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Landau parameters for isospin asymmetric nuclear matter based
on a relativistic model of composite and finite extension nucleons
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We study the properties of cold asymmetric nuclear matter at high density, applying the quark meson coupling
model with excluded volume corrections in the framework of the Landau theory of relativistic Fermi liquids.
We discuss the role of the finite spatial extension of composite baryons on dynamical and statistical properties
such as the Landau parameters, the compressibility, and the symmetry energy. We have also calculated the
low-lying collective eigenfrequencies arising from the collisionless quasiparticle transport equation, considering
both unstable and stable modes. An overall analysis of the excluded volume correlations on the collective
properties is performed.
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I. INTRODUCTION

The study of the nuclear medium composed of different
fractions of protons and neutrons has been developed for long
time and it has concentrated a renewed interest in the last years.
The equation of state of isospin asymmetric nuclear matter is
a subject of particularly intense research [1–5]. The possible
applications range from the structure of radiative nuclei, the
dynamics of rare isotopes, and the cooling process of neutron
stars. A key role in many of these calculations is played by the
density dependence of the symmetry energy [3], which may
be extracted from recent isospin diffusion data in heavy-ion
collisions experiences [2].

The standard theoretical calculations have used as the
relevant degrees of freedom protons and neutrons, moving
nonrelativistically through potentials representing the aver-
aged instantaneous interaction among nucleons. Furthermore,
since the development of quantum hadrodynamics [6], it has
became a common practice to use relativistic hadronic fields in
this kind of calculations. In such a case the nuclear interaction
is mediated by mesons of scalar or vector isospin character.
The role of the scalar isovector meson (a0 (980)) has been
emphasized in recent investigations [7].

A further step has been given by models incorporating the
quark structure of hadrons. They may be reduced to mean
field hadronic pictures whose parameters, such as masses and
vertices, hide the quark dynamics. These effective models
provide a connection between the hadronic phenomenology
and the fundamental theory of the strong interactions and a
sound description of hadronic matter and atomic nuclei.

Among the dual quark-hadron theoretical frameworks,
those based on the bag models include explicitly the quark
confinement volume. Specifically, quark meson coupling
(QMC) [8] states the dynamical evolution of this confining
region, which depends on the global properties of the nuclear
medium as well as on the configuration of the hadronic fields.
However, this feature is usually missed [8] in passing to a
pure hadronic context, as baryons and mesons are regarded
as pointlike particles in this limit. The relevance of finite
extension of nucleons in the evaluation of some nuclear

statistical properties was emphasized long ago [9]. To fulfill
this assertion, several corrections have been introduced in the
hadronic interactions, mainly invoking a Van der Waals-like
normalization [10–13].

As a motivation for such a procedure it can be said that
the conventional nuclear approach, which uses nucleons and
mesons, breaks down somewhere in the density-temperature
plane, giving a place to a phase of deconfined quarks and
gluons. The dynamics of this process is not well known at
present, but it is believed that it should be described within
the QCD formalism. The previous stage of the deconfinement
would be characterized by highly collective states of the
hadronic phase. Unfortunately it is poorly known what kind
of interactions must be included in the effective models for
the high density/temperature realm of the hadronic matter.
However, it is clear that new dynamical ingredients should
be added to the conventional hadronic interactions, see for
instance Ref. [14].

In the present work we describe the high-density behavior of
the hadronic matter by combining a model of composite, finite-
size nucleons together with a hadronic interaction representing
correlations in dense matter whose strength increase with
density. Therefore these correlations have negligible effects at
saturation or subsaturation densities, where the model reduce
to a conventional σ -ω one. As the density increases the mean
free path of nucleons is comparable to the quark confining size,
hence excluded volume effects gradually become relevant,
simulating the nonhadronic dynamical aspects emerging near
the deconfinement transition.

Of course, we expect that our treatment becomes less
reliable as the deconfinement point is reached. In a previous
work [13] the authors found that in realistic situations proper
of a neutron star core, the critical density lies between 2–4
times the saturation density n0. So we adopt n = 4n0 as a
maximum upper limit for our calculations. The correction due
to the finite extension of nucleons have been introduced into
the hadronic sector of the bag models [12,13], it was found
that it is necessary to describe properly high density hadronic
matter without violating the model assumptions [13].
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Another theoretical scheme suitable to describe the nuclear
collective phenomena is the Landau theory of Fermi liquids.
Although it was originally stated in a nonrelativistic fashion,
see for instance Ref. [15], it was subsequently extended to
deal with the relativistic fields formalism [16,17]. The Landau
parameters are useful to evaluate thermodynamical properties,
the stability conditions in phase transitions, and the nuclear
matter collective excitations that couple, for instance, to the
weak interaction governing the neutrino emission of URCA
processes in neutron stars.

In this work the behavior of isospin asymmetric nuclear
matter is studied in the framework of the QMC model with
excluded volume corrections in the hadronic sector. Special
attention is paid to the Landau parameters and the collective
modes. In the next section we give a resume of the QMC
model and we describe the correlations generated by the Van
der Waals-like normalization. In Sec. III we define the Landau
parameters and use them in Sec. IV to derive the isoscalar
and isovector collective modes. Results and discussions are
presented in Sec. V, and finally the conclusions are drawn in
Sec. VI.

II. THE QUARK MESON COUPLING MODEL

QMC is an effective model of the quark structure of
hadrons; it is inspired in the MIT bag model, so that in
its starting point the confinement mechanism has being
accomplished and chiral symmetry has been broken. To
describe the dynamics of the emerging hadrons, usually
the model is projected into a picture of pointlike baryons
interacting through virtual mesons [8], the same ones that
couple quarks inside the confinement region. Because we are
primarily concerned with isospin asymmetric nuclear matter,
we consider only u and d flavor of quarks coupled by the
isovector ρ and δ (a0 (980)) mesons, in addition to the
commonly used isoscalar σ and ω ones.

Within the QMC model baryons are represented as nonover-
lapping spherical bags containing three valence quarks; the
bag radius changes dynamically with the fields configuration.
The mean-field approximation (MFA) is the natural scheme
of solution, which replaces the meson fields by its classical
expectation values. These mean values determine the nucleon
fields, which in turn become the source of the meson ones.

In the MFA the Dirac equation for a quark of flavor q, (q =
u, d), of current mass mq and Iq third isospin component, is
given by [8]

¡
iγ µ∂µ − gq

ωγ 0ω − gq
ρIqγ

0ρ − mq
∗¢9q = 0, (2.1)

where the notation mq
∗ = mq − g

q
σ σ − Iqg

q

δ δ is used.
For a spherically symmetric bag of radius Rb corresponding

to a baryon of class b, the normalized quark wave function
9

q

b (r, t) is given by

9
q

b (r, t) = N−1/2
b

e−iεqbt

√
4π


 j0(xqbr/Rb)

iβqb Eσ .r̂j1(xqbr/Rb)


χq, (2.2)

where χq is the quark spinor and

εqb = Äqb

Rb

+ gq
ωω + gq

ρIqρ, (2.3)

Nb = Rb
3
£
2Äqb(Äqb − 1) + Rbmq

∗¤j 2
0 (xqb)

x2
qb

, (2.4)

βqb =
"

Äqb − Rbm
∗
q

Äqb + Rbm∗
q

#1/2

, (2.5)

with Äqb = [x2
qb + (Rbmq

∗)2]1/2. The eigenvalue xqb is the
lowest solution of the equation

j0(xqb) = βqbj1(xqb), (2.6)

which arises from the boundary condition at the bag surface.
In this model the ground-state bag energy is identified with

the baryonic mass Mb,

Mb =
X

q
nb

qÄqb − z0b

Rb

+ 4

3
πB0Rb

3, (2.7)

where nb
q is the number of quarks of flavor q inside the bag.

The bag constant B0 is numerically adjusted to get definite
values for the proton bag radius, and the zero-point motion
parameters z0b are fixed to reproduce the baryon spectrum at
zero density.

The dispersion relation for the b baryon is

kb
0 =

q
Mb

2 + (k − 6b)2 ± gωω0 ± gρIbρ
3
0 (2.8)

for particle ( + ) and antiparticle ( − ) solutions. Within the
MFA at zero temperature only the particle solutions contribute.
In this expression we have assumed that the strength of the
couplings does not depend on the quark flavor. We have also
introduced the baryonic isospin projection Ib = 6qn

b
qIq and

the vector nucleon self-energy 6b = gωω + gρρIb.
For homogeneous infinite static matter the spatial depen-

dence of all the meson fields can be neglected, so that its
equations of motion reduce in the MFA to

σ = = − 1

m2
σ

X
b

µ
∂Mb

∂σ

¶
R,δ

nb
s , (2.9)

ωµ = 1

m2
ω

X
b

gωjb
µ, (2.10)

δ = − 1

m2
δ

X
b

µ
∂Mb

∂δ

¶
R,σ

nb
s , (2.11)

ρµ = 1

m2
ρ

X
b

gρIbj
b
µ. (2.12)

Here jb
µ = (nb, jb) stands for the mean value of the nucleon

current density of isospin b. In the reference frame where the
averaged momentum of matter is zero the spatial components
of the currents become null jb = 0, hence only the timelike
projections of the vector mesons are nonzero. It must be noted
that Eqs. (2.11) and (2.12) refer only to the third isospin
component, because the remaining ones become zero in the
MFA.
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From the relations (2.7) and (2.8) it can be seen, as was
earlier mentioned, that the nucleon mass and energy spectrum
depends on the assumed meson classical values. They are in
turn determined by the nucleon densities as given by Eqs.
(2.9)–(2.12).

The densities nb
s and jb

µ are defined with respect to the
ground state of the hadronic matter, which at zero temperature
is composed of baryons filling the Fermi sea up to the state
with momentum kFb

nb
s = ϑ

(2π )3

X
spin

Z
d3kMbp

Mb
2 + (k − 6b)2

θ (kFb − |k|), (2.13)

jb
µ = ϑ

(2π )3

X
spin

Z
d3k(k − 6)µp

Mb
2 + (k − 6b)2

θ (kFb − |k|). (2.14)

In Eqs. (2.13) and (2.14) the factor ϑ is included for future
use and it takes the value ϑ = 1 for pointlike baryons.

The total energy density E and pressure P0 of hadronic
matter for pointlike baryons is evaluated as

E = 1

2
m2

σ σ 2 + 1

2
m2

ωω2 + 1

2
m2

ρρ
2 + 1

2
m2

δδ
2

+ ϑ

π2

X
b

Z kFb

0
dkk2

q
Mb

2 + k2, (2.15)

P0 =
X

b

µb
0n

b − E, (2.16)

where µb
0 = kb

0 (kFb), see Eq. (2.8), is the chemical potential
for pointlike baryons.

In the QMC the radius Rb is a variable dynamically adjusted
to reach the equilibrium of the bag in the dense hadronic
medium. It must be pointed out that Rb is not interpreted as
strictly representing the experimental nucleon mean square
radius. Instead, we take it as a measure of the region
where quark and hadronic dynamics can be conceptually
distinguished one from another.

We use the equilibrium condition proposed in Ref. [13],
which can be obtained by minimizing the energy density E
with respect to Rb

− 1

4πR2
b

µ
∂Mb

∂Rb

¶
σ,xqb

= 1

3π2ξ

X
c

Z kFc

0

dk k4p
Mc

2 + k2
, (2.17)

where ξ = 1. This result reflects the balance of the internal
pressure of the bag with the baryonic contribution to the total
external pressure, represented by the left and right sides of
Eq. (2.17), respectively. The factor ξ will be redefined below
where excluded volume effects will be considered.

The QMC model heavily relies on the assumption of
nonoverlapping bags, using this criterion an upper density limit
around three times the saturation density of symmetric nuclear
matter has been found [14]. To properly take into account
this severe restriction, a simplified model was introduced in
Ref. [13], which describe baryons as extended objects. Because
finite size baryons are assumed nonoverlapping, their motion

must be restricted to the available space V 0 defined as [10]

V 0 = V −
X

b

Nbvb, (2.18)

with Nb the total number of baryons of class b inside the
volume V and vb the effective volume per baryon of this class.
The last mentioned quantity is proportional to the actual baryon
volume, i.e., for spherical volumes of radius Rb

vb = α
4π

3
Rb

3, (2.19)

where α is a real number ranging from 4, in the low density
limit, to 3

√
2/π , which corresponds to the maximum density

allowed for nonoverlapping spheres, in a face centered cubic
arrange. Because we wish to study the high-density regime of
homogeneous isotropic matter, we shall adopt α = 3

√
2/π in

all our calculations.
Consequently it was assumed that the nucleon fields can

be normalized replacing V 0 for V , which in turn implies a
normalization of the nucleon densities (2.13), (2.14), and of
the nucleon contribution to the energy (2.15). The final result
may be obtained by taking ϑ = 1 − 6bn

bvb within these
equations and ξ = nb

s /(αnb) in Eq. (2.17) [13].
Because ϑ introduces an explicit dependence upon the

baryonic densities, the chemical potentials get an extra term,
i.e.,

µb =
µ

∂E
∂nb

¶
n
b0

b0 6=b

= µb
0 + 1µb, (2.20)

1µb = vb

3π2

X
c

Z kFc

0

dkk4p
Mc

2 + k2
. (2.21)

Correspondingly, the total pressure acquires an additional
term 1P as compared to the pressure of pointlike baryons P0

in Eq. (2.16)

PH = P0 + 1P = P0 +
X

b

nb1µb. (2.22)

III. LANDAU PARAMETERS AND EQUATION OF STATE

The Fermi liquid theory of Landau assumes that the low-
lying excitations of a physical system admits a representation
in terms of quasi-particles and, circumstantially, collective
modes. If the quasi-particle states can be identified by a
composed label B = (b, β), where we have singled out the
first place for the isospin projection and β collects discrete
spin and momentum indices, then the occupation number
of such a level is denoted by fB . The conserved baryonic
number can be expressed in terms of a summation over
such distribution functions: n = 6BfB . The same statement
is valid for every extensive conserved quantity such as the
energy, which can be written as 6BfBεB plus current-current
interactions, where εB is the nucleon single particle spectrum.
For infinite nuclear matter the summation over the discrete
momentum indices must be replaced by an integration over
the continuous spectrum with measure d3k/(2π3).
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The formulae (2.13) and (2.14) for the nucleon densities
must be rewritten to fit this form. First, the replacement
pi = kiϑ

1/3 is made; second, we identify 6spin
R

d3p θ (pFb −
|p|)/(2π )3 → 6βfbβ , with pFb = kFbϑ

1/3. Hence, Eqs. (2.13),
(2.14), and (2.15) can be rewritten as

nb
s =

X
β

fbβMbq
M2

b + (ϑ−1/3pβ − 6b)2
, (3.1)

jb
µ =

X
β

fbβ (ϑ−1/3pβ − 6b)µq
M2

b + (ϑ−1/3pβ − 6b)2
, (3.2)

E =
X
B

fbβ

¡q
M2

b + (ϑ−1/3pβ − 6b)2 + gωω0 + Ibgρρ0
¢

+ 1

2

¡
m2

σ σ 2 + m2
δδ

2 − m2
ωωµωµ − m2

ρρµρµ
¢
, (3.3)

where the momentum independence of the nucleon masses,
characteristic of the Hartree approximation, was emphasized.

In the last formula E must be considered as a function of the
distribution functions fB , the bag radii Rb and the meson fields
φ = σ, ω, δ, ρ; hence, first variation of the energy density
yields

δE(f,R, φ) =
X

b

∂E
∂Rb

δRb +
X

φ

∂E
∂φ

δφ +
X
B

∂E
∂fB

δfB.

The first term is null because of the equilibrium condition for
the bag in the nuclear medium, Eq. (2.17); the second one is
likewise zero due to the meson-field equations (2.9)–(2.12).
Therefore, the quasiparticle energy spectrum according to the
Fermi liquid prescription is

εB = ∂E
∂fB

=
q

M2
b + (ϑ−1/3pβ − 6b)2 + gωω0 + gρρ0Ib

+vb

3

X
B 0

fB 0
ϑ−4/3pβ 0 · ¡

ϑ−1/3pβ 0 − 6b0
¢

q
M2

b0 + (ϑ−1/3pβ 0 − 6b0 )2
. (3.4)

If Eq. (3.4) is evaluated at the Fermi surface, i.e., |pβ | = pβ =
pFb, in the limit of isotropic matter and restoring the continuum
spectrum, it yields the chemical potential given by Eqs. (2.20)
and (2.21), in support of the thermodynamical consistency of
our approach.

To evaluate the Landau’s parameters of the nuclear inter-
action, a second variation must be performed, i.e., FB 0B =
∂2E/∂fB 0∂fB = FBB0 . Because all of the bag radii and the
meson fields depend ultimately on the distribution functions
fB , Eqs. (2.9)–(2.12) and (2.17) must be differentiated to
obtain a closed expression.

The Landau parameters are defined as the Fourier coeffi-
cients of an expansion in terms of the Legendre polynomials

F l
BB0 = (l + 1/2)

Z 1

−1
dx Pl(x)

∂2E(x)

∂fB 0∂fB

,

where the integrand must be evaluated on the Fermi surface at
the end of the calculations. It is found that the second-order
derivative in the expression above depends linearly on the
variable x = pβ 0 · pβ/(pβ 0pβ); hence, all the parameters of

order greater than 1 are null, whereas for l = 0, 1 we have

F 0
ab = Cω + IaIbCρ +

X
c=n,p

ncvc

3ϑRc

µ
3
k2

Fa

Ea

+ vaH
(3)

+ vaϑH (1)H (2)
c

Mc

nsc

¶
Xcb + 1

3ϑ

µ
k2

Fa

Ea

vb + k2
Fb

Eb

va

¶

+ va

Ra

µ
1 − na

nsa

Ma

Ea

¶
H (1)Xab + vavb

H (3)

9ϑ

+
X

q=u,d

Ã
nq

aQqa

Ma

Ea

− va

3

X
c=n,p

nq
cQqcMcH

(2)
c

!
Yqb,

(3.5)

F 1
ab = − kakb

EaEb

Cω + IaIbCρ + 2CωCρ(1 + IaIb)na/Ea

1 + (Cω + Cρ)
X

c=p,n

nc

Ec
+ 4CωCρ

n1n2
E1E2

(3.6)

Here ā stands for the complementary option, i.e. p̄ = n, n̄ =
p, and the definitions Cφ = (gφ/mφ)2 for φ = ω, ρ and

Ea =
q

M2
a + k2

Fa, have been used, together with

H (1)
a =

Z kFa

0

dkk4

π2
¡
M2

a + k2
¢1/2 , H (3)

a = k5
Fa

π2Ea

H (2)
a =

Z kFa

0

dkk4

π2
¡
M2

a + k2
¢3/2 ,

H (l) =
X

c=p,n

H (l)
c , l = 1, 2, 3

Qqa = Äqa + 2mq
∗Ra(Äqa − 1)

mq
∗Ra + 2Äqa(Äqa − 1)

.

Furthermore, the variables Xab and Yqb are the derivatives
Xab = ∂Ra/∂fB and Yqb = ∂mq

∗/∂fB evaluated in the
isotropic matter limit and taking all the momenta at the Fermi
surface. Actually, they are the solutions of an algebraic coupled
system of equations obtained by differentiating Eqs. (2.17),
(2.9), and (2.11) and making a linear combination of the two
last results.

For further development, we define symmetric adimen-
sional Landau parameters

F l
ab = F l

ba =
p

0a0bF
l
ab, (3.7)

where 0b = (kFbEb/π
2)(b = p, n) is the relativistic quasipar-

ticle density of states at the Fermi surface. Equations (3.5) and
(3.6) coincide with the previous results [16,17] for symmetric
nuclear matter if the limit va → 0 is taken carefully.

The Landau parameters can be related with the nuclear
compressibility κ and symmetry energy Es . For a given
nucleon density n = nn + np and asymmetry coefficient
t = (nn − np)/n, it can be shown that

κ = 9n

µ
∂2E
∂n2

¶
t

= 9n

4

·
(1 − t)2

0p

+ (1 + t)2

0n

¸µ
1

ϑ
+ F0

t

¶

(3.8)
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and

1

2n

µ
∂2E
∂t2

¶
n

= n

8

µ
1

0p

+ 1

0n

¶ µ
1

ϑ
+ F0

s

¶
, (3.9)

where the effective Landau parameters F0
t and F0

s are,
respectively,

F0
t

= (1 − t)20nF0
pp + 2(1 − t2)

p
0p0nF0

pn + (1 + t)20pF0
nn

(1 − t)20n + (1 + t)20p

F0
s = 0nF0

pp − 2
p

0p0nF0
pn + 0pF0

nn

0n + 0p

(3.10)

The symmetry energy Es(n) is obtained from Eq. (3.9) in the
limit of t = 0. These expressions reduce to the usual ones in
the symmetric case without volume corrections (ϑ = 1), see
for instance Refs. [16,17].

IV. COLLECTIVE EXCITATIONS

Collective modes are associated to local density fluctuations
that propagate in the hadronic mean field. These fluctuations
are the effect of small perturbations of the occupation distribu-
tion fB around the nucleon Fermi level of the quasiparticles.
At zero temperature the unperturbed nucleon distributions are
given by [15]

fB = 1

V
θ (µb − εB), (4.1)

where V is the volume of the system and µb is the chemical
potential. Local density fluctuations add a small variation of
the occupation numbers around the fB equilibrium value, i.e.
[15,16]

fB(r, t) = fB + δfB (r, t) = fB + δpβpFbube
i(q.r−ωt) (4.2)

and to first order the quasiparticle energies εB change accord-
ingly

δεB(r, t) =
X
B 0

FBB0δfB 0 (r, t). (4.3)

The propagation of these perturbations at low temperature is
governed by the collisionless Landau’s kinetic equation

∂fB

∂t
+ ∂fB

∂r
∂εB

∂pβ

− ∂fB

∂pβ

∂εB

∂r
= 0. (4.4)

Introducing Eq. (4.2) into Eq. (4.4) and keeping only linear
contributions of the fluctuations, we obtain

∂δfB

∂t
+ ∂δfB

∂r
∂εB

∂pβ

− ∂fB

∂pβ

∂δεB

∂r
= 0, (4.5)

which can be further reduced to·
ω − ϑ−2/3 (pFb.q)

Eb

¸
ub − pFb

π2
(pFb.q)

X
a=p,n

Fbaua = 0.

(4.6)

The sum should be done at the Fermi surface of protons and
neutrons. For isotropic matter the direction of propagation
can be arbitrarily choosen along the azymuthal axis, so that
(pFb.q) = pFb q cosχb. Expanding the amplitudes ub and the
Landau parameters Fba in terms of Legendre polynomials

ub =
X

l

ul
bPl(cosχb)

F l
ba = (2l + 1)

Z
dÄa

4π
FbaPl[(cos(χa − χb)] (4.7)

and making use of the addition theorem for Legendre polyno-
mials, we have

X
a=p,n

Fbaua =
X

a=p,n

X
l

1

(2l + 1)
F l

bau
l
aPl (cos χb) (4.8)

Replacing in Eq. (4.6) and writing all back in terms of the
Fermi momenta kFb, we arrive to the following system of
homogeneus linear equations

ul
b

(2l + 1)
+ ϑ

X
a=p,n

s
0b

0a

X
l0

1

(2l0 + 1)
F l0

bau
l0
aÄll0(sb) = 0

(4.9)

with sb = ϑ1/3(ω/q)/vFb, where vFb = (kFb/Eb) is the
relativistic quasi-particle Fermi velocity. The function Äll0 is
given by

Äll0(s) = Äl0l(s) = 1

2

Z 1

−1
dy Pl(y)

y

(y − s)
Pl0 (y), (4.10)

which take the particular expressions [15]

Ä00(s) = 1 + s

2
ln

µ
s − 1

s + 1

¶

Äl1(s) = sÄl0(s) + 1
3δl1. (4.11)

In the case of unstable modes for which s becomes a purely
imaginary quantity in the upper half complex plane, i.e., s =
iζ (ζ > 0), we have Ä00(iζ ) = 1 − ζarctan(1/ζ ).

Using Eq. (4.11) and keeping in mind that only terms with
l = 0, 1 are nonvanishing, we can solve Eq. (4.9) for the
amplitudes u0

p and u0
n

u0
p = Cp

3sp

u1
p + ϑ

9sp

s
0p

0n

F1
pnu

1
n

u0
n = Cn

3sn

u1
n + ϑ

9sn

s
0n

0p

F1
npu1

p, (4.12)

where Cb = (1 + ϑ
3 F1

bb), (b = p, n). Replacing into the
equations for l = 1, we have

Appu
1
p +

s
0p

0n

Apnu
1
n = 0

s
0n

0p

Anpu1
p + Annu

1
n = 0, (4.13)
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where

App = Cp + ϑÄ00(sp)

µ
CpF0

pp + ϑ
vFn

3vFp
F0

pnF1
np

+ sp
2F1

pp

¶

Apn = ϑ

·
1

3
F1

pn + Ä00(sp)

µ
ϑ

3
F0

ppF1
pn + vFn

vFp
CnF0

pn

+ sp
2F1

pn

¶¸
. (4.14)

The remaining coeficients Ann,Anp are obtained through the
replacement p ↔ n in the previous formulas. The nontrivial
eigenmodes ul

b(m), (m = 1, 2, ...) of the linearized transport
Eq. (4.9) are equivalent to the nonvanishing solutions of
Eq. (4.13). Therefore, the corresponding eigenvalues s

(m)
b

satisfy

AppAnn − ApnAnp = 0. (4.15)

For fixed nucleon density n and isospin asymmetry t , the so-
lutions s

(m)
b of Eq. (4.15) determine the zero sound dispersion

relation (ω/q)(m) for the m eigenmode. Following Ref. [18] we
use the sign of the relative amplitudes % = u0

p/u0
n to determine

the isoscalar (% > 0) or isovector (% < 0) character of each
mode, for arbitrary isospin asymmetry.

V. RESULTS AND DISCUSSION

Within the present model the current quark masses have
been chosen as mu = md = 5 MeV, the bag parameter has been
fixed as B

1/4
0 = 210.89 MeV neglecting its eventual density

dependence. The parameter z0b was adjusted to reproduce at
zero density the empirical value of the nucleon mass and a
nucleon bag radius Rb = 0.6 fm. Numerical values for the
meson masses have been taken as mσ = 550 MeV, mω =
783 MeV, mδ = 984 MeV, and mρ = 770 MeV.

Because mesons interact directly with quarks, the corre-
sponding meson-nucleon couplings are related to the quark-
meson ones gu

φ = gd
φ (φ = σ, ω, δ, ρ) in a simple way by

assuming vector meson dominance, i.e.,

gb
σ = 3gu

σ , gb
ω = 3gu

ω, gb
δ = gu

δ , gb
ρ = gu

ρ,

for b = p, n. Their numerical values are obtained by repro-
ducing the symmetric nuclear matter saturation properties, i.e.
baryonic density, binding energy, and symmetry energy

n0 = 0.15fm−3,

Ebind = (E/n)0 − Mc2 = −16 MeV,

Es(n0) = 1

2n0

³∂2E
∂t2

´
t=0

= 31.6 MeV, (5.1)

where M = 938.92 MeV/c2 is the average free nucleon rest
mass.

The constraint of the symmetry energy alone is not
sufficient to determine unambiguously both gρ and gδ , instead
it establishes a nonlinear relation between them. In order

TABLE I. The quark-meson couplings used in
the case with excluded volume correction (CC) and
without it (NC).

Case gu,d
σ gu,d

ω g
u,d
δ gu,d

ρ

CC 5.76314 2.78280 5.75150 4.3500
NC 5.99339 3.00770 5.42075 4.5000

to restrain their possible variation, we have used valuable
phenomenological data coming from the analysis of isospin
diffusion in heavy ion collisions [3], as discussed below. The
values of the couplings are sensitive to either the inclusion
or not of the excluded volume corrections. Both instances are
considered in Table I.

The cases with the excluded volume correction (CC) have
been compared with calculations without it (NC). It must be
emphasized that in the last case the values ξ = ϑ = 1, and
1µp = 1µn = 0 must be used. With this set of parameters
the equation of state for asymmetric nuclear matter with finite
nucleon size has been evaluated. The results are displayed in
Fig. 1 for the the pressure P and the nuclear compressibility
κ in terms of the baryonic number density for several isospin
asymmetries. For symmetric nuclear matter (t = 0) at normal
density we obtained κ = 340 MeV, which is higher than
the usually assumed values in similar calculations. However,
it should be stressed that recent mass measurements of the
pulsar PSR J0751+18007 yield M = 2.1 ± 0.2M¯ [19],

0
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160
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 t=0.5
 t=0.75
 t=1

P
 [M
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 fm

-3
]

0 1 2 3 4
0

1000

2000

3000

4000

5000

6000

7000

K
 [M
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]

 

 n/n
0

FIG. 1. The pressure of cold asymmetric nuclear matter versus
density for the CC case (upper panel). The different lines correspond
to some typical values of the asymmetry parameter t . In the lower
panel the corresponding compressibility κ is shown for the same set
of t values.
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which is hardly compatible with the usually adopted value κ ≈
250 MeV. Indeed a stiffer equation of state is needed to reach
this observational constraint.

In previous investigations [13] the authors found that finite
baryonic size are responsible for a 12% increment in the
maximum mass of a neutron star, obtaining Mmax = 1.89M¯.
Therefore the strong baryonic repulsion previous to the quark-
gluon plasma transition contributes significatively to produce
a stiffer equation of state, and consequently it would give a
phenomenological basis to understand the unexpectedly high
value measured for the PSR J0751+18007 mass.

The compressibility becomes negative at low densities,
leading to thermodynamical instabilities, but it grows with
increasing t at a fixed density. The instabilities disappear for
nuclear compositions approaching pure neutron matter (t = 1)
as a consequence of the repulsive character of the asymmetry
energy.

The effect of increasing asymmetry on the binding energy
Ebind can be appreciated in the upper panel of Fig. 2. In
particular neutron matter remains unbound for all densities.
A comparison of the equation of state for the CC and NC
cases was given in [13] for hadronic matter in β equilibrium,
the conclusions given there can be extended to the case
of nuclear matter at fixed isospin asymmetry, i.e., density
dependence for energy and pressure are stiffer in the CC
instance.

0

50

100

150

200

 t=0
 t=0.25
 t=0.5
 t=0.75
 t=1

E
b

in
d
[M

eV
]

0 1 2 3 4
0

40

80

120

 

 E
S
 [

M
eV

]

 n/n
0

 QMC CC
 =1.05

 =0.69

 QMC NC

FIG. 2. In the upper panel the binding energy of cold asymmetric
nuclear matter for the CC case and for some typical values of the
asymmetry parameter t is drawn. In the lower panel we plot the
asymmetry energy for the CC and NC cases, together with the
empirical expression Es = 31.6(n/n0)γ (γ = 0.69, 1.05) Ref. [2].

In the lower panel of the same figure the asymmetry energy
Es is displayed, together with the curves corresponding to
the empirical expression Es = 31.6(n/n0)γ evaluated at the
limit values γ = 0.69 and γ = 1.05 obtained in Ref. [2]. It
can be seen that our result lies between these curves, showing
a significative agreement with the γ = 1.05 case in all the
range 0.5 < n/n0 < 2.5. It must be mentioned that within this
model, only a narrow range of values for the pair of couplings
gδ, gρ is able to fit the reference value for Es(n0) and to
produce simultaneously a curve entirely comprised between
the phenomenological constraints. For very low values of
gρ it is not possible to adjust the symmetry energy at the
normal density, increasing this coupling yields a stiffer density
dependence for Es(n), which quickly goes beyond the curve
γ = 1.05 of Fig. 2.
Assuming a decomposition

Es(n) = Es(n0) + L(n/n0 − 1)/3 + Ks(n/n0 − 1)2/18,

we have found L ≈ 95.8 MeV and Ks ≈ 19 MeV. The first
quantity agrees with the value L = 88 ± 25 MeV found in
Ref. [1], whereas we obtained for the combination Kasy =
Ks − 6L = −555 ± 5 MeV in comparison with the suggested
value Kasy = −500 ± 50 MeV [2]. It must be pointed out
that the empirical value for L is coherent with the inequality
0.7 < γ < 1.1; however, the numerical value extracted from
experimental data for Kasy favors a stiffer symmetry energy
with 1.26 < γ < 1.3.

A comparison between NC and CC results yields a en-
hanced growth for Es(n) in the last case, although differences
become appreciable for densities higher than 2n0. For the NC
case the values L = 91.4 ± 0.6 MeV and Kasy = −553 ±
2 MeV have been obtained.

In the limit of pointlike baryons the formulas for the
compressibility and the symmetry energy reduce to

κt=0 = 9n

"
Cω + π2

2kF E
− Ceff

σ

1 + Ceff
σ H (2)

µ
M

E

¶2
#

,

Es = n

2

"
Cρ + π2

2kF E
− Ceff

δ

1 + Ceff
δ H (2)

µ
M

E

¶2
#

,

which agree with results obtained in relativistic field models
with structureless nucleons, with exception of the couplings
Ceff

φ = ¡
gφQ/mφ

¢2
(φ = σ, δ), which includes the factor Q

defined below Eq. (3.6). Taking into account that Q depends on
the medium properties through m∗

q and R, density-dependent
effective couplings have been obtained, due to the quark
structure of nucleons proposed in the model.

The density dependence of the adimensional Landau
parameters are plotted in Figs. 3 (CC) and 4 (NC). At
sufficient low densities all scalar parameters F0

pp,F0
np, and

F0
nn are negative, reflecting the attractive character of the

effective nucleon interaction. Therefore instabilities in the
equation of state can appear in this density range. Comparing
Figs. 3 and 4 we appreciate that, for densities n/n0 . 1,
the general trend of excluded volume correlations is to slightly
increase the nucleon-nucleon attraction. However, in the range
n/n0 > 1 the volume corrections enhance the repulsion among
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FIG. 3. The adimensional Landau parameters for the CC case. In
the left (right) panels the scalar (vector) components for the pp, pn,
and nn pairs are, respectively, plotted from top to bottom, at several
fixed values of t . The line convention valid for all the cases is indicated
in the central right panel, it must be noted that t = 1 is relevant only
for the nn amplitude.

nucleons as compared with the respective NC cases. This fact is
expected because the available volume per nucleon decreases,
resulting in a non-negligible compression of the bags at higher
densities [13].

The finite volume effects are more evident for the F1
bb0

(b, b0 = p, n) components, enhancing their absolute values for
all the range of densities, specially for n/n0 > 1. Because the
adimensional Landau parameters contain density-dependent
factors,F0,1

pp andF0,1
pn decrease for growing isospin asymmetry

t as they are a measure of the strength of the in-medium proton
interaction. The opposite is true for F0,1

nn .
The low-density limit of CC results qualitatively agree

with others calculations [16,17], both for nuclear symmetric
matter and for the pure neutron case. It can be seen that in the
subnuclear realm of the scalar interaction, the in-medium p-n
strength overrides the p-p and n-n components. Furthermore,
the n-p attractive effect has a wider density range, extending
beyond the normal value n0.

FIG. 4. Idem as Fig. 3 but for the NC case.

Collective quantum fluctuations give rise to proper modes
which are solutions of the eigenvalue Eq. (4.15). The
corresponding dispersion relations (ω/q) are displayed in
Figs. 5 (CC) and 6 (NC), for some typical values of the
isospin asymmetry t . It must be pointed out that stable modes
satisfy sp,n > 1, whereas pure imaginary values correspond to
unstable propagation. In the last case the quantity |ω/q| has
been plotted. With exception of nearly pure neutron matter,
unstable modes are always present at very low densities
and therefore they are practically insensitive to finite volume
effects.

As it was mentioned, collective modes can be classified as
isoscalar and isovector, according to proton and neutron vibra-
tions being in phase or in opposition, respectively. Unstable
modes are found to be isoscalar in character, reflecting the
fact that both isospin components simultaneously undergo a
liquid-vapor phase transition, leading to cluster formation [18].
This associated mechanical instability is evidenced by the
negative sign of the nuclear compressibility in this density
domain. Because κ comprises density variations at fixed
isospin asymmetry t , Eq. (3.8), it preserves the proton to
neutron ratio. It is easily verified that for the symmetric case
isoscalar modes (stable or unstable) also conserve this ratio,
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FIG. 5. Dispersion relation for collective modes in the CC case,
for several values of the asymmetry parameter t . The low density
solution (long dashed lines) represents the unstable isoscalar mode.
The remaining stable modes are depicted with solid or dashed lines
for isovector or isoscalar character, respectively.

namely % equals (δnp/δnn)t = (np/nn) for t = 0. This is no
longer true for isoasymmetric matter.

For growing asymmetry t these unstable modes show a
decreasing amplitude, because the repulsive n-n interaction
progressively dominates, until the instability vanishes. For
stable eigensolutions (ω/q) represents the zero sound velocity
Vs . In the iso-symmetric case there are two stable modes,
both in CC and NC instances. The isovector branch appears
at very low densities, whereas the isoscalar one starts at
n/n0 > 1. For the CC plot they cross each other at n/n0 ' 1.51
(n/n0 ' 1.9 for NC), but keep their own character because
isoscalar and mechanical oscillations preserve the same proton
to neutron ratio for t = 0. Thus, they do not couple to isovector
fluctuations, which are related to species separation [18].

In general for isoasymmetric matter there is only one
stable branch that has a mixed character. In fact, the ratio
of proton to neutron amplitudes % changes smoothly from
negative (isovector) to positive (isoscalar) as the density
increases. When the nucleon finite size is considered (CC)
the change of character takes place at lower densities than in
the pointlike case (NC), as can be appreciated from Figs. 5 and
6, respectively.

As mentioned, in asymmetric matter the ratio % for isoscalar
modes (either stable or not) does not follow the constraint of
keeping t constant, as mechanical oscillations do [18]. In fact,
the asymmetry of the medium induces a more complicated
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FIG. 6. Idem as Fig. 5 but for the NC case.

scenario where some chemical component is also involved,
i.e., the relative proton to neutron concentration is modified
along the quantum mode. The mixed isocharacter of the
stable modes at finite t can be ascribed to this cause. At low
densities these collective modes are isovector-like, indicating a
significative species separation. As the density grows, pressure
(mechanical) effects become dominant and induce the change
to isoscalar like character.

For pure neutron matter only one stable mode has been
found in this range of densities. Concerning the velocity of
propagation, a rough 30% increment in the CC results for Vs

are observed in the high-density domain as compared to the
NC ones. As an artifact of the approximation used to solve
the Landau’s kinetic equation, it is found that Vs approaches
the velocity of light at densities n/n0 & 4, in the CC case.
However, for such high densities the dissipative effects are
non-negligible, resulting in a more involved dynamics that is
beyond the scope of the present work.

It is worthy to mention that in our treatment we have
obtained subluminical speed of ordinary sound, even for
densities bigger than 4n0, and therefore the associated hadronic
equation of state is compatible with relativity in this high-
density regime.

VI. CONCLUSIONS

We have studied the thermodynamical properties and
collective modes of cold asymmetric nuclear matter. This has
been performed within a model of structured nucleons, taking
into account an appropriate normalization of the nucleon fields
to prevent overlapping of the quark confining regions at high
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densities [13]. Many-body properties of hadronic matter are
interpreted in a Fermi liquid picture with quasiparticles and
collective modes.

Within this framework the relativistic Landau parameters
for isoasymmetric nuclear matter have been evaluated, and
an explicit relation with the nuclear compressibility κ and
symmetry energy Es has been obtained. The overall trend of
excluded volume correlations at densities n > n0 is to develop
an stiffer equation of state, relative to the case where they are
absent.

Different quantities such as density dependence of the
symmetry energy, its slope, and the asymmetry compressibility
Kassy have been evaluated, obtaining qualitative agreement
with empirical estimates.

It is argued that short-range hadronic correlations in the
dense medium preceding the deconfinement phase transition,
which has been parametrized in the present work as excluded

volume corrections, contribute to understand the high neutron
star mass measured recently.

We have also applied the present formalism to the Landau’s
collisionless kinetic equation for small fluctuations around
the Fermi level. We have obtained the eigenvalue equation
for instability and zero sound modes within this scheme and
discussed the propagation of these modes in the dense hadronic
medium.

The behavior of collective excitations can have im-
portant consequences in heavy-ion reactions, where the
formation of fragments is chiefly governed by isoscalar
fluctuations.
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M. I. Gorenstein, J. Stålnacke, and E. Suhonen, Phys. Scr.
48, 277 (1993); H. Kouno, K. Koide, T. Mitsumori, N. Noda,
A. Hasegawa, and M. Nakano, Prog. Theor. Phys. 96, 191
(1996); G. D. Yen, M. I. Gorenstein, W. Greiner, and S. N. Yang,
Phys. Rev. C 56, 2210 (1997); M. I. Gorenstein, H. Stöcker,
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