal.

The following statistic model is assumed [9]:

x = My + v (1)

where x, y and v are random vectors with values in R or C with zero mean
and finite covariance, M is a rectangular matrix with at most as many columns
as rows and vector y has statistically independent components. The problem set
by ICA can be summarized as follows: given T samples of vector x, an estimation
of matrix M is desired, and the corresponding samples from vector y. However,
because of the presence of noise v, it is in general impossible to reconstruct the
exact vector y. Since the noise v is assumed here to have an unknown distribution,
it can only be treated as a nuisance, and the ICA cannot be devised for the noisy
model above. Instead, it will be assumed that:

x = As (2)

where s is a random vector whose components are maximizing a ’contrast’
function. This constant vector s is maximum when its components are statisti-
cally independent.

Two variables y1 and y2 are independent if the information about the value
of y1 gives no information about y2 and vice versa. Technically, independence
can be defined by probability densities. Let p(y1, y2) be the probability density
function (pdf) of y1 and y2 and let p1(y1) be the marginal pdf of y1 then:

p1(y1) =

Z
p(y1, y2)dy2 (3)

y1 and y2 are independent if and only if the joint pdf can be factorized in the
following way:

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 7



p(y1, y2) = p1(y1)p2(y2) (4)

This definition applies for n variables, in which case the joint pdf must be a
product of n terms.

This definition is used to derive into a more important property of random
independent variables. Given two functions h1 and h2:

E{h1(y1)h2(y2)} = E{h1(y1)}E{h2(y2)} (5)

where E is the expected value.
One fundamental restriction of ICA is that its independent components must

be non-gaussian for ICA to be possible. To verify this restriction, the matrix A
is assumed to be orthogonal and si gaussian. Then x1 and x2 are gaussian,
uncorrelated and of unit variance. Then, the pdf, by definition, is:

p(x1, x2) =
1

2π
exp(−x

2
1 + x22

2
) (6)

This density is completely symmetrical, therefore it does not contain any
information on the directions of the columns of A. This is why A can not be
estimated.

More rigorously, one can prove that the distribution of any orthogonal trans-
formation of the gaussian (x1, x2) has exactly the same distribution as (x1, x2)
and that x1 and x2 are independent. Thus, in the case of gaussian variables, we
can only estimate the ICA model up to an orthogonal transformation.

In the original paper, the independence was measure by three different tech-
niques (see [6] for the details):

– Nongaussianity as a measure of independence, estimaed by calculating the
Kurtosis.

– Negentropy : tt is based on the information-theoretic quantity of differential
entropy.

– Mutual Information Minimization.

2.1 Infomax (Information Maximization)

In [4], the authors presented a different approach to estimate the independent
components. They proposed a neural network with three columns of neurons,
each representing: (1) the original data (X); (2) the registered data (r); (3) the
approximated independent data (Y ). Each column of neurons combine linearly
by matrixes A and W .

The principle used by this algorithm is maximizing the mutual information
that output Y of a neural network processor contains about its input X. In this
case, it is defined as

I(Y,X) = H(Y )−H(Y |X) (7)

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 8



where H(Y ) is the entropy of output Y and H(Y |X) is the entropy of the output
that did not come from the input. In fact, H(Y ) is the differential entropy of
Y with respect to some reference, such as the noise level or the accuracy of our
discretization of the variables in X and Y . To solve this complexity, only the
gradient of information-theoretic quantities with respect to some parameter w
is considered. This gradients are as well behaved as discrete-variables entropies,
because the reference terms involved in the definition of differential entropies
disappear. The equation (7) can be differentiated, with respect to a parameter
w as:

∂

∂w
I(X,Y ) =

∂

∂w
H(Y ) (8)

because H(X|Y ) does not depend on w.
In the system (1), H(X|Y ) = v. Whatever the level of the additive noise,

maximization of the mutual information is equivalent to the maximization of the
output entropy, because ∂

∂wH(v) = 0.
In consequence, for any invertible continuous deterministic mappings, the

mutual information between inputs and outputs can be maximized by maximiz-
ing the entropy of the outputs alone.

For the unit case, let x be the input and g(x) a transformation function so
g(x) = y with y the output, both I(y, x) and H(y) are maximized when the high
density parts of the probability density function (pdf) of x are aligned with the
high slopes of the function g(x). This action can be described as “matching a
neuron’s input-output function to the expected distribution of signals” expressed
in [12].

The natural (or relative) gradient method simplifies considerably the method.
The natural gradient principle [1, 2] is based on the geometric structure of pa-
rameters space and it is related to the relative gradient principle [5] that ICA
uses.

Using this approach, the authors propose the following iteration of the gra-
dient method to estimate the W matrix:

∆W ∝ W − tanh(
Wx

2
)(Wx)TW (9)

3 Implementation

In summary, ICA consists of the following steps. Data is represented as ma-
trices, which must be operated in a number of preprocessing steps involving
simple operations on them as centering around the mean, rotation, eigenvalues
and eigenvectors. Current implementations (C/C++ and Matlab) make use of
standard linear algebra libraries (BLAS) for the calculations involved.

1. U = W × perm(x) (where perm is a random permutation)

2. Y = −tanh(U
2 )

3. Y U = Y × UT

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 9



4. Y U = Y U + I
5. W = lrate× Y U ×W +W (lrate is the learning rate for each step)

As a first step, we performed a detailed analysis of operations involved in
the method using callgrind, a tool for sequential profiling and optimization [15].
We executed the method for different datasets and profiled the function calls to
the BLAS routines. In figure 2 we present an example of the call map of the
Infomax ICA algorithm. We observe that BLAS routines dgemv and dgemm take
more than 80% of total calculation time, so these are selected as candidates for
GPU optimization.

Fig. 2: Call map of Infomax ICA. BLAS routines dgemm and dgemv, which take
around 80% of total time, are selected as candidates for GPU optimization.

As showed in figure 2 symbols dgemv and dgemm takes 47.9% and 40.78% of
the total amount of time used to calculate ICA for a 136 channels dataset and
22528 samples. Recorded at 512 Hz, this dataset corresponds to a 44 seconds
experiment. Using a 32 channels and 30504 samples dataset dgemv and dgemm

takes 35.37% and 30.73% respectively. Further analysis on the C source code of
the algorithm shows that both BLAS functions takes more percentage of time
when the length of the dataset increases.

Real experiments durations are longer than 44 seconds. This time can scale
up to hours, producing a 132 channels and millions of samples dataset where the
BLAS functions optimizations would take almost 100% of time-usage.

DGEMV BLAS Matrix Vector multiplication

The symbol dgemv corresponds to BLAS function for matrix and vector multi-
plication.

void dgemv(char* trans, int m, int n, double alpha, double *a, int

lda, double *x, int incx, double beta, double * y, int incy)

This computes: y = alpha * a * x + beta * y

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 10



The corresponding parameters in Infomax calls are fixed so as to compute
y = a * x, where a is a square matrix and the number of rows is equal to the
number of channels in the dataset. The vector x corresponds to a single sample
of number of channels dimension.

A naive and simple optimization can be done by using either CUDA or
CUBLAS. For CUBLAS, just replacing the symbol dgemv for the corresponding
symbol in the CUBLAS library:

void cublasDgemv (char trans, int m, int n, double alpha, const double

*A, int lda, const double *x, int incx, double beta, double *y, int

incy)

Nevertheless, both CUDA and CUBLAS uses a different memory space than
standard sequential calculations: the video card RAM. Before starting compu-
tation, copying data from CPU memory to video memory must be performed.

The naive optimization for CUDA is as follows:

1 __global__ void matVec(double* wts, real* data, size_t wrowsize, size_t

drowsize) {

2 sharedsample[threadIdx.x] = data[blockIdx.x * drowsize + threadIdx.x];

3 __syncthreads();

4

5 double value = 0.0;

6 for (int i = 0; i < blockDim.x; i++) {

7 value += wts[threadIdx.x + i * wrowsize] + sharedsample[i];

8 }

9

10 data[threadIdx.x + drowsize * blockIdx.x] = value;

Taking advantage of CUDA shared memory space, this optimization first copies
the vector into shared memory and then makes the matrix vector operation. This
amount of shared memory space depends on CUDA version. Since version 2.0,
CUDA supports double precision floating points operations and 48 KB of shared
memory. This allows to compute matrix-vector operations for dimensions up to
6144 elements. Using aligned memory allows the usage of the optimum memory
access resulting in 128 Byte transactions to main memory without discarding any
data. Shared memory usage to copy the vector to be multiplied decreases the
amount of global memory acceses by the amount of rows in the matrix minus
one for each vector that is multiplied. The execution configuration syntax for
this call to be done needs to set parameters correctly according to the dimension
of both the matrix and vector.

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 11



DGEMM BLAS Matrix Matrix multiplication

The symbol dgemm corresponds to BLAS function for matrix-matrix multiplica-
tion.

dgemm(char *transa, char *trasnb, int m, int n, int k, double alpha,

double *a, int lda, double *b, int ldb, double beta, double *c, int

ldc)

This computes: y = alpha * a * b + beta * c

The corresponding parameters in Infomax calls are fixed so as to compute c

= a * b, where the matrix a is squared and the number of rows is equal to the
number of channels in the dataset.

In this case, the optimization for CUDA, is exactly the same as for dgemv.
Again, for CUBLAS, symbol dgemm may be replaced for the corresponding sym-
bol in the CUBLAS library:

void cublasDgemm (char transa, char transb, int m, int n, int k,

double alpha, const double *A, int lda, const double *B, int ldb, double

beta, double *C, int ldc)

4 Results

Tests have been made to compute matrix-vector and matrix-matrix multiplica-
tion on a Intel Core i7-2600 with 16 GB of RAM and a Nvidia Tesla C2070 video
card. Performance comparisons were made using real datasets with the number
of channels varying from 32 to 256 in 32 channel steps. The amount of samples
vary from 15 minutes experiments to 105 minutes in 15 minutes steps, with a
sampling rate of 512 Hz. More tests have been done with an Nvidia Quadro
4000 showing no significative difference regarding perfomance.

Table 1 shows the rate of performance increment in matrix-vector multipli-
cation between BLAS and CUBLAS. This rate is calculated as
100 ∗ timeOfCUBLAS/timeOfBLAS. The matrix used is squared and has as
many rows as channels in the dataset. The results show the percentage of time
CUBLAS take in comparison to BLAS for the multiplication of the matrix by
every sample in the dataset. Surprisingly, we observe more than 30x performance
decrease with the use of CUBLAS routines on executions with little number of
channels. This bad behavior resides on the fact of inefficient memory allocation:
CUDA has very restrictive memory alignment directions in order to achieve
maximum performance. CUBLAS makes no use of them. Further analisys using
NVIDIA Compute Visual Profiler showed that two factors where the key to this
performance decrease: global and shared memory usage, and active threads per
processor. CUBLAS implementation doubled the amount of global memory ac-
ceses while made half the shared memory ones in comparison with CUDA ad-hoc
implementation. The other factor is the parallel usage of processors in the GPU:
CUBLAS kept an average of 4.24 active warps per cycle, while CUDA average
was 34.73. As the number of channels grow, times for both implementations get
closer, obtaining almost same performance in the biggest datasets. This results

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 12



suggest that an ad-hoc solution as proposed may be necessary in order to take
advantage of GPU architecture.

Experiment length (minutes)
Channels 15 30 45 60 75 90 105

32 3,387.18 3,441.56 3,472.81 3,431.82 3,495.81 3,493.01 3,443.28
64 1,096.45 1,097.52 1,087.50 1,088.67 1,089.22 1,091.38 1,100.20
96 600.68 599.83 601.81 599.83 598.91 597.96 599.42
128 392.63 394.22 394.35 394.27 393.11 395.85 394.77
160 285.94 284.78 286.16 285.22 287.14 287.45 284.85
192 219.71 218.57 218.50 219.82 219.23 219.09 218.05
224 178.45 177.23 176.70 178.08 177.20 177.94
256 150.24 150.72 150.40 149.74 150.47

Table 1: Rate of performance increment between BLAS and CUBLAS in matrix-
vector multiplication. CUBLAS show a very inferior performance than BLAS,
presumably because of bad memory alignment. This rate is calculated as 100 ∗
timeOfCUBLAS/timeOfBLAS.

Similarly, table 3 shows the results comparing the CUDA ad-hoc implemen-
tation and BLAS.

In this case of matrix-vector multiplication, we observe a 4x performance
increment using the ad-hoc GPU specific implementation developed. These re-
sults are possible to obtain because the ad-hoc solution takes into account the
data structures and GPU architecture, making a very efficient use of video card
memory. On the other hand, CUBLAS is a general-purpose implementation that
does not take into account specific characteristics of problem involved and may
lead to inefficient memory operations.

Same executions have been made for matrix-matrix multiplication. Table 2
shows the comparison between the ad-hoc CUDA implementation and BLAS
while table 3 show results for CUBLAS and the ad-hoc CUDA implementation.

As expected, in this case CUBLAS performs the best between the three
implementations. This behavior is caused by the fact that ad-hoc CUDA imple-
mentation does not take into account several factors that maximizes the GPU
processors throughput and more than half of the multiprocessors in the video
card might be idle during the entire operation.

Nevertheless, our implementation showed a 4x performance increment to the
original BLAS routine.

The out-of-the-shelf CUBLAS routine performed the best, obtaining incre-
ments of 10x to 20x in matrix-matrix multiplication performance compared to
the ad-hoc developed one, as shown in table 3. This results show almost a 40x
increment of performance totally using the CUBLAS for matrix-matrix multi-
plication rather than the standard BLAS.

Because of the nature of CUBLAS and the optimization made with CUDA
for matrix-vector multiplication, it is not trivial to implement an hybrid solution

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 13



Total time of the experiment (minutes)

C
ha

nn
el

s

Performance increase of CUDA over BLAS

 

 

15 30 45 60 75 90 105

32

64

96

128

160

192

224

256

Pe
rc

en
ta

je

260

280

300

320

340

360

380

400

420

440

Fig. 3: Rate of performance increment between ad-hoc CUDA implementa-
tion and BLAS in matrix-vector multiplication. This rate is calculated as
100 ∗ timeOfBLAS/timeOfCUDA

Experiment length (minutes)
Channels 15 30 45 60 75 90 105

32 353.33 351.72 333.33 338.98 337.84 340.45 338.83
64 457.58 469.70 463.27 455.64 459.39 457.29 457.33
96 485.94 476.92 474.49 474.71 475.15 475.19 476.70
128 457.89 457.89 456.85 456.11 457.09
160 443.58 445.79 446.07 445.58
192 438.52 440.51 440.23
224 435.06 435.06 435.82
256 421.81 421.59

Table 2: Rate of performance increment between the ad-hoc CUDA implemen-
tation and BLAS in matrix-matrix multiplication. This rate is calculated as
100 ∗ timeOfBLAS/timeOfCUDA

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 14



Experiment length (minutes)
Channels 15 30 45 60 75 90 105

32 1,500.00 1,450.00 1,500.00 1,475.00 1,480.00 1,483.33 542.11
64 3,300.00 2,200.00 2,450.00 2,216.67 2,357.14 2,487.50 2,320.00
96 1,280.00 1,300.00 675.86 745.71 815.00 651.67 700.00
128 2,280.00 2,072.73 2,143.75 2,180.95 2,196.15
160 1,491.67 1,547.83 1,525.71 1,584.44
192 2,336.36 2,221.74 2,194.29
224 1,657.14 1,697.56 1,683.87
256 2,161.90 2,214.63

Table 3: Rate of performance increment between CUBLAS and
Cuda in matrix-matrix multiplication. This rate is calculated as
100 ∗ timeOfCUDA/timeOfCUBLAS

merging both versions. Out matrix-vector operation relies on memory alignment
and access conditions so matrixes are stored with padding between columns,
while CUBLAS matrix-matrix operations needs a contiguous matrix in memory.
Both approaches were tested: a CUBLAS-only version of Infomax ICA with
a result of 50% increase in the amount of the time required to perform and
a CUDA-only version with both ad-hoc optimizations showin a 4x increase in
perfomance.

The matrix-vector optimization applied to Infomax ICA consisted on three
main optimizations. Both optimizations on memory usage described previously
and a new one: Combining asynchronous execution between CPU and GPU.
Random permutations can be achieved by generating a random permutation
vector of integers in the CPU while computing any other operation in GPU
and using the generated integers as indexes in the data matrix to locate the
corresponding randomly permuted vector.

5 Conclusions

Nowadays, with the advent of new non-invasive techniques of brain imaging,
researchers have access to neural processes underlying the cognition in humans.
ICA arises as a very useful method for brain signal analysis for source separa-
tion and removal of noise and artifacts. On the other hand, analyzing data with
ICA requires a huge amount of computing power. We presented a detailed study
of operations involved in Infomax ICA which showed that vector-matrix and
matrix-matrix operations take almost all computational time. Based on these re-
sults, we implemented an ad-hoc solution for GPU optimizations. We compared
the developed solution with the original BLAS and CUBLAS implementations.
In this case of matrix-vector multiplication, we observed a 4x performance in-
crement using the ad-hoc GPU specific implementation developed. CUBLAS
behaved worse than the original one, caused by the inefficient use of memory.
With matrix-matrix operations, CUBLAS routine performed the best, obtaining

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 15



increments of 40x. These promising results suggest that the hybrid implementa-
tion of ICA using the ad-hoc solution for matrix-vector operations and CUBLAS
for matrix-matrix cases would present a very significant performance increase in
ICA calculation.

Acknowledgements

This work was supported by the Nvidia Academic Partnership.

References

1. Amari, S.: A new learning algorithm for blind signal separation. Advances in Neural
Information Processing Systems (1996)

2. Amari, S.: Neural learning in structured parameter spaces-natural Riemannian gra-
dient. In: In Advances in Neural Information Processing Systems. Citeseer (1997)

3. Amari, S.: Natural gradient works efficiently in learning. Neural computation 10(2),
251–276 (1998)

4. Bell, A., Sejnowski, T.: An information-maximization approach to blind separation
and blind deconvolution. Neural computation 7(6), 1129–1159 (1995)

5. Cardoso, J., Laheld, B.: Equivariant adaptive source separation. Signal Processing,
IEEE Transactions on 44(12), 3017–3030 (1996)

6. Comon, P.: Independent component analysis, a new concept? Signal processing
36(3), 287–314 (1994)

7. Friedman, J.: Exploratory projection pursuit. Journal of the American statistical
association 82(397), 249–266 (1987)

8. Harman, H.: Modern factor analysis. University of Chicago Press (1976)
9. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applica-

tions. Neural networks 13(4-5), 411–430 (2000)
10. Jung, T., Makeig, S., McKeown, M., Bell, A., Lee, T., Sejnowski, T.: Imaging brain

dynamics using independent component analysis. Proceedings of the IEEE 89(7),
1107–1122 (2002)

11. Keith, D., Hoge, C., Frank, R., Malony, A.: Parallel ICA methods for EEG neu-
roimaging. In: Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.
20th International. p. 10. IEEE (2006)

12. Laughlin, S.: A simple coding procedure enhances a neuron’s information capacity.
Z. Naturforsch 36(9-10), 910–912 (1981)

13. Oja, E.: Principal components, minor components, and linear neural networks.
Neural Networks 5(6), 927–935 (1992)

14. Schöpf, V., Kasess, C., Lanzenberger, R., Fischmeister, F., Windischberger, C.,
Moser, E.: Fully Exploratory Network ICA (FENICA) on resting-state fMRI data.
Journal of Neuroscience Methods (2010)

15. Weidendorfer, J.: Sequential performance analysis with callgrind and kcachegrind.
Tools for High Performance Computing pp. 93–113 (2008)

40JAIIO - HPC 2011 - ISSN: 1851-9326 - Página 16




