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In this paper we introduce a multiscale symbolic information-theory approach for discriminating nonlinear
deterministic and stochastic dynamics from time series associated with complex systems. More precisely, we
show that the multiscale complexity-entropy causality plane is a useful representation space to identify the range
of scales at which deterministic or noisy behaviors dominate the system’s dynamics. Numerical simulations
obtained from the well-known and widely used Mackey-Glass oscillator operating in a high-dimensional chaotic
regime were used as test beds. The effect of an increased amount of observational white noise was carefully
examined. The results obtained were contrasted with those derived from correlated stochastic processes and
continuous stochastic limit cycles. Finally, several experimental and natural time series were analyzed in order
to show the applicability of this scale-dependent symbolic approach in practical situations.
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I. INTRODUCTION

It is clear that recorded signals from experimental mea-
surements give us very useful information to reveal the
deterministic or stochastic character of the system under
analysis. However, the task to distinguish between regular,
chaotic, and stochastic dynamics from complex time series
can be a critical and subtle issue [1]. Particularly, deterministic
chaotic time series arising from high-dimensional nonlinear
systems share several properties with those generated by
stochastic processes, e.g., a wide-band power spectrum and
a long-term unpredictable behavior. Moreover, experimental
chaotic signals are unavoidably contaminated by noise, making
the discrimination task even more challenging [2]. It is also
well known that the observed dynamics can be strongly
dependent on the resolution scale used to sample the signal.
The notion of chaotic or stochastic behavior of a system on a
certain range of scales was introduced by Cencini et al. [3]. The
time scales where these two behaviors dominate the system’s
dynamics are usually different since the stochastic forcing
kicks the dynamics to larger scales and this effect is bounded
to scales smaller than those showing chaotic motion [4].
The identification of these temporal scales is fundamental
to develop suitable models for simulation and forecasting
purposes. Consequently, it is essential to explicitly include
the time scale notion in the measure devised for a more proper
characterization. We can mention the multiscale entropy [5]
and the scale-dependent Lyapunov exponents [4] as two
alternatives introduced with this aim in mind. The importance
of addressing the multiscale feature is straightforwardly
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concluded from different applications associated with these
previously introduced measures [6].

In this paper we present a reliable and computationally fast
multiscale symbolic information-theory approach to identify
the time scales where stochastic and nonlinear deterministic
components govern the system’s dynamics. It can be easily
applied to the time series obtained from some representative
variable of the complex system under analysis. As will be
shown below, short noisy scalar time series can be efficiently
characterized on a wide range of scales, discriminating where
the stochastic and chaotic dynamics are intrinsically present.
Thus, this methodology can help shed new light on the
characterization of noisy chaotic time series.

II. MULTISCALE COMPLEXITY-ENTROPY CAUSALITY
PLANE

An information-theory quantifier can be defined as a
measure that is able to characterize some property of the
probability distribution associated with an observable or
measurable quantity. Entropy, regarded as a measure of
uncertainty, is the most paradigmatic example. For a discrete
variable x, which can take a finite number M of possible values
xi ∈ {x1, . . . ,xM} with corresponding probabilities pi ∈ P =
{p1, . . . ,pM}, Shannon’s logarithmic information measure is
defined by S[P ] = −PM

i=1 pi lnpi [7]. This functional is
equal to zero when we are able to predict with full certainty
which of the possible outcomes i whose probabilities are
given by pi will actually take place. Our knowledge of the
underlying process, described by the probability distribution,
is maximal in this instance. In contrast, this knowledge is
minimal, commonly, for a uniform distribution. It is well
known, however, that the degree of structure present in
a process is not quantified by randomness measures and,
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consequently, measures of statistical or structural complexity
are necessary for a better understanding of chaotic time series
[8]. The opposite extremes of perfect order and maximal
randomness (a periodic sequence and a fair coin toss, for
example) are very simple to describe because they do not have
any structure. The complexity should be zero in these cases.
At a given distance from these extremes, a wide range of
possible degrees of physical structure exists. The complexity
measure allows one to quantify this array of behavior [9].
In this work we have considered the effective statistical
complexity measure (SCM) introduced by Lamberti et al. [10]
since it is able to detect essential details of the dynamics,
and it also discriminates different degrees of periodicity, i.e.,
cycles of period 2,4,8,16,32, . . . associated with the period-
doubling bifurcation route to chaos are clearly distinguished.
This statistical complexity measure is defined, following the
seminal notion advanced by López-Ruiz et al. [11], through
the product

CJS[P ] = QJ [P,Pe] HS[P ] (1)

of the normalized Shannon entropy

HS[P ] = S[P ]/Smax (2)

with Smax = S[Pe] = ln M , (0 6 HS 6 1) and Pe = {1/M,

. . . ,1/M} the uniform distribution, and the disequilibrium
QJ defined in terms of the Jensen-Shannon divergence.
That is, QJ [P,Pe] = Q0J [P,Pe] with J [P,Pe] = {S[(P +
Pe)/2] − S[P ]/2 − S[Pe]/2} the above-mentioned Jensen-
Shannon divergence and Q0 a normalization constant, equal
to the inverse of the maximum possible value of J [P,Pe].
This value is obtained when one of the components of P , say
pm, is equal to one and the remaining pi are equal to zero.
The Jensen-Shannon divergence, that quantifies the difference
between two (or more) probability distributions, is especially
useful to compare the symbolic composition between different
sequences [12]. Note that the above introduced SCM depends
on two different probability distributions, the one associated
to the system under analysis, P , and the uniform distribution,
Pe. Furthermore, it was shown that for a given value of HS ,
the range of possible CJS values varies between a minimum
Cmin

JS and a maximum Cmax
JS , restricting the possible values of

the SCM in a given complexity-entropy plane [13]. Thus, it
is clear that important additional information related to the
correlational structure between the components of the physical
system is provided by evaluating the statistical complexity
measure.

In order to calculate the two information-theory-derived
quantifiers mentioned previously, a probability distribution
should be estimated from the time series of the system. The
Bandt and Pompe permutation methodology was employed in
our analysis due to its simplicity and effectiveness [14]. This
symbolic technique, based on the ordinal relation between
the amplitude of neighboring values, arises naturally from
the time series, and allows one to avoid amplitude threshold
dependencies that affect more conventional methods based on
range partitioning. It is clear that, applying this prescription
for symbolizing time series, some details of the original
amplitude information and variability are lost. However,
a meaningful reduction of the complex systems to their
basic inherent structure is provided. Furthermore, the ordinal

pattern distribution is invariant with respect to nonlinear
monotonous transformations [14]. Thus, nonlinear drifts or
scalings artificially introduced by a measurement device do not
modify the quantifiers’ estimations, a property highly desired
for the analysis of experimental data. Technically speaking,
the ordinal pattern probability distribution is obtained once we
fix the embedding dimension D and the embedding delay time
τ . The former parameter, D, refers to the number of symbols
that form the ordinal pattern. Its choice depends on the length
N of the time series in such a way that the condition N À D!
must be satisfied in order to obtain reliable statistics [15]. It is
worth remarking that there are D! possible permutations, and
accessible states, for a D-dimensional vector. For practical
purposes, Bandt and Pompe recommend D = 3, . . . ,7 in
their cornerstone paper. The embedding delay τ is the time
separation between symbols, and it physically corresponds
to multiples of the sampling time of the signal under analysis.
Consequently, different time scales are considered by changing
the embedding delays of the symbolic reconstruction [16].
(Please see Refs. [17,18] for further details about the Bandt
and Pompe permutation methodology.) A related approach,
based on computing the number of forbidden ordinal patterns
present in the time series, has been successfully used to find
evidence of determinism in noisy time series [19]. In this
work the normalized Shannon entropy HS [Eq. (2)], and
the SCM CJS [Eq. (1)], are evaluated using the permutation
probability distribution. Defined in this way, these quantifiers
are usually known as permutation entropy and permutation
statistical complexity [20]. They characterize the diversity and
correlational structure, respectively, of the orderings present in
the complex time series. We have previously shown that these
quantifiers are able to efficiently identify the delay phenomena
from chaotic time series [17]: HS is minimized and CJS is
maximized when the embedding delay τ of the symbolic re-
construction matches the intrinsic time delay τS of the system.

The complexity-entropy causality plane (CECP) is defined
as the two-dimensional (2D) diagram obtained by plotting
permutation statistical complexity (vertical axis) versus per-
mutation entropy (horizontal axis) for a given system [21].
This representation space follows directly from the original
complexity-entropy diagram approach introduced by Crutch-
field and Young [22]. The term causality remembers the fact
that temporal correlations between successive samples are
taken into account through the Bandt and Pompe recipe used to
estimate both information-theory quantifiers. This diagnostic
tool was shown to be particularly efficient to distinguish
between the deterministic chaotic and stochastic nature of a
time series since the permutation quantifiers have distinctive
behaviors for different types of motion. According to the
findings obtained by Rosso et al. [21], chaotic maps have
intermediate HS values, while CJS reaches larger values,
very close to those of the limit. For regular processes, both
quantifiers have small values, close to 0. Finally, totally
uncorrelated stochastic processes are located in the planar
location associated with HS and CJS near 1 and 0, respectively.
It has also been found that 1/f α correlated stochastic processes
with 1 < α < 3 are characterized by intermediate permutation
entropy and intermediate statistical complexity values [20].

As pointed out by Cencini et al. [3] the underlying chaotic
or stochastic nature of a system may depend on the resolution
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of the data record, and, as a consequence, it is more suitable to
define the concept of deterministic or stochastic behavior on
a certain range of scales. Hence, a scale-dependent scheme
is the most natural for dealing with complex multiscaled
data [4]. Basically, we propose to generalize the estimation of
both symbolic quantifiers, permutation entropy and statistical
complexity, to different embedding delays. Therefore, the scale
is explicitly included in these measures and their dependence
on resolution can be thoroughly explored. The multiscale
complexity-entropy causality plane refers to the parametric
curve described by the permutation quantifiers estimated from
a time series with the embedding delay as parameter and a
chosen embedding dimension. According to the location in
this representation space, the regular, chaotic or stochastic
character for different scale ranges can be concluded. This
approach offers a more versatile tool for discriminating
dynamics at different temporal or spatial scales. In fact, the
importance of selecting an appropriate embedding delay in
the estimation of the permutation quantifiers (HS and CJS) has
been recently confirmed for other purposes, such as identifying
periodicities in natural time series [16], estimating intrinsic
time scales of delayed systems [17,18], quantifying the degree
of unpredictability of the high-dimensional chaotic fluctua-
tions of a semiconductor laser subject to optical feedback [23],
and classifying cardiac biosignals [24].

III. NUMERICAL RESULTS

We have initially analyzed the behavior of the proposed
scale-dependent approach in a numerically controlled situa-
tion. More precisely, we consider the well-known Mackey-
Glass equation, a paradigmatic time-delay system [25], given
by

dx

dt
= −x + ax(t − τS)

1 + xc(t − τS)
(3)

with t being a dimensionless time, τS the time-delay feedback,
a the feedback strength, and c the degree of nonlinearity. In
particular, we choose the typical values a = 2, c = 10, and
τS = 60 for which the system operates in a high-dimensional
chaotic regime. The time series were numerically integrated
by using the Heun method (also called the modified Euler
method) with an integration step 1t = 0.01 and sampling step
δt = 0.02 time units/sample. We analyzed time series with
N = 105 data points (the total integration time was 2 × 103

time units). Gaussian white noise was added to the original
noise-free chaotic simulations in order to test the effect that an
uncorrelated stochastic component has on the results. Different
noise levels (NL), defined by the standard deviation of the
noise divided by the standard deviation of the original signal,
were considered. In Fig. 1 we plot the normalized permutation
entropy HS and the permutation SCM CJS as a function of the
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FIG. 1. (Color online) (a) Permutation entropy HS and (b) permutation statistical complexity CJS as a function of the embedding delay τ

with embedding dimension D = 6 for the Mackey-Glass oscillator operating in a chaotic regime. The effect of different levels of observational
noise can be contrasted with the results obtained for the original noise-free chaotic dynamics. Mean and standard deviation for τHmin and τCmax

values corresponding to 20 independent numerical realizations of length N = 105 data points are depicted in (c) for different noise levels
(NL = 0.05,0.1, . . . ,0.95,1.0). Curves described by the permutation quantifiers in the CECP are illustrated in (d). The dashed lines represent
the maximum and minimum complexity values for a fixed value of the entropy.
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embedding delay τ for embedding dimension D = 6. Similar
results were also obtained for other embedding dimensions
(D = 4, D = 5, and D = 7). Our main intention is to compare
the results obtained in the noise instance with respect to those
obtained for the pure chaotic dynamics. In the absence of
observational noise, Figs. 1(a) and 1(b) show, respectively, that
HS has a monotonically increasing behavior for increasing
embedding delays, while CJS reaches a maximum at an
intermediate embedding delay τCmax . The value associated with
this temporal scale, which appears to be slightly dependent on
the noise environment [please see vertical lines in Fig. 1(b)],
represents the minimally required sampling rate to capture all
the information related to the nonlinear correlations of the un-
derlying chaotic dynamics [18,26]. In the presence of noise, the
entropy quantifier reaches a minimum value at an embedding
delay smaller than τCmax . This embedding delay, henceforth
denoted as τHmin , can be interpreted as the transitional time
scale between the stochastic and the chaotic dynamics. Note
that τHmin increases with the noise level, as is evident following
vertical lines added to Fig. 1(a). What is more, τHmin tends to
τCmax for highly noisy data [Fig. 1(c)]. Since this behavior is
directly related to the amount of observational noise added,
it might be possible to quantify the noise level with this
procedure. A more detailed investigation of this issue is beyond
the scope of the present paper and will be performed elsewhere.

From Fig. 1(d) it can be concluded that, under the
presence of uncorrelated observational noise, the permutation
quantifiers describe a clear clockwise loop in the CECP as
the embedding delay increases. This result can be interpreted
taking into consideration that (i) for small embedding delays,
the uncorrelated stochastic dynamics is detected and, conse-
quently, the quantifiers are located in the bottom right corner
withHS andCJS near 1 and 0, respectively; (ii) for intermediate
embedding delays, the nonlinear structures related to the
intrinsic chaotic dynamics are optimally discriminated with
CJS reaching a maximum value for τCmax ; and (iii) for larger
embedding delays the original noisy chaotic dynamics is un-
dersampled, any information about the nonlinear determinism
is progressively lost, and the data appear to be stochastic
rather than chaotic. Contrarily, in the pure chaotic case,
the positions described by these symbolic quantifiers move
gradually from the left-hand corner to the right-hand corner
of the CECP. The difference is principally due to the fact that,
now, the underlying deterministic behavior is oversampled
for very low values of the embedding delay, and an artificial
regular behavior is spuriously concluded for these small scales.
Colinearities are introduced when a high sampling rate is used
to capture a low frequency dynamics, leading to a decrease in
the entropy value [27]. Summarizing, the curve described by
the permutation quantifiers as a function of the embedding
delay allows us to characterize the relative importance of
the information redundancy, determinism, and stochasticity
present in the underlying complex dynamics. We have also
confirmed a quantitatively similar behavior for the Lorenz and
Rössler systems by numerical simulations in the chaotical
regime. Our results clearly demonstrate that the choice of
an inappropriate sampling time can hinder the evidence on
nonlinear determinism from a chaotic dynamics.

With the aim to test the approach in a purely stochastic
scenario, we have studied numerical simulations of correlated

stochastic processes. Particularly, we have considered the
fractional Brownian motion (fBm) process because this is
a paradigmatic model for 1/f α processes. Moreover, the
ubiquity of time series with long-range correlation in many
areas of science and engineering is widely accepted [28].
Twenty independent realizations of length N = 105 data points
for fBm with Hurst exponents H = 0.3 (antipersistent corre-
lation), H = 0.5 (ordinary Brownian motion), and H = 0.7
(persistent correlation) were simulated, each series starting at
a different initial condition, by employing the method of Wood
and Chan, which is both exact and fast [29]. Small amounts of
Gaussian white noise (NL = 0.01, 0.05, and 0.1) were added to
investigate the effect of an observational additive noise. From
Fig. 2 it can be concluded that the curves described by the per-
mutation quantifiers in the CECP for these stochastic instances
are different than those obtained for the chaotic ones. In the
noise-free case and for the different Hurst exponent, it is found
that both permutation quantifiers have constant values inde-
pendently of the embedding delay τ . This constant behavior
is expected since fBm are self-similar processes, i.e., invariant
in distribution under suitable scaling of time. So, the relative
frequencies of the ordinal patterns do not depend on the value
of the embedding delay, and quantifiers derived from the per-
mutation probability distribution, such as permutation entropy
and permutation statistical complexity, are independent of the
time scale considered [30]. When observational noise is added,
permutation quantifier estimations are especially affected for
smaller time scales: HS → 1 and CJS → 0 when τ → 1
independently of the Hurst exponent value. The effect is much
more pronounced for higher noise levels and for higher H . It
should be stressed that a very small amount of noise is enough
to destroy the self-similarity feature of the original fBm.

Finally, we have tested the behavior of the introduced
symbolic approach in the case of stochastic oscillations, where
other methods, such as the noise titration technique [31], are
shown to fail by giving a false positive detection of chaos [32].
Following the analysis performed by Gao et al. [4,32], we have
studied the stochastically driven van der Pol’s oscillator given
by

dx/dt = y + D1η1(t), dy/dt = −(x2 − 1)y − x + D2η2(t),

(4)

where hηi(t)i = 0, hηi(t)ηi(t 0)i = δij δ(t − t 0), i,j = 1,2, and
the parameters Di, i = 1,2 characterize the strength of noise.
Time series of length N = 105 data points, integration step
1t = 0.001, and sampling step δt = 0.02 were numerically
generated by using the Euler-Maruyama method. The x

coordinate of the system was chosen for the study. Results
obtained for both permutation quantifiers as a function of
the embedding delay τ with embedding dimension D = 6 are
shown in Fig. 3. Curves described by the estimated quantifiers
in the CECP are displayed in Fig. 4. Specifically, we have
compared the results obtained in the noise-free case [Fig. 3(a)]
with those derived for strengths of noise D1 = D2 = 0.01
[Fig. 3(b)], D1 = D2 = 0.03 [Fig. 3(c)], and D1 = D2 = 0.05
[Fig. 3(d)]. On the one hand, from Fig. 3(a), it can be concluded
that both quantifiers have small estimated values, close to 0,
when the embedding delay τ matches the period and multiples
of the period of the van der Pol’s oscillator. On the other
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FIG. 2. (Color online) Permutation quantifiers (HS and CJS) as a
function of the embedding delay τ with embedding dimension D = 6
for fBm with Hurst exponent H = 0.3 (upper plot), H = 0.5 (central
plot), and H = 0.7 (lower plot). Mean values corresponding to 20
independent numerical realizations of length N = 105 data points
are depicted for the noise-free case and for different noise levels
(NL = 0.01, NL = 0.05 and NL = 0.10). Curves described by the
permutation quantifiers in the CECP are displayed in the insets. The
dashed lines represent the maximum and minimum complexity values
for a fixed value of the entropy.

hand, in the stochastic instances, Figs. 3(b)–3(d), HS jumps
abruptly to values close to 0.9 for these particular embedding
delay values. Therefore, the presence of dynamical noise can
be clearly detected by the permutation entropy quantifier
when the embedding delay matches the oscillation period
and its multiples. As a consequence, curves described by
the permutation quantifiers in the CECP, depicted in Fig. 4,
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FIG. 3. (Color online) Permutation quantifiers as a func-
tion of the embedding delay τ with embedding dimension
D = 6 for the van der Pol’s oscillator. (a) Noise-free case,
(b) D1 = D2 = 0.01, (c) D1 = D2 = 0.03, and (d) D1 = D2 =
0.05.

046210-5



L. ZUNINO, M. C. SORIANO, AND O. A. ROSSO PHYSICAL REVIEW E 86, 046210 (2012)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

HS

C J
S

Noise-free
D1 = D2 = 0.01
D1 = D2 = 0.03
D1 = D2 = 0.05

FIG. 4. (Color online) Curves described by the permutation
quantifiers in the CECP for the van der Pol’s oscillator (D = 6).
The dashed lines represent the maximum and minimum complexity
values for a fixed value of the entropy.

move from the regular behavior associated with the original
oscillatory dynamics to the stochastic and unpredictable one
detected for these more noise-sensitive temporal scales.

IV. EXPERIMENTAL RESULTS

Several experimental and natural records were tested in or-
der to illustrate the performance of our method in real contexts.
In particular, we have analyzed the behavior described by the
permutation quantifiers in the multiscale complexity-entropy
causality plane for time series originating from a chaotic laser,
three different geophysical processes (river flow dynamics,
Madden-Julien oscillation, and North Atlantic oscillation), the
price evolution of two different commodities (crude oil and
gold), and the human postural dynamics.

A. Chaotic laser data

We have analyzed the chaotic intensity pulsations recorded
from a single-mode far-infrared NH3 laser by employing
a LeCroy oscilloscope. This experimental time series was
used for the Santa Fe Time Series Competition (Series A
from Ref. [33]). Further details of the recording procedure
of this data set can be found in Ref. [34]. The longer data
set (N = 104 data points) was considered. Figure 5 shows
the behaviors of the permutation quantifiers as a function
of the embedding delay for different embedding dimension
(D = 4, . . . ,7) together with the curves described by these
quantifiers in the CECP. The chaotic fingerprint is observed for
the higher embedding dimensions (D = 6 and D = 7), with
a maximum for the permutation statistical complexity and an
increasing behavior for the permutation entropy. Indeed, the
chaotic dynamics is discriminated without any noise influence.
This is reasonable if we take into consideration that the
signal-to-noise ratio was about 300, slightly under the half bit
uncertainty of the analog to digital conversion. The analysis
of this experimental data confirms that higher values of D

allow the use of larger minimally required sampling times,
retaining all the information about the chaotic dynamics of
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FIG. 5. Permutation quantifiers (HS and CJS) as a function of
the embedding delays with different embedding dimensions (D =
4, . . . ,7 from top to bottom) for the chaotic laser data. Curves
described by the symbolic quantifiers in the CECP are shown in
the insets. The dashed lines represent the maximum and minimum
complexity values for a fixed value of the entropy.
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FIG. 6. Permutation quantifiers (HS and CJS) as a function of the
embedding delays with embedding dimensions D = 6 for the Grand
River flow dynamics. Qualitative similar results were also obtained
for D = 4, 5, and 7. Curve described by the symbolic quantifiers
in the CECP is shown in the inset. The dashed lines represent the
maximum and minimum complexity values for a fixed value of the
entropy.

the system under analysis. This fact was recently proved
numerically [18].

B. River flow dynamics

Over the last decade controversial results have been
obtained about the hypothetical chaotic nature of river flow
dynamics [35]. We have analyzed the streamflow data cor-
responding to the Grand River at Lansing [Michigan; US
Geological Survey (USGS) ID 04113000] trying to provide
new insights regarding this issue. A high frequency record with
a sampling time equal to 15 min over a period of more than
two years (from May 2007 to September 2009, N = 78 578
data points) was retrieved from the USGS Instantaneous Data
Archive website [36]. The results obtained are shown in Fig. 6.
The curve described by the permutation quantifiers in the
CECP suggests that the Grand River flow dynamics might
be chaotic and, at least for the temporal resolution of the
data, noise effects are not observed. CJS has a well-defined
maximum value around τ = 8, and HS is increasing over
this domain. According to this evidence, the apparent chaotic
dynamics associated with this river can be optimally captured
with a sampling time equal to 2 h.

C. Madden-Julian oscillation

As a second geophysical application, we have analyzed the
Madden-Julian oscillation (MJO) [37]. This is the dominant
component of the intraseasonal variability in the tropical
atmosphere. Developing suitable models for the MJO is
relevant because a wide range of tropical weather and climate
are affected by this pattern [38]. Daily MJO time series from
1979 to the middle of 2002 (N = 8572 data points) was
analyzed via our multiscale symbolic technique looking for
evidence of deterministic chaos. The original data are available
at the historical climate data archive of the Joint Institute
for the Study of the Atmosphere and Ocean website [39].
Figure 7 shows the permutation quantifiers as a function of the
embedding delay for this time series. As can be seen in the inset
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FIG. 7. Permutation quantifiers (HS and CJS) as a function
of the embedding delays with embedding dimensions D = 6 for
the Madden-Julian oscillation. Qualitative similar results were also
obtained for D = 4, 5, and 7. Curve described by the symbolic
quantifiers in the CECP is shown in the inset. The dashed lines
represent the maximum and minimum complexity values for a fixed
value of the entropy.

of Fig. 7, the curve described by the symbolic quantifiers in the
CECP suggests a noiseless chaotic dynamics for the MJO. The
permutation statistical complexity reaches a maximum value
for τ ∼ 5. Thus, a sampling period equal to five days appears
to be the optimal one for uncovering information related with
the intrinsic nonlinear correlated dynamics. It is worth noting
that another time scale is clearly discriminated, around τ = 22,
where both quantifiers reach extreme values simultaneously.
This time scale is consistent with a characteristic period of
between 40 and 50 days easily estimated through the power
spectrum. In the case of periodic functions certain ordinal
patterns do not appear, or have very small probabilities, for
embedding delays at the half of the period [16]. For this reason,
HS has a minimum and CJS has a maximum for these particular
embedding delay values [18].

D. North Atlantic oscillation

The North Atlantic oscillation (NAO) is an atmospheric
spatiotemporal phenomenon observed over the North Atlantic
Ocean. Its fluctuations are quantified through the NAO index,
calculated as the difference between the normalized sea level
pressure at two action centers, the southernmost one located
at the Azores High and the northernmost at the Icelandic
Low [40]. Taking into account that the NAO fluctuations have
a significant influence on the winter weather over Western
and Central Europe, there is a great interest in predicting
its behavior. We have studied the monthly mean NAO index,
from January 1950 to May 2012 (N = 749 data points). The
time series was extracted from the Climate Prediction Center
website [41]. The results obtained for this third geophysical ap-
plication are displayed in Fig. 8. Both permutation quantifiers
reach nearly constant values independently of the embedding
delay τ . According to this finding and by comparing with the
results previously shown for fBm (Fig. 2), a chaotic dynamics
should be rejected in favor of a purely stochastic dynamics.
This is consistent with the stochastic model suggested by other
studies on similar data [42]. Additionally, it is shown that
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FIG. 8. Permutation quantifiers (HS and CJS) as a function of the
embedding delays with embedding dimension D = 5 for the monthly
mean North Atlantic oscillation index. Estimated values for both
quantifiers are practically constant whatever the time scale used for
the analysis. Qualitative similar results were also obtained for D = 4.

very short time series can be efficiently characterized with the
proposed scheme.

E. Crude oil and gold price dynamics

It is clear that crude oil and gold are two very important
and representative commodities. The former is the major
energy source for the present economic activity [43] and the
latter one is extremely popular for investment purposes by
governments, households, and institutional and private equity
investors because it provides economic safety against inflation
and deflation [44]. Both commodities tend to rise in periods
of financial instability. With the purpose of unveiling some
information about the nature of their dynamics, we have
analyzed their historical price evolution. The daily closing spot
price of the West Texas Intermediate from January 2nd, 1986
to July 10th, 2012 (N = 6691 oil price observations) obtained
from the US Energy Information Administration website [45]
(quoted in US dollars per barrel), and daily gold price from
January 2nd, 1973 to July 17th, 2012 (N = 9841 gold price
observations) extracted from the USAGOLD website [46]
(quoted in US dollars per ounce) were analyzed by employing
our diagnostic tool. The estimated values for the permutation
quantifiers as a function of the embedding delay can be
found in Fig. 9. HS decreases and CJS increases for an
increasing embedding delay. This effect is more noticeable
for the daily gold price evolution. Based on this evidence,
stochastic dynamics appear to govern the underlying processes
that generated the price fluctuations of both commodities. The
lack of a significant chaotic component in the crude oil spot
market is in accordance with the results obtained by a very
recently published work [47]. Taking into consideration that
these two commodity markets are highly correlated [48], it
is completely reasonable to find that stochastic rather than
deterministic rules are also present in the gold price evolution.

F. Human postural dynamics

The human postural control system, i.e., the human task
of maintaining an upright equilibrium, is especially suitable to
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FIG. 9. (Color online) Permutation quantifiers (HS and CJS) as a
function of the embedding delays with embedding dimension D = 6
for the daily price data of the crude oil and gold. In both cases HS

decreases and CJS increases for increasing time scales. Qualitative
similar results were also obtained for D = 4 and D = 5. Curves
described by the symbolic quantifiers in the CECP are depicted in
the inset. The dashed lines represent the maximum and minimum
complexity values for a fixed value of the entropy.

test our multiscale symbolic approach. Some authors have sug-
gested a correlated stochastic process for modeling the com-
plex behavior exhibited by postural sway in humans [49], while
others have claimed the existence of a chaotic dynamics [50].
Moreover, noise is inherently present in all physiological
signals due to the recording equipment. Postural dynamics is
commonly studied by analyzing the center of pressure (CoP)
fluctuations recorded over time while a subject is asked to
stand on a force platform. CoP is the point of application of the
resultant of vertical forces acting on the basis of support [51].
Particularly, CoP data are never free of noise [27]. We have
analyzed the time series of the CoP fluctuations during quiet
standing for a healthy young volunteer. Ten independent trials
of the displacement in the antero-posterior direction recorded
during 30 s at 60 Hz (N = 1800 data points) were analyzed.
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FIG. 10. Permutation quantifiers (HS and CJS) as a function of
the embedding delays with embedding dimensions D = 5 for postural
sway measurements. Mean and standard deviation of the permutation
quantifiers for ten independent trials associated to the same volunteer
are depicted. Curve described by the symbolic quantifiers in the CECP
is shown in the inset. The dashed lines represent the maximum and
minimum complexity values for a fixed value of the entropy.
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Details about the experiment can be found in Ref. [52]. The
original data are available in the PhysioNet database [53].
More precisely, records associated to the control trials for
volunteer MT1419 were considered. Figure 10 shows the
results obtained. The fingerprint related to a noisy chaotic
dynamics is observed with a clear clockwise loop in the CECP.
Similar results were confirmed for other subjects. Then, a noisy
chaotic dynamics seems to be confirmed for the center of
pressure fluctuations. Through this example we also confirm
that the multiscale CECP can robustly characterize short
and noisy data sets. Finally, it is worth remarking that this
multiscale symbolic approach has been recently successfully
applied for distinguishing hyperchaotic dynamics and noise
in experimental time series recorded from a delayed optical
system [54].

V. CONCLUSIONS

In this paper we have shown that complex multiscaled
time series can be reliably characterized by estimating the
permutation entropy and permutation statistical complexity as
a function of the embedding delay. The scale is explicitly
incorporated in this approach by changing the embedding
delay. The location of these permutation quantifiers in the
multiscale CECP allows us to infer useful information about
the underlying dynamics of the complex time series. More
precisely, we are able to identify the range of scales where
deterministic or noisy behaviors dominate the system’s dynam-
ics. The obtained numerical and experimental results confirm
that this multiscale symbolic information-theory approach
provides a conceptually simple and computationally efficient
tool for characterizing complex time series on a wide range of
scales.

According to the evidence gathered from the several tests
performed, the presence of a maximum for the permutation

statistical complexity at a particular time scale together with
an increasing behavior of the permutation entropy around
this domain is a necessary condition for the presence of an
intrinsic chaotic nature. Nevertheless, it is not possible to
confirm that this fingerprint constitutes a sufficient proof
for chaos. The existence of stochastic processes for which
the permutation quantifiers describe a similar behavior in
the CECP cannot be discarded. Further studies should be
performed in order to try to elucidate this issue. We would
like to emphasize, however, that the symbolic tool proposed
in this work is particularly useful for characterizing the
complex interplay between the deterministic and stochastic
components that are usually found in time series derived from
natural and man-made complex phenomena.

In spite of the fact that an inherent limitation of the proposed
approach is that oversampled signals are required, the present
availability of real-time acquisition reaching sampling rates of
up to 120 GSamples/s makes our method feasible for more and
more systems. Actually, the coexistence of regular, nonlinear,
and stochastic dynamics is a major problem directly associated
with such larger temporal resolutions. Taking into account
that the multiscale CECP inherits all the good properties of
the Bandt and Pompe symbolization recipe, i.e., simplicity,
robustness, and very low computational cost, we believe that
this approach can be a practical alternative for unveiling the
intricate nature of complex multiscaled time series.
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