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In this paper an approach to identify delay phenomena from time series is developed. We show that it is
possible to perform a reliable time delay identification by using quantifiers derived from information theory,
more precisely, permutation entropy and permutation statistical complexity. These quantifiers show clear ex-
trema when the embedding delay t of the symbolic reconstruction matches the characteristic time delay tS of
the system. Numerical data originating from a time delay system based on the well-known Mackey-Glass
equations operating in the chaotic regime were used as test beds. We show that our method is straightforward
to apply and robust to additive observational and dynamical noise. Moreover, we find that the identification of
the time delay is even more efficient in a noise environment. Our permutation approach is also able to recover
the time delay in systems with low feedback rate or high nonlinearity.
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I. INTRODUCTION

When studying dynamical phenomena in nature the cor-
responding underlying equations or even the relevant gov-
erning mechanisms are often not known. In fact the starting
point to study many of these systems is a set of measure-
ments of some representative variable of interest at discrete
time intervals, i.e., a black box time series, given by the set
S= hxt , t=1, . . . ,Nj, with N being the number of observations.
An important problem in the analysis of time-series data is
the identification of delayed feedback or delayed interaction
mechanisms present in the dynamics since delay phenomena
are intrinsic to many dynamical processes. The identified de-
lay can give information about the interaction between the
system components. It is then necessary to discriminate the
presence of time delays in order to develop suitable models
for simulation and forecasting purposes. Time delayed dy-
namics are naturally required and implemented to model
many real systems in different fields including biology f1–3g,
optics f4–6g, and climatology f7g, among others. Therefore,
the identification from a time series of a possible delay
present in the system has become one of the key problems in
the study of nonlinear dynamical systems.

Numerous approaches were previously proposed to deter-
mine the unknown delay time tS from recorded time series.
Conventional and widely applied tools are the autocorrela-
tion function f8g and the delayed mutual information sDMId

f9,10g. More recently new techniques were introduced. With-
out being exhaustive we can mention the minimal forecast
error f11,12g, several methods from information theory
f13,14g, the filling factor analysis introduced by Bünner et al.
f15g, the statistical analysis of time intervals between ex-
trema in the time series f16g, and the practical criterion re-
cently proposed by Siefert f17g. In this paper we introduce an
approach by using quantifiers derived from information
theory, more precisely entropy and statistical complexity. It
should be stressed that, in order to evaluate these quantifiers,
a particularly efficient symbolic technique, the Bandt and
Pompe permutation method f18g, is used to estimate the
probability distribution associated with the time series. As it
is widely known, symbolic time-series analysis methods that
discretize the raw time series into a corresponding sequence
of symbols have the potential of analyzing nonlinear data
efficiently with low sensitivity to noise f19g. However, find-
ing a meaningful symbolic representation of the original se-
ries is not an easy task f20,21g. The Bandt and Pompe ap-
proach is the only symbolization technique among those in
popular use that takes into account time causality of the sys-
tem’s dynamics. Then, important details concerning the ordi-
nal structure of the time series are revealed f22–31g.

As will be discussed in detail below, we have found that
the permutation entropy is minimized and the permutation
statistical complexity is maximized when the embedding de-
lay t of the symbolic reconstruction matches the intrinsic
time delay tS of the system. The reliability of our methodol-
ogy is tested using numerical time series obtained from the
widely used Mackey-Glass equation subject to a time delay,
operating in a chaotic regime. The main advantages of our
quantifiers are their simplicity and robustness to noise. Most
importantly, we have found a resonancelike behavior in the
presence of observational and dynamical noise; i.e., the iden-
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tification of the time delay is improved in a noise environ-
ment.

II. PERMUTATION ENTROPY AND PERMUTATION
STATISTICAL COMPLEXITY

The information content of a system is typically evaluated
from a probability distribution P describing the distribution
of some measurable or observable quantity. An information
measure can primarily be viewed as a quantity that charac-
terizes this given probability distribution. Shannon entropy is
very often used as a first natural approach. Given any arbi-
trary probability distribution P= hpi : i=1, . . . ,Mj, the widely
known Shannon’s logarithmic information measure, SfPg
=−oi=1

M pi ln pi, is regarded as the measure of the uncertainty
associated with the physical process described by P. If
SfPg=0 we are in position to predict with complete certainty
which of the possible outcomes i whose probabilities are
given by pi will actually take place. Our knowledge of the
underlying process described by the probability distribution
is maximal in this instance. In contrast, our knowledge is
minimal for a uniform distribution.

It is widely known that an entropy measure does not
quantify the degree of structure or patterns present in a pro-
cess f32g. Moreover, it was recently shown that measures of
statistical or structural complexity are necessary because
they capture the property of organization f33g. This kind of
information is not discriminated by randomness measures.
The opposite extremes of perfect order and maximal ran-
domness sa periodic sequence and a fair coin toss, for ex-
ampled possess no complex structure, and then these systems
are too simple and should have zero statistical complexity. At
a given distance from these extremes, a wide range of pos-
sible degrees of physical structure exists, which should be
quantified by the statistical complexity measure sSCMd.
Lamberti et al. f34g introduced an effective SCM that is able
to detect essential details of the dynamics and differentiate
different degrees of periodicity and chaos. It provides impor-
tant additional information regarding the peculiarities of the
underlying probability distribution, not already detected by
the entropy. This statistical complexity measure is defined,
following the intuitive notion advanced by López-Ruiz et al.
f35g, through the product

CJSfPg = QJfP,PegHSfPg s1d

of the normalized Shannon entropy

HSfPg = SfPg/Smax, s2d

with Smax=SfPeg=ln M s0#HS#1d and Pe
= h1 /M , . . . ,1 /Mj as the uniform distribution, and the dis-
equilibrium QJ defined in terms of the extensive sin the ther-
modynamical sensed Jensen-Shannon divergence. That is,
QJfP , Peg=Q0JfP , Peg with JfP , Peg= hSfsP+ Ped /2g
−SfPg /2−SfPeg /2j the above-mentioned Jensen-Shannon
divergence and Q0 a normalization constant equal the in-
verse of the maximum possible value of JfP , Peg. This value
is obtained when one of the components of P, say pm, is
equal to 1 and the remaining pi are equal to zero. The Jensen-

Shannon divergence, which quantifies the difference between
two sor mored probability distributions, is especially useful to
compare the symbol composition between different se-
quences f36g. The complexity measure constructed in this
way is intensive, similarly to many thermodynamic quanti-
ties f34g. We stress the fact that the above SCM is not a
trivial function of the entropy because it depends on two
different probabilities distributions: the one associated with
the system under analysis, P, and the uniform distribution,
Pe. Furthermore, it was shown that for a given HS value,
there exists a range of possible SCM values f37,38g. Thus, it
is clear that important additional information related to the
correlational structure between the components of the physi-
cal system is provided by evaluating the statistical complex-
ity f39g.

In order to evaluate the two above-mentioned quantifiers,
HS and CJS, an associated probability distribution should be
constructed beforehand. The adequate way of choosing the
probability distribution associated with a time series is an
open problem. Rosso et al. f23g recently showed that im-
provements in the performance of information quantifiers,
such as entropy and statistical complexity measures, can be
expected if the time causality of the system dynamics is
taken into account when computing the underlying probabil-
ity distribution. Specifically, it was found that these informa-
tion measures allow us to distinguish between chaotic and
stochastic dynamics when causal information is incorporated
into the scheme to generate the associated probability distri-
bution. Bandt and Pompe f18g introduced a successful
method to evaluate the probability distribution considering
this time causality. They suggested that the symbol sequence
should arise naturally from the time series, without any
model assumptions. Thus, they took partitions by comparing
the order of neighboring values rather than partitioning the
amplitude into different levels. That is, given a time series
hxt , t=1, . . . ,Nj, an embedding dimension D.1, and an em-
bedding delay time t, the ordinal pattern of order D gener-
ated by

s ° sxs−sD−1dt,xs−sD−2dt, . . . ,xs−t,xsd s3d

has to be considered. To each time s we assign a
D-dimensional vector that results from the evaluation of the
time series at times s− sD−1dt , . . . ,s−t ,s. Clearly, the
higher the value of D, the more information about the past is
incorporated into the ensuing vectors. By the ordinal pattern
of order D related to the time s we mean the permutation
p= sr0 ,r1 , . . . ,rD−1d of s0,1 , . . . ,D−1d defined by

xs−r0t $ xs−r1t $ ¯ $ xs−rD−2t $ xs−rD−1t. s4d

In this way the vector defined by Eq. s3d is converted into a
unique symbol p. The procedure can be better illustrated
with a simple example; let us assume that we start with the
time series h1,3 ,5 ,4 ,2 ,5 , . . .j, and we set the embedding
dimension D=4 and the embedding delay t=1. In this case
the state space is divided into 4! partitions and 24 mutually
exclusive permutation symbols are considered. The first four-
dimensional vector is s1,3,5,4d. According to Eq. s3d this
vector corresponds to sxs−3 ,xs−2 ,xs−1 ,xsd. Following Eq. s4d
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we find that xs−1$xs$xs−2$xs−3. Then, the ordinal pattern
which allows us to fulfill Eq. s4d will be s1,0,2,3d. The sec-
ond four-dimensional vector is s3,5,4,2d, and s2,1,3,0d will be
its associated permutation, and so on. In order to get a unique
result we consider that ri,ri−1 if xs−rit

=xs−ri−1t. This is jus-
tified if the values of xt have a continuous distribution, so
that equal values are very unusual. Otherwise, it is possible
to break these equalities by adding small random perturba-
tions. For all the D! possible permutations pi of order D,
their associated relative frequencies can be naturally com-
puted by the number of times this particular order sequence
is found in the time series divided by the total number of
sequences. Thus, an ordinal pattern probability distribution
P= hpspid , i=1, . . . ,D!j is obtained from the time series. This
way of symbolizing time series, based on a comparison of
consecutive points, allows a more accurate empirical recon-
struction of the underlying phase space of chaotic time series
affected by weak sobservational and dynamicald noise f18g.
To determine pspid exactly an infinite number of terms in the
time series should be considered, i.e., N→` to determine the
relative frequencies. This limit exists with probability 1
when the underlying stochastic process fulfills a very weak
stationarity condition: for k#D, the probability for xt,xt+k
should not depend on t f18g. The probability distribution P is
obtained once we fix the embedding dimension D and the
embedding delay time t. The former parameter plays an im-
portant role for the evaluation of the appropriate probability
distribution since D determines the number of accessible
states, given by D!. Moreover, it was established f40g that
the length N of the time series must satisfy the condition N
@D! in order to obtain a reliable statistics. With respect to
the selection of the other parameter, Bandt and Pompe spe-
cifically considered an embedding delay t=1 in their corner-
stone paper f18g. Nevertheless, it is clear that other values of
t could provide additional information.

In this work we evaluate the normalized Shannon entropy
HS fEq. s2dg and the SCM CJS fEq. s1dg using the permutation
probability distribution P= hpspid , i=1, . . . ,D!j. Defined in
this way, the former quantifier is called permutation entropy
and the latter is called permutation statistical complexity.

III. NUMERICAL RESULTS AND DISCUSSION

To estimate the quantifiers, permutation entropy and per-
mutation statistical complexity, it is necessary to fix the em-
bedding dimension and the embedding delay. It is clear that
the condition N@D! limits the possible values for the em-
bedding dimension. However, a study about the influence of
the embedding delay is still lacking. We hypothesize that this
parameter could be strongly related, if it is relevant, with the
intrinsic time delay of the system under analysis. In order to
check this hypothesis we have estimated the permutation en-
tropy and the permutation statistical complexity as functions
of the embedding delay t for the well-known Mackey-Glass
equation, a paradigmatic time delay system. We consider the
following model equation for the Mackey-Glass oscillator
f1g:

dx

dt
= − x +

axst − tSd
1 + xcst − tSd

, s5d

with t being a dimensionless time, tS the time delay feed-
back, a the feedback strength, and c the degree of nonlinear-

ity. In particular, we choose the typical values a=2, c=10,
and tS=60 for which the system operates in a chaotic re-
gime. Time series were numerically integrated by using He-
un’s method salso called the modified Euler’s methodd f41g
with an integration step Dt=0.01 and sampling step dt=0.2
time units per sample. We analyzed time series with N=106

data points sthe total integration time was 23105 time unitsd.
In Fig. 1 we plot the normalized permutation entropy HS

and the permutation SCM CJS as functions of the embedding
delay t for different embedding dimensions s4#D#8d. It
can be clearly observed that these quantifiers have sharp and
well-defined minima and maxima, respectively, when the
embedding delay t of the symbolic reconstruction is very
close to the intrinsic time delay tS of the system, i.e., for t
near 300 stS /dt=300d. These extrema are due to an enhance-
ment of time correlations for this value of t, resulting in the
probability distribution of the ordinal patterns being different
from the uniform probability distribution. Consequently, the
permutation entropy decreases and the permutation statistical
complexity increases, revealing the presence of some degree
of order. This behavior is the hallmark of time delayed dy-
namics. It is interesting to note that in cases in which the
system has no delayed dynamics, the quantifiers do not de-
velop clear extrema that could generate spurious delay iden-
tification. We have analyzed the behaviors of the permutation
entropy and permutation statistical complexity as functions
of the embedding delay t for numerical simulations of the
different coordinates of the Lorenz system f42g in the chaotic
regime, and we have not found pronounced extrema.

From Figs. 1sbd and 1scd it can be concluded a slight time
delay overestimation. This overestimation can be attributed
to the internal response time or inertia of the Mackey-Glass
system. The inertia is an inherent property difficult to deter-
mine precisely and affects most of the methods proposed to
identify time delay from time series f15,43,44g. We have
estimated the same time delay by using the autocorrelation
function and the DMI since the inertia also affects these con-
ventional techniques. It can also be seen from Figs. 1sbd and
1scd that the time delay estimation is independent of the em-
bedding dimension value. The best discrimination is obtained
for the largest allowed value of D. By increasing the length
and the number of symbols, i.e., by increasing the embed-
ding dimension D, more information is being included when
estimating any quantifier. Thus, it is reasonable that a better
detection can be achieved with higher embedding dimen-
sions. It is worth noting that there are other minima and
maxima for the permutation entropy and permutation statis-
tical complexity, respectively, but being less pronounced.
These other peaks correspond to harmonics and subharmon-
ics of the system’s time delay tS. Thus, their presence con-
tributes to the identification of the time delay. In the case of
the permutation statistical complexity, the amplitude of the
peak associated with the delay of the system has the largest
amplitude, as can be seen in Fig. 1sad. We attribute this par-
ticular behavior to a reinforcement of the system delay effect
associated with the special way of choosing the delay em-
bedding sequence. According to the results shown in Fig.
1sad, we conclude that the permutation statistical complexity
identifies the system delay better than the permutation en-
tropy because the contrast with the base line is higher. It was
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recently shown that, in some cases f39,45,46g, the statistical
complexity can be a particularly useful and efficient informa-
tion theoretical quantifier. Based on these previous conclu-
sions, from now on, we continue the analysis by considering

that the permutation statistical complexity CJS with embed-
ding dimension D=8 is the best quantifier to reach the goal
of identifying the system’s time delay under study.

To go further we analyzed the case of two time delays.
Numerical data were obtained extending Eq. s5d to include
two time delays by employing the same generalization fol-
lowed in Ref. f47g,

dx

dt
= − x +

1

2o
i=1

2
axst − tS,id

1 + xcst − tS,id
. s6d

The same parameters sa=2, c=10d and integration method
as in the one time delay case were implemented. Figure 2
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FIG. 1. sColor onlined sad Permutation entropy HS and permu-
tation statistical complexity CJS as a function of the embedding
delay t for embedding dimensions 4#D#8 sN=106 data pointsd.
Enlargement near the time delay tS of the system in order to see
more clearly the effect of the embedding dimension on the sbd HS

and scd CJS estimations. D increases from top to bottom for HS and
from bottom to top for CJS.
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FIG. 2. sColor onlined Permutation statistical complexity CJS as
a function of the embedding delay t for embedding dimensions D
=8 sN=106 data pointsd in the case of a Mackey-Glass system with
time delays tS,1=60 and tS,2=96.
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FIG. 3. sColor onlined Semilogarithmic plot of the permutation
statistical complexity CJS as a function of the embedding delay t for
different levels of observational noise. The noise level associated
with the different curves sNL=0.05,0.1,0.15,0.2,0.25,0.3,
0.35,0.4,0.5,0.6,0.7,0.8,0.9,1.0d increases from top to bottom.
The embedding dimension D=8 and N=106 data points. Ten inde-
pendent realizations for each noise level are plotted. Since the dis-
persion is very small, the differences between these ten lines are
hardly distinguishable.
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shows the behavior of the permutation statistical complexity
CJS as a function of the embedding delay t for embedding
dimensions D=8 in the case of a Mackey-Glass system with
time delays tS,1=60 and tS,2=96. Pronounced maxima of the
permutation statistical complexity for t,300 stS,1 /dt=300d
and t,480 stS,2 /dt=480d allow us to identify the two time
delays present in the system. Thus, multiple delays can also
be identified with this methodology. The correct identifica-
tion of multiple delays which are at commensurate ratios is
in general a more complicated problem and will be addressed
elsewhere.

Our next goal is to quantify the effect an observational
additive noise has on the proposed approach. Since experi-

mental time series are naturally affected by a certain amount
of observational noise, it is important to check the perfor-
mance of our approach in the case of noisy time series. For
this purpose a Gaussian white noise was added to the origi-
nal Mackey-Glass simulated time series. Different noise lev-
els sNLd from 0.05 to 1, defined by the standard deviation of
the noise divided by the standard deviation of the original
signal, were considered. Ten independent realizations were
taken into account in order to have better statistics. Figure 3
shows the performance of CJS for D=8 in the region of in-
terest, that is, around t=300. It can be clearly seen that our
approach is very robust under the noise influence.

In order to better measure this effect, we have estimated
the ratio between the amplitude at the delay feedback peak
and the mean value of the background sthe usual signal-to-
noise ratiod. The results are shown in Fig. 4. The resulting
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back as a function of the
observational noise level. The embedding dimension was fixed
equal to 8 and N=106 data points. Notice that the maximum ratio is
obtained for a value of NL close to 0.2 and that more reliable time
delay identifications are obtained with added observational noise in
the range 0,NL,0.4. Error bars indicate standard deviations from
ten independent realizations.
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dynamical noise level. The embedding dimension was fixed equal
to 8 and N=106 data points. Observe the maximum obtained for a
Langevin force D of intensity near 0.15. Error bars indicate stan-
dard deviations from ten independent realizations.
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FIG. 6. sColor onlined Signal-to-noise ratio srd for the delayed
mutual information sDMId as a function of sad the observational
noise level sNLd and sbd the dynamical noise level sDd. Error bars
indicate standard deviations from ten independent realizations. The
probability distributions were estimated with the usual histogram by
using 28 bins.
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plot displays a clear maximum of the ratio r=CJS
peak /CJS

back at
an intermediate noise level near 0.2. This value can be con-
sidered as the optimal amount of observational noise for the
time delay identification purpose. It is worth noting that ac-
cording to these results the identification of the time delay is
more reliable in the presence of observational noise in the
range 0,NL,0.4. A similar resonancelike behavior was re-
cently found by Staniek and Lehnertz f25g. These authors
analyzed the influence of a static sobservationald noise in the
detectability of directional coupling by estimating a symbolic
transfer entropy. The ratio of the directionality indices for
noisy and noise-free time series in a numerical example dis-
plays an analogous behavior ssee, for instance, Fig. 3 of Ref.
f25gd. More importantly, the same symbolic technique,
namely, the Bandt and Pompe permutation method, was
adopted to estimate this quantifier.

With the aim of studying also the effect of a dynamical
noise, we have simulated the Mackey-Glass system fEq. s5dg
including an additive Gaussian white noise term of zero
mean and correlation D. Langevin forces of different
strengths D were considered. The results obtained for the
ratio r=CJS

peak /CJS
back as a function of different noise strengths

are shown in Fig. 5. A resonancelike behavior is also ob-
served which indicates a better performance of the quantifier
in the presence of noise. A significant maximum for r is
found when D is near 0.15.

We have also studied the effect that observational and
dynamical noises have on the classical delayed mutual infor-
mation in order to compare with the performance of our
permutation-information-theory approach. In the case of the
DMI the standard histogram was used to estimate the prob-
ability distribution associated with the time series. In particu-
lar, 28 nonoverlapping equal-sized consecutive subintervals
were employed to divide the full range. Similar results were
obtained with other numbers of bins. From Fig. 6 it can be
concluded that the performance of this information theory
standard approach gets worse in the presence of noise. The
signal-to-noise ratio is a continuously decreasing function of
the noise level for both observational and dynamical noises.
Thus, we stress the fact that our permutation information
approach is particularly useful and efficient for experimental
data where noise is inherently present.

It is well known that the time delay identification be-
comes more difficult for smaller values of the feedback
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strength or stronger nonlinearity. Rontani et al. f43,44g
showed that the time delay signature of a chaotic semicon-
ductor laser with optical feedback can be blurred when the
feedback rate is relatively weak. With the aim of checking
the ability of the proposed approach in this more severe time
delay identification scenario, we have analyzed numerical
simulations of the Mackey-Glass system with the same pa-
rameters sc=10 and tS=60d but low feedback strength sa
=1.2d. Moreover, additive Gaussian white noises of different
intensities were added. We have also reduced the length of
simulations to N=53103 data points. Figure 7 compares the
results obtained for the permutation statistical complexity
and the delayed mutual information for two different noise
strengths D=0.15 and 0.45. It can be concluded that the time
delay is clearly recovered by our approach in both cases.
However, the recovery of the time delay for DMI is less
straightforward. Particularly, in the noisier scenario sD
=0.45d the time delay peak is on the order of the fluctuating
background.

Finally, in order to test the performance of the permuta-
tion statistical complexity quantifier in a system with high
nonlinearity, we analyze numerical simulations of a ring of
four unidirectionally delay-coupled Mackey-Glass oscillators
in the presence of dynamical noise. It has been recently re-
ported that the fingerprint of the time delay can be signifi-
cantly reduced in this system due to the stronger nonlinearity
f48g. 100 independent numerical realizations of length N
=213 data points with additive Gaussian white noise of inten-
sity D=0.1 were considered for this system. We find that our
permutation approach is able to discriminate the presence of
the time delay in about 50% of cases and the DMI is suc-
cessful in only 25% of realizations. For illustrating the re-
sults obtained we show in Fig. 8 a particular realization in
which both quantifiers are successful and, in Fig. 9, another
realization in which only the permutation quantifier is able to
unveil the time delay. It is worth mentioning that our permu-
tation approach is successful in all realizations where the
DMI gives a positive answer.
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FIG. 8. sColor onlined Time delay identification for a ring of four unidirectionally delay-coupled Mackey-Glass oscillators in the presence
of dynamical noise sD=0.1d. sad Permutation statistical complexity sCJSd with embedding dimension D=3 and sbd DMI estimated by using
a histogram with 28 bins. For this realization both quantifiers are able to identify the presence of the feedback delay at 300 time units.
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FIG. 9. sColor onlined Time delay identification for a ring of four unidirectionally delay-coupled Mackey-Glass oscillators in the presence
of dynamical noise sD=0.1d. sad Permutation statistical complexity sCJSd with embedding dimension D=3 and sbd DMI estimated by using
a histogram with 28 bins. For this realization only the permutation quantifier is able to identify the presence of the feedback delay at 300 time
units.
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IV. CONCLUSIONS

Delay phenomena are of considerable practical impor-
tance. Thus, time delay identification from experimental time
series within an inherent noise environment is, nowadays, an
important challenge. In this work we introduced a reliable
and simple approach to perform this task. Two different in-
formation theory quantifiers estimated by using an efficient
symbolic technique, namely, the permutation entropy and the
permutation statistical complexity, are able to reveal the
presence of a time delay in the standard well-known
Mackey-Glass system. The fingerprint of the time delayed
dynamics is associated with a minimum of the permutation
entropy and, simultaneously, a maximum of the permutation
statistical complexity. Moreover, it has been shown that the
latter quantifier is more sensitive for the time delay identifi-
cation purpose than the entropy quantifier. By analyzing the
influence of additive observational and dynamical noises we
found a noise-enhanced phenomenon: the time delay identi-
fication can be improved by the presence of noise. This result
is particularly valuable for analyzing experimental data. We

have also shown that our permutation approach is useful for
unveiling the presence of a time delay in difficult time delay
identification scenarios, such as systems with low feedback
rates or strong nonlinearities, even if only small data sets are
available. A more in depth analysis for gaining insights into
the nature of the noise-enhanced mechanism together with
real experimental testing will be the goal of a next study.
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