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1CONICET, Facultad de Ciencias Astronómicas y Geofı́sicas, Universidad Nacional de La Plata, La Plata, Argentina.
E-mail: gcastroman@fcaglp.unlp.edu.ar
2Department of Earth Sciences, University of Geneva, Switzerland
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S U M M A R Y
The presence of sets of open fractures is common in most reservoirs, and they exert impor-
tant controls on the reservoir permeability as fractures act as preferential pathways for fluid
flow. Therefore, the correct characterization of fracture sets in fluid-saturated rocks is of great
practical importance. In this context, the inversion of fracture characteristics from seismic
data is promising since their signatures are sensitive to a wide range of pertinent fracture
parameters, such as density, orientation and fluid infill. The most commonly used inversion
schemes are based on the classical linear slip theory (LST), in which the effects of the frac-
tures are represented by a real-valued diagonal excess compliance matrix. To account for the
effects of wave-induced fluid pressure diffusion (FPD) between fractures and their embed-
ding background, several authors have shown that this matrix should be complex-valued and
frequency-dependent. However, these approaches neglect the effects of FPD on the coupling
between orthogonal deformations of the rock. With this motivation, we considered a fracture
model based on a sequence of alternating poroelastic layers of finite thickness representing the
background and the fractures, and derived analytical expressions for the corresponding excess
compliance matrix. We evaluated this matrix for a wide range of background parameters to
quantify the magnitude of its coefficients not accounted for by the classical LST and to de-
termine how they are affected by FPD. We estimated the relative errors in the computation of
anisotropic seismic velocity and attenuation associated with the LST approach. Our analysis
showed that, in some cases, considering the simplified excess compliance matrix may lead to
an incorrect representation of the anisotropic response of the probed fractured rock.

Key words: Fracture and flow; Numerical approximations and analysis; Acoustic properties;
Wave propagation.

1 I N T RO D U C T I O N

The presence of fractures is a common characteristic throughout the Earth’s upper crust. As fractures exert a strong influence on the mechanical
and hydraulic properties of the affected rock masses, their identification and characterization is of great importance in fundamental and applied
geophysics. In particular, open fractures tend to control the permeability of a reservoir as they may act as preferential pathways for fluid
flow. At typical reservoir depths, these fractures tend to be oriented normal to the direction of minimum in situ stress (Schoenberg & Sayers
1995). Since this direction is generally horizontal, the presence of sets of aligned, subvertical fractures is rather common in most reservoirs
(Liu et al. 2000). The seismic method is a valuable tool for the detection and characterization of fractures, due to the fact that seismic waves
experience strong directional dependence, and are also significantly attenuated and delayed when propagating through fractures (Maultzsch
et al. 2003). For this reason, there is currently great interest in improving the understanding of seismic wave propagation through fractured
rocks in general, and in presence of subvertical fractures in particular (Foord et al. 2015; Xue et al. 2017). Since seismic methods usually
lack the resolution needed to directly image individual fractures, most efforts in this direction focus on exploiting the information encoded in
the effective seismic properties of the probed fractured material.
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To extract the properties of a fractured system, such as predominant orientation, intensity and type of material infill from seismic data,
it is necessary to relate these characteristics to the effective anisotropic seismic response of the probed medium. Arguably, the most common
approach to achieve this is based on the linear slip theory (LST, Schoenberg 1980; Pyrak-Nolte et al. 1990). Therein, the fractures are treated
as interfaces separating two solid materials representing the embedding background rock. Although the stresses remain continuous across
such interfaces, the seismic effect of the fractures manifests itself as a discontinuity in the solid displacement field associated with the seismic
wave propagation. In the framework of this theory, the seismic response of the fractured rock mass is expressed by means of its effective
compliance matrix S, which is the inverse of the effective stiffness matrix C,

S = Sb + δS, (1)

where Sb is the compliance matrix of the background rock and δS is the excess compliance matrix due to the presence of the fractures
(Schoenberg & Douma 1988). The advantage of this approach is that, for a single set of rotationally invariant vertical fractures perpendicular
to the horizontal x1-axis, the excess compliance matrix in the long-wavelength limit depends on only two parameters and, in Voigt notation,
has a simplified structure of the form

δSLST =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ηN 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ηT 0
0 0 0 0 0 ηT

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where ηN and ηT are the normal and tangential fracture compliances, respectively (Schoenberg & Sayers 1995). These compliances contain
information regarding the internal structure or geometry of the fractures (Bakulin et al. 2000). When the background rock is assumed to be
isotropic, the fractured reservoir effectively behaves as a horizontal transversely isotropic (HTI) medium.

In its original form, this framework was developed for elastic solids containing fractures and therefore the resulting elements of the
effective compliance matrix are real-valued and frequency-independent (Schoenberg & Sayers 1995). However, when a seismic wave travels
through a fluid-saturated porous rock containing fractures, local gradients in the pore fluid pressure arise due to the uneven mechanical
response of the fractures and the embedding background rock. As a consequence, the pore fluid flows from the fractures into the background
during the compressional cycle of the wave, and back to the fractures in the extensional cycle, a physical process known as wave-induced
fluid pressure diffusion (FPD) or wave-induced fluid flow (Müller et al. 2010). This process is accompanied by energy loss due to viscous
internal friction within the pore fluid and, consequently, produces attenuation and velocity dispersion of the seismic wave. Thus, to account
for these effects in the modelling of the seismic response of a fractured medium, the components of the effective compliance matrix should be
complex-valued and frequency-dependent (Krzikalla & Müller 2011). There exist different approaches to include FPD effects through the LST
in the effective compliance matrix of a porous rock with aligned fractures. Most of them consist in replacing the elastic fracture compliances
ηN and ηT with complex-valued and frequency-dependent parameters, while preserving the structure of the excess compliance matrix given
by eq. (2) (Bakulin et al. 2000; Chichinina et al. 2006; Verdon et al. 2009; Rubino et al. 2015). Nevertheless, Gurevich (2003) showed that in
the low-frequency limit, when fluid pressure equilibrium between fractures and the background rock is fully achieved, the associated excess
compliance matrix has no longer the structure of eq. (2). Due to fluid pressure communication between fractures and background, a stress
component parallel to the plane of the fractures influences the deformation of the fractured rock in a direction normal to this plane, and vice
versa. This fact, in turn, implies that some other elements of the associated excess compliance matrix may be non-negligible and, hence,
the use of eq. (2) may introduce errors in the computation of the anisotropic response of fluid-saturated rocks containing aligned fractures.
Recently, Guo et al. (2018) proposed a model to compute the frequency-dependent effective anisotropic response of a fluid-saturated fractured
porous medium using an excess compliance matrix with the simplified structure of eq. (2). The analytical procedure presented in their work
was compared for a particular fractured rock sample with numerical upscaling simulations (Rubino et al. 2016) that provide a complete
physical description of the corresponding medium. The results obtained show slight discrepancies in phase velocities and attenuation, which
may be due to the use of the simplified structure of the excess compliance matrix in the model of Guo et al. (2018). To our knowledge, there
is no systematic study on the magnitude and the dynamic behaviour of these additional excess compliances and their impact on the seismic
response of fractured rocks.

Our aim in this work is, therefore, to provide a sensitivity analysis of these additional compliances for a wide range of poroelastic
parameters of rocks containing a set of vertical fractures, and to evaluate the conditions under which they cannot be neglected. Moreover, we
quantify the errors introduced in the calculation of the associated anisotropic seismic attenuation and phase velocities when the LST based
on eq. (2) is used. This analysis serves as a guide for the quantification of the errors that may arise in the inversion of fracture parameters
based on the commonly used LST from seismic data.

2 T H E O RY

Different approaches exist to compute the frequency-dependent effective stiffness matrix, or its inverse, the compliance matrix, of an isotropic
fluid-saturated porous rock permeated by a set of aligned fractures (Chapman 2003; Brajanovski et al. 2005; Baird et al. 2013; Carcione
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FPD and fracture excess compliance 717

Figure 1. Geometry of the fracture system considered in this work. The angle of incidence θ is the angle between the x1-axis of symmetry and the direction
of wave propagation.

et al. 2013; Galvin & Gurevich 2015). They differ from each other with respect to the fracture geometry and distribution, and the physical
phenomena associated with the seismic energy dissipation. For simplicity, we consider a set of regularly distributed parallel planar fractures
of finite thickness and infinite lateral extent, similar to that used by Carcione et al. (2013). Therein, the elastic equivalent response of the
probed medium at low and high frequencies is given by poroelastic Backus averaging. The effective dynamic response between these two
frequency limits is controlled by FPD between fractures and the embedding background. In this section we give the geometrical details of the
fracture system considered in this work and the expressions of the frequency-dependent elements of its effective stiffness matrix. Then, we
provide explicit analytical expressions for the elements of the fracture excess compliance matrix.

2.1 Thin layer model

Following Brajanovski et al. (2005), we model a fluid-saturated porous rock mass with planar vertically aligned fractures as a regularly
distributed system of relatively thick layers of isotropic porous background material alternating with very thin, highly porous and highly
permeable layers representing the fractures (Fig. 1). The latter have a porosity φc, permeability κc, dry bulk modulus K dry

c , shear modulus
μc, and thickness, that is, aperture Lc. The distance between consecutive fractures is L and, thus, the thickness fraction of the fractures is
hc = Lc/L. The background material is characterized by a porosity φb, permeability κb, dry bulk modulus K dry

b , shear modulus μb and its
thickness fraction is hb = 1 − hc. We assume that, at the grain level, both background and fractures are composed of the same isotropic
material, which has a bulk modulus Kg, shear modulus μg, and density ρg. The properties of the pore fluid in the background are the bulk
modulus Kfb, density ρ fb, and dynamic viscosity ηb. The fluid filling the fractures has a bulk modulus Kfc, density ρ fc, and viscosity ηc.
This representation of the fractured medium will be referred to as the thin layer model (TLM). In response to a passing seismic wave, this
layered system behaves effectively as a homogeneous HTI medium when the predominant wavelengths are long compared to its characteristic
length L. Moreover, its effective response will be frequency-dependent as it is affected by FPD between the fractures and their embedding
background. The associated effective stiffness matrix is

C(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C11(ω) C12(ω) C13(ω) 0 0 0
C12(ω) C22(ω) C23(ω) 0 0 0
C13(ω) C23(ω) C33(ω) 0 0 0

0 0 0 C44(ω) 0 0
0 0 0 0 C55(ω) 0
0 0 0 0 0 C66(ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where ω is the angular frequency. In the next subsections, we describe the behaviour of the TLM in the different frequency regimes.

2.1.1 Effective response of the TLM in the unrelaxed and relaxed states

For frequencies low enough to remain within the long-wavelength approximation, where scattering effects are negligible, but sufficiently high
so that the fluid will have no time to flow between fractures and the host rock within a half-wave cycle, the fractures should be considered
to be hydraulically isolated. That is, there is no pore fluid pressure communication between the fractures and the background, and the elastic
properties of both fractures and background can be locally described by the isotropic Gassmann’s equations (Gassmann 1951). This regime
is called the ‘unrelaxed’ state (Müller et al. 2010). Backus (1962) derived explicit expressions for the five effective elastic parameters of
such an equivalent TI medium. The coefficients of the associated stiffness matrix Cu are given in Appendix A. The corresponding effective
compliance matrix Su of the medium can be obtained by inverting the stiffness matrix Cu .
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718 G.A. Castromán et al.

For frequencies below the unrelaxed state and assuming that the fractures are hydraulically connected to the pore space of the background,
there will be pore fluid pressure communication between these two regions in response to the propagation of a seismic wave. In the low-
frequency limit, the pressure gradients induced by the large mechanical contrast between fractures and background have enough time to fully
equilibrate and, hence, the pore fluid pressure is constant throughout the fractured rock. This frequency limit is called the ‘relaxed’ state
(Müller et al. 2010). Gelinsky & Shapiro (1997) extended the result of Backus (1962) to fluid-saturated poroelastic layers for relaxed pore
fluid pressure. The coefficients of the effective stiffness matrix in this case Cr are displayed in Appendix A. The effective compliance matrix
in the relaxed case Sr can be obtained by inverting the stiffness matrix Cr .

2.1.2 Effective dynamic response of the TLM

The stiffness matrices Cu and Cr describe the effective behaviour of the fractured system in the high- and low-frequency limits, respectively.
There, neither attenuation nor dispersion take place, since, in both cases, the considered medium is elastic equivalent. At intermediate
frequencies, though there is pore fluid pressure exchange between fractures and the background, fluid pressure equilibrium is only partially
achieved. In this transitional frequency regime, energy dissipation due to FPD can take place, leading to frequency-dependent seismic
attenuation and velocity dispersion (Müller et al. 2010). To account for these effects in the particular case of a regularly distributed 1-D
medium with two alternating layers, White et al. (1975) derived an expression for the dynamic-equivalent P-wave modulus C11 as

1

C11(ω)
= 1

Cu
11

+ 1

(L/2)

(Bb − Bc)2

Nbkb coth (kbhb L/2) + Nckc coth (kchc L/2)
, (4)

where B = αM/Psat is the uniaxial Skempton coefficient, that is, the ratio of the fluid pressure increase to the applied stress for undrained
conditions, N = M(1 − αB), and k =

p
iηω/Nκ is the wavenumber of Biot’s slow P wave. The poroelastic constants α and M as well as

the undrained P-wave modulus Psat are given in Appendix A. Eq. (4) allows to compute the properties of P waves propagating only in the
direction normal to the plane of the layering. To generalize the FPD effects to either arbitrary angles of incidence or shear waves, Krzikalla &
Müller (2011) proposed a methodology based on the fact that all the elements of the complete stiffness matrix have approximately the same
fluid pressure relaxation behaviour. Therein, the coefficients of the effective stiffness matrix C(ω) are given by

Ci j (ω) = Cu
i j − R(ω)

£
Cu

i j − Cr
i j

¤
, (5)

where the effective elastic parameters at low- and high-frequency limits Cr
i j and Cu

i j , respectively, are linked by a single scalar function R(ω)
that describes the frequency-dependent relaxation behaviour of the equivalent viscoelastic medium. This relaxation function can be computed
by normalizing the dynamic-equivalent P-wave modulus at normal incidence C11(ω) given by eq. (4) with its unrelaxed and relaxed limits,

R(ω) = C11(ω) − Cu
11

Cr
11 − Cu

11

. (6)

Once the relaxation function R(ω) is computed, we can completely define the effective stiffness matrix C(ω) of the TLM using eq. (5) with its
corresponding high- and low-frequency limits. This model describes the complete frequency-dependent seismic response of a fluid-saturated
poroelastic medium with regularly distributed planar fractures of finite thickness. The frequency-dependent effective compliance matrix of
the medium S(ω) can be obtained by inverting the stiffness matrix C(ω) for each frequency ω.

2.2 Fracture excess compliance matrix for the TLM

The effective compliance matrix of a fractured rock can be expressed as the sum of the compliance matrix of the unfractured background
rock and the excess compliance matrix due to the presence of the fractures (Schoenberg & Douma 1988; Gurevich 2003). Due to the large
compressibility contrast between the fractures and the background, the FPD effects on the mechanical response of the latter are rather
negligible (Rubino et al. 2015). Correspondingly, the coefficients of the compliance matrix of the background Sb can be computed through
standard isotropic Gassmann’s equations as

Sb
11 = Sb

22 = Sb
33 = λsat

b + μb

μb

¡
3λsat

b + 2μb

¢ , (7)

Sb
12 = Sb

13 = Sb
23 = −λsat

b

2μb

¡
3λsat

b + 2μb

¢ , (8)

Sb
44 = Sb

55 = Sb
66 = 1

μb
, (9)
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FPD and fracture excess compliance 719

where λsat
b is the undrained Lamé parameter (Appendix A). Therefore, we obtain the fracture excess compliance matrix δS(ω) for the TLM

as

δS(ω) = S(ω) − Sb =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

δS11(ω) δS12(ω) δS13(ω) 0 0 0
δS12(ω) δS22(ω) δS23(ω) 0 0 0
δS13(ω) δS23(ω) δS33(ω) 0 0 0

0 0 0 δS44(ω) 0 0
0 0 0 0 δS55(ω) 0
0 0 0 0 0 δS66(ω)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

The explicit expressions for the coefficients of this matrix are given by

δS11(ω) = C22(ω) + C23(ω)

D(ω)
− λsat

b + μb

μb

¡
3λsat

b + 2μb

¢ , (11)

δS12(ω) = −C12(ω)

D(ω)
+ λsat

b

2μb

¡
3λsat

b + 2μb

¢ , (12)

δS13(ω) = δS12(ω), (13)

δS22(ω) = C11(ω)C22(ω) − [C12(ω)]2

[C22(ω) − C23(ω)] D(ω)
− λsat

b + μb

μb

¡
3λsat

b + 2μb

¢ , (14)

δS23(ω) = −C23(ω)C11(ω) + [C12(ω)]2

[C22(ω) − C23(ω)] D(ω)
+ λsat

b

2μb

¡
3λsat

b + 2μb

¢ , (15)

δS33(ω) = δS22(ω), (16)

δS44(ω) = 1

C44(ω)
− 1

μb
, (17)

δS55(ω) = 1

C55(ω)
− 1

μb
, (18)

δS66(ω) = δS55(ω); (19)

with

D(ω) = [C22(ω) + C23(ω)] C11(ω) − 2 [C12(ω)]2 . (20)

The set of eqs (11)–(20) is the main result of the theoretical derivation of this work. We obtain analytical expressions for all the elements
of the fracture excess compliance matrix of the TLM. By comparing the structure of this matrix with that corresponding to the LST approach,
which is given by eq. (2), we observe that some of its coefficients besides the normal and tangential fracture compliances may be different
from zero. In the following, we examine the dynamic behaviour and importance of these nonzero excess compliances for the TLM, prior to
analysing their influence on the anisotropic seismic response of the fractured medium.

3 S E N S I T I V I T Y A NA LY S I S

We consider a model that is composed of a water-saturated quartz sandstone with a set of regularly distributed vertical fractures of uniform
aperture (Fig. 1). The physical properties of the solid grains, pore fluid, and fractures, as well as the aperture and separation of the fractures
were chosen following the work of Rubino et al. (2015) and are listed in Table 1.

3.1 Analysis of the magnitude of the TLM excess compliances

3.1.1 Frequency dependence

To evaluate the expressions obtained for the elements of the TLM fracture excess compliance matrix δS(ω), we first consider for the dry
background rock a porosity φb = 0.15 and a bulk modulus K dry

b = 17.2 GPa, which are representative of a well consolidated quartz sandstone
(Rubino et al. 2012). The background shear modulus μb is computed using the following empirical relation (Picket 1963)

μb

K dry
b

= μg

Kg
, (21)

that in this case yields a value of μb = 20.45 GPa. The permeability of the background is calculated according to the Kozeny–Carman relation
(Mavko et al. 2009)

κb = βd2φ3
b

(1 − φb)2
, (22)
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720 G.A. Castromán et al.

Table 1. Solid grain, pore fluid and fracture properties used in the parametric
analysis (Rubino et al. 2015).

Solid grain bulk modulus (quartz) Kg [GPa] 37
Solid grain shear modulus μg [GPa] 44
Solid grain density ρg [g cm–3] 2.65

Water bulk modulus Kf [GPa] 2.25
Water viscosity η [cP] 1
Water density ρf [g cm–3] 1.09
Fracture porosity φc [–] 0.9

Fracture dry bulk modulus K dry
c [GPa] 0.024

Fracture shear modulus μc [GPa] 0.012
Fracture permeability κc [D] 100
Fracture aperture Lc [cm] 0.04
Fracture separation L [cm] 10

Figure 2. (a) Real and (b) imaginary parts of the dynamic elements of the TLM excess compliance matrix as functions of frequency.

where β is a geometric factor and d is the average grain diameter. Taking β = 0.003 and d = 80 μm (Rubino & Holliger 2012), we have κb

= 89.7 mD for the permeability of the background.
The excess compliances δS44 and δS55 are real-valued and frequency-independent, as we observe from eqs (17) and (18), combined

with eqs (A7), (A8), (A20) and (A21), that they only depend on the shear modulus of both the background rock and the fractures, which are
parameters that are not affected by FPD. The element δS55 is related to the tangential fracture compliance ηT of the classical LST, as can be
seen by comparing eqs (2) and (10). This parameter represents the additional tangential compliance that the fractures add to the background
when the rock is subjected to a pure shear stress on a plane parallel to the fractures. In this case, it takes the value δS55=3.33× 10−10 Pa–1,
which is an order-of-magnitude greater than the corresponding element of the background rock compliance matrix Sb

55=4.89× 10−11 Pa –1.
Conversely, the excess compliance δS44, which is not considered in the LST approach, takes a value of δS44=1.96× 10−13 Pa –1, which is
several orders-of-magnitude smaller than Sb

44=4.89× 10−11 Pa –1. This element can therefore be neglected and, hence, the lower right quarters
of both the TLM and LST excess compliance matrices become equivalent.

The magnitude of both the real and imaginary parts of the excess compliance δS11 are significantly greater than those of the remaining
excess compliances (Fig. 2). This feature is expected since δS11 is related to the fracture normal compliance ηN of the LST, as can be seen by
comparing the structure of the excess compliance matrix δS of eq. (10) with that given in eq. (2). This parameter relates the discontinuity in the
solid displacement between the boundaries of the fractures to the stresses across the fractures, both in the direction normal to the fracture plane
(Schoenberg 1980). For a homogeneous fracture of finite thickness, this displacement discontinuity is associated to the fracture deformation
in the fracture normal direction (Barbosa et al. 2017). Therefore, the excess compliance δS11 represents the mechanical compliance added
by the fractures to the background in the direction perpendicular to the fractures when the rock is subjected to stress along this direction.
As in the work of Rubino et al. (2015) for a frequency-dependent fracture normal compliance, we observe that the real part of δS11 in the
high-frequency limit, referred to as δSu

11, is at its minimum. As in this limiting case there is no fluid pressure exchange between fractures
and their embedding background, the stiffening effect of the saturating fluid in the fractures is maximal. This effect makes the effective
mechanical compliance of the saturated fractures to be minimal in the unrelaxed state. In the low-frequency limit, the situation is different
since a large amount of fluid flows from the fractures into the background during the compressional cycle of a propagating wave in order to
fully equilibrate the pore fluid pressure. Thus, the stiffening effect of the saturating fluid reduces to its minimum, which, in turn, results in
a maximal deformation of the fractures and, hence, a substantial increase in the real part of the excess compliance δS11, referred to as δSr

11
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FPD and fracture excess compliance 721

(Fig. 2a). In both frequency limits the imaginary part of δS11 is negligible, which is expected since the TLM in both the relaxed and unrelaxed
states behaves as an equivalent elastic solid. Nevertheless, for frequencies between these two limiting cases, energy dissipation due to FPD
can take place, leading to seismic attenuation and velocity dispersion. In this frequency range the real part of the excess compliance δS11

exhibits a transition from its largest value δSr
11 to its lowest value δSu

11 (Fig. 2a). Moreover, the imaginary part of this element reaches its
maximum at a certain characteristic frequency fc within the transitional frequency range (Fig. 2b), which is where the dispersion of the real
part is maximal (Fig. 2a).

In the high-frequency limit, the real part of the additional excess compliances are negligible within a long-wavelength approximation
(Fig. 2a). Since both the fractures and the background can be locally modeled as elastic equivalent solids, the effective anisotropic response
of the fractured medium is well represented by the classical elastic LST approach. This result is agreement with the work of Li et al. (2014)
for a single elastic fracture of finite thickness. Although in the low-frequency limit the real parts of the additional excess compliances are
at their maxima, only that of δS12 reaches a non-negligible value that may have an impact on the calculation of the anisotropic effective
response of the fractured rock. Its value in this case is δSr

12 = −4.78 × 10−12 Pa–1, which is larger in magnitude than that of the corresponding
compliance of the background rock Sb

12 = −2.84 × 10−12 Pa –1. Finally, we observe that the imaginary parts of all the excess compliances
become maximal at the characteristic frequency fc (Fig. 2b), as expected since in our model all the elements are assumed to have the same
fluid pressure relaxation behaviour (eq. 5). Once again, the parameter δS12 is the only additional excess compliance that has a maximum of
its imaginary part that may be non-negligible.

3.1.2 Dependence on background physical properties

The frequency-dependent effective anisotropic response of fractured media is expected to depend on the characteristics of the background,
where most of the energy dissipation due to FPD prevails (Rubino et al. 2014). Up to now, we have considered a particular fractured rock
sample. Here, we evaluate the magnitude of the frequency-dependent elements of the TLM excess compliance matrix in the low-frequency
limit and at the characteristic frequency of the FPD process fc as functions of different background properties. We parametrize our sensitivity
analysis as functions of porosity and dry bulk modulus of the background. For the porosity φb, we consider the range between 0, which
approximates a massive quartzite, and 0.35, which is near the typical value of the critical, or maximum, porosity sandstones (Mavko et al.
2009). Then, the dry bulk modulus K dry

b can be related to the porosity φb by means of a model proposed by Pride (2005)

K dry
b = Kg

µ
1 − φb

1 + cφb

¶
, (23)

where c is the ‘consolidation parameter’, which characterizes the degree of cohesion between the solid grains of the porous rock. For
consolidated sandstones, it is expected that this parameter ranges from c = 2 (extremely consolidated) to c = 20 (poorly consolidated)
depending on certain properties of the microstructure (Pride 2005). Thus, we vary the consolidation parameter between these values and use
eq. (23) to compute, for each value of the background porosity φb, the corresponding value of the dry bulk modulus K dry

b . The associated
shear modulus μb and permeability κb are computed for each pair (φb, K dry

b ) following the relations given in eqs (21) and (22), respectively.
To illustrate how significant the value of the excess compliances can be, we normalize them with respect to their corresponding elements of
the background compliance matrix. In all cases, the set of free parameters (φb, K dry

b ) are bounded by those of the model described by eq. (23)
with the upper bounds corresponding to the very strongly consolidated case (c = 2) and the lower ones to the poorly consolidated case (c =
20). All the figures regarding the analysis of a certain variable as a function of these properties will be displayed between these curves.

In the relaxed case, δSr
11 increases with respect to Sb

11 as the porosity and consolidation of the background rock increases (Fig. 3a). For
very low porosities (less than 10 per cent), there is little exchange of fluid between these regions due to the limited pore space volume of
background material involved, although the compressibility contrast between fractures and the embedding background is large due to the
high bulk modulus of the latter. Consequently, the fracture exhibits relatively small additional deformation due to FPD, and the corresponding
fracture compliance is relatively small. High background porosity, on the other hand, favors the pore fluid exchange and, hence, the additional
fracture deformation due to this process increases. In this case, the fracture is therefore more compliant. This effect is enhanced by the
increase in consolidation of the background material as it implies an increase in its bulk modulus, and thus, a larger compressibility contrast
between fractures and background. Concerning the additional excess compliances of the TLM, while δSr

22 and δSr
23 do not exceed 15 per cent

of their corresponding background compliances in most cases, δSr
12 can take significant values of up to 1.6 times the background compliance

Sb
12 (Figs 3b–d).

At the FPD characteristic frequency fc, the magnitude of the imaginary part of δS11 increases with increasing porosity and consolidation
of the background rock (Fig. 4a). Within the framework of the LST, this parameter encodes energy dissipation and the consequent seismic
attenuation due to FPD for a propagation direction perpendicular to the fractures (Rubino et al. 2015). Therefore, it is expected to be larger in
magnitude than those of the remaining elements of the TLM excess compliance matrix as we observe in Fig. 2b. For this reason, we compare
the magnitudes of the imaginary parts of δS12, δS22 and δS23 with that of δS11. While the excess compliance δS12 takes values of up to 30
per cent of δS11 for its imaginary part (Fig. 4b), those of the excess compliances δS22 and δS23 do not exceed 7 per cent of that of δS11 (Figs 4c
and d, respectively).
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Figure 3. Ratio between the excess compliances of the TLM and their corresponding background compliances for the relaxed case: (a) δSr
11/Sb

11, (b) δSr
22/Sb

22,
(c) δSr

12/Sb
12 and (d) δSr

23/Sb
23 as functions of the porosity and dry bulk modulus of the background. The upper and lower dashed lines are computed from

eq. (23) for strongly and weakly consolidated sandstones, respectively.

3.2 Physical meaning of the excess compliance δS12

The above analysis suggest that, in the presence of FPD effects, the anisotropic seismic attenuation behaviour of the fractured rock mass
can be affected by the typically neglected frequency-dependent excess compliance δS12. In the following, we explore the significance of δS12

considering again the particular rock sample of Section 3.1.1.

3.2.1 Anisotropic Poisson coefficient ν12

Considering an uniaxial stress applied along the x2-axis (parallel to the fractures), we can define an anisotropic Poisson ratio that compares
the resultant deformation in the x1-direction (perpendicular to the fractures) with that in the x2-direction (Mavko et al. 2009)

ν12 = −deformation along the x1 axis

deformation along the x2 axis
. (24)

We compute this parameter in terms of the effective compliances, for the TLM, as

νTLM
12 (ω) = −<

½
S12(ω)

S22(ω)

¾
= −<

½
Sb

12 + δS12(ω)

Sb
22 + δS22(ω)

¾
, (25)

and for the LST approach as

νLST
12 (ω) ≡ − Sb

12

Sb
22

, (26)

which does not vary with the frequency and is equal to the isotropic Poisson ratio of the background. In the high-frequency limit, the excess
compliance δS12 takes the value δSu

12 = −7.47 × 10−14 Pa –1, which is negligible with respect to its corresponding background compliance
Sb

12. A similar result is obtained for the excess compliance δS22, as it takes the high-frequency value δSu
22 = 8.67 × 10−13 Pa–1 and its
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Figure 4. (a) Absolute value of the imaginary part, at the FPD characteristic frequency fc, of the excess compliance δS11 and the corresponding imaginary
parts of (b) δS12, (c) δS22 and (d) δS23 normalized with respect to that of δS11 as functions of background porosity and dry bulk modulus. The upper and lower
dashed lines are computed from eq. (23) for strongly and weakly consolidated sandstones, respectively.

corresponding background compliance is Sb
22 = 2.16 × 10−11 Pa–1. Therefore, the anisotropic Poisson ratio for the TLM in this limit

¡
νTLM

12

¢u

also approximates the value of the isotropic Poisson ratio of the background

¡
νTLM

12

¢u ' − Sb
12

Sb
22

. (27)

However, the real part of the excess compliance δS12 assumes a non-negligible value δSr
12 in the low-frequency limit that is greater than the

corresponding element of the compliance matrix of the background Sb
12. Since the excess compliance δS22 in this limit is δSr

22 = 6.82 × 10−13

Pa–1, which is much smaller than the corresponding element of the background compliance matrix, the Poisson ratio for the TLM in the
relaxed state

¡
νTLM

12

¢r
can thus be approximated by

¡
νTLM

12

¢r ' − Sb
12 + δSr

12

Sb
22

= ¡
νTLM

12

¢u − δSr
12

Sb
22

. (28)

The values that νTLM
12 takes in the relaxed and unrelaxed regimes differ significantly (Fig. 5a). The increase in the anisotropic Poisson ratio for

the TLM as we move towards lower frequencies is due to FPD and can be directly associated with the excess compliance δS12 (eq. 28). In the
unrelaxed state there is no fluid pressure communication between the fractures and the background rock, and thus, when the fractured rock is
subjected to uniaxial stress in the x2-direction, the deformation of the fractures is negligible in the x1-direction. For this reason, the fractured
rock has no additional deformation due to the presence of the fractures in this direction and the anisotropic Poisson ratio for both models
is equal to the isotropic one of the background rock. However, in the relaxed state, the hydraulic coupling between the fractures and the
background allows the fractures to open, that is, to increase their aperture due to FPD, when the rock mass is subjected to uniaxial compression
in a direction parallel to the plane of the fractures. Such fracture behaviour induces an additional deformation in the direction normal to
the fractures and, consequently, an increase in the anisotropic Poisson ratio ν12. The described coupling between orthogonal deformations
due to FPD cannot be modeled with the LST approach. This effect prevails when a seismic wave propagates obliquely to the fractures and
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724 G.A. Castromán et al.

Figure 5. Anisotropic Poisson ratios (a) ν12 and (b) ν21 as functions of frequency for a rock sample with φb = 0.15 and K dr y
b = 17.2 GPa.

the induced stress field has a component parallel to the fractures. Due to the symmetry of the model geometry, a similar analysis could be
performed for a compression applied in the x3-direction, leading to the same results.

3.2.2 Anisotropic Poisson coefficient ν21

We now consider the case of uniaxial stress applied along the symmetry axis x1 (perpendicular to the fractures). In this case, we can specify
an anisotropic Poisson ratio ν21 that relates the deformation in the x2-direction with the deformation in the direction of the applied stress
(Mavko et al. 2009)

ν21 = −deformation along the x2 axis

deformation along the x1 axis
. (29)

For the TLM we compute this parameter as

νTLM
21 (ω) = −<

½
S12(ω)

S11(ω)

¾
= −<

½
Sb

12 + δS12(ω)

Sb
11 + δS11(ω)

¾
, (30)

and for the LST as

νLST
21 (ω) = −<

½
Sb

12

Sb
11 + δS11(ω)

¾
. (31)

In the high-frequency limit, the difference observed between the two models (Fig. 5b) is only due to the presence of the excess compliance
δS12 as can be seen by comparing the following limiting values

¡
νTLM

21

¢u = − Sb
12 + δSu

12

Sb
11 + δSu

11

, (32)

and

¡
νLST

21

¢u = − Sb
12

Sb
11 + δSu

11

. (33)

Since δSu
12 is negligible with respect to Sb

12, the difference between these two anisotropic Poisson ratios is very small. Moreover, as in this
case δSu

11 = 1.55 × 10−12 Pa–1 is much smaller than its corresponding background compliance Sb
11, both Poisson ratios approach the isotropic

value of the background. However, in the low-frequency limit, the difference between these parameters is significant (Fig. 5b). Although the
limiting expressions

¡
νTLM

21

¢r = − Sb
12 + δSr

12

Sb
11 + δSr

11

, (34)

and

¡
νLST

21

¢r = − Sb
12

Sb
11 + δSr

11

, (35)

are similar to eqs (32) and (33), as δSr
12 is larger than its corresponding background compliance Sb

12, the anisotropic Poisson ratio for the
TLM is greater than that for the LST approach. When the fractured rock is compressed in a direction perpendicular to the plane of the
fractures, the fractures tend to close. Since in the relaxed state this aperture decrease is maximal due to FPD, the elongation of the fractures
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FPD and fracture excess compliance 725

in a perpendicular direction is significant. Therefore, the deformations of the fractured rock perpendicular and parallel to the plane of the
fractures are expected to be coupled. This coupling between orthogonal deformations is not accounted for by the LST as we observe that the
anisotropic Poisson ratio obtained with this model is very small, implying that the deformation parallel to the fractures is almost negligible.
The difference between the high- and low-frequency values of νLST

21 is only related to the variation of the normal excess compliance δS11

with frequency (Fig. 2a). However, the TLM captures the FPD coupling effect, as the frequency-dependent behaviour of δS11 is compensated
by the excess compliance δS12. This compensation implies that

¡
νTLM

21

¢r ' ¡
νTLM

21

¢u
. Due to the symmetry of the model geometry, a similar

analysis could be performed for the deformation parallel to the fractures in the x3-direction, leading to the same results.

3.3 Impact of the TLM excess compliances on seismic signatures

The results presented so far have been focused on the magnitudes of the excess compliances of the TLM. Although these results allow us to
analyse how the FPD process affects the excess compliances that are not accounted for in the classical LST approach, the impact of these
parameters on the anisotropic seismic response of fractured rocks remains to be clarified. In this section, we study this influence by considering
two different stiffness matrices to model the effective response of a porous rock with vertical parallel fractures: one corresponding to the
TLM, C(ω), and the other, C̃(ω), based on a LST approach. The first one, given in eq. (5), has all the fracture excess compliances included.
The second one is obtained by inverting the effective compliance matrix S̃(ω), which is given by

C̃(ω) = £
S̃(ω)

¤−1 = £
Sb + δS̃(ω)

¤−1
, (36)

where the excess compliance matrix δS̃(ω) has the same structure as that in eq. (2), with the fracture normal compliance ηN given by δS11(ω)
(eq. 11) and the fracture tangential compliance ηT equal to the coefficient δS55 (eq. 18).

3.3.1 P- and SV-wave phase velocities

We first analyse the phase velocity of the fundamental propagation modes in TI media, that is, quasi-longitudinal (P), quasi-shear (SV) and
pure shear (SH), as functions of the angular frequency ω and the angle of incidence θ . The latter is the angle between the direction of wave
propagation and the x1-axis of symmetry (Fig. 1). The phase velocities corresponding to the TLM can be obtained from the components of
the complex-valued and frequency-dependent effective stiffness matrix C(ω). Since our aim is to study FPD effects and SH waves are not
affected by this process (Barbosa et al. 2017), we restrict our analysis to quasi-P and quasi-SV wave propagation in the x1–x3 plane. Therefore,
we first compute their corresponding complex velocities as follows (Mavko et al. 2009)

v2
P(ω, θ ) = C22(ω) sin2 θ + C11(ω) cos2 θ + C55 + p

C∗(ω, θ )

2 hρi , (37)

v2
SV(ω, θ ) = C22(ω) sin2 θ + C11(ω) cos2 θ + C55 − p

C∗(ω, θ )

2 hρi , (38)

where hρi = hbρb + hcρc is the average bulk density, in which ρb = φbρ fb + (1 − φb)ρg and ρc = φcρ fc + (1 − φc)ρg are the bulk densities
of the background rock and the fractures, respectively. The quantity C∗ is given by

C∗(ω, θ ) = ©
[C22(ω) − C55] sin2 θ − [C11(ω) − C55] cos2 θ

ª2 + [C12(ω) + C55]2 sin2 2θ. (39)

Subsequently, we compute the phase velocity of each mode in terms of its corresponding complex-valued velocities

1

Vm(ω, θ )
= <

½
1

vm(ω, θ )

¾
, (40)

where the subscript m refers to either P or SV waves. The corresponding phase velocities ṼP(ω, θ ) and ṼSV(ω, θ ) for the LST approach
are computed following eqs (37)–(40) using the stiffness coefficients of the frequency-dependent stiffness matrix C̃(ω). To quantify the
discrepancies between these two models, we compute for both P and SV waves the quantity

1Vm(ω, θ ) =
¯̄
Vm(ω, θ ) − Ṽm(ω, θ )

¯̄
Vm(ω, θ )

× 100 per cent, (41)

for different combinations of the background properties φb and K dry
b and then determine its maximum for a given frequency ω and a variable

incidence angle

1V max
m (ω) = max

0≤θ≤π/2
1Vm(ω, θ ). (42)

The maximum relative difference in P -wave velocity between the TLM and the LST in the low-frequency limit can be significant, reaching
values of up to 12 per cent for relatively poorly consolidated materials (Fig. 6a). In addition , these discrepancies prevail for angles of
incidence ranging mainly from 25◦ to 35◦ (Fig. 6b). When a compressional seismic wave propagates obliquely to the plane of the fractures, its
associated stress field has components both normal and parallel to this plane. If the additional excess compliances are taken into account, the
parallel components of the stress will induce deformation of the fractures due to FPD in a direction perpendicular to the fracture plane. This
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Figure 6. (a) Maximum value of 1VP (θ ) for the low-frequency limit. (b) Angle of incidence θmax where 1VP reaches its maximum. The upper and lower
dashed lines are computed from eq. (23) for strongly and weakly consolidated sandstones, respectively. The black dots correspond to porosities and bulk moduli
of various dry sandstones listed in Table 2.

Table 2. Porosities and bulk moduli of dry sandstones docu-
mented in the literature (Gibiansky & Torquato 1998).

φb K dry
b [GPa]

Sandstone 1 (Travis Peak) 0.08 18
Sandstone 2 (Chugwater) 0.11 15.2
Sandstone 3 (Green River) 0.117 22.2
Sandstone 4 (Cabinda) 0.124 18.2
Sandstone 5 (Tensleep) 0.152 17.8
Sandstone 6 (Berea) 0.191 14.2
Sandstone 7 (Gulf Coast) 0.217 12.7

Figure 7. (a) Maximum value of 1VSV (θ ) for the relaxed case. (b) Angle of incidence θmax where 1VSV reaches its maximum. The upper and lower dashed
lines are computed from eq. (23) for strongly and weakly consolidated sandstones, respectively. The black dots correspond to porosities and bulk moduli of
various dry sandstones listed in Table 2.

physical process gets particularly important for relatively poor consolidated rocks since the additional excess compliances become significant
for this type of background material (Fig. 3). The result is that the phase velocities estimated with the TLM are different from those computed
with the LST approach. For example, for a background composed of a typical Berea sandstone (φb = 0.191, K dry

b = 14.2 GPa), the maximum
relative difference between the considered models is '8 per cent. This result indicates that the presence of the additional excess compliances
has a non-negligible impact on the estimation of phase velocities for oblique incidence of compressional waves in the low-frequency limit. A
similar result is obtained for the propagation of shear waves (Fig. 7). While the magnitude of the maximum relative difference is lower than
that of the P-wave case, the maxima occur at slightly larger angles of incidence.
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FPD and fracture excess compliance 727

Figure 8. (a) Maximum value of 1VP (θ ) for a frequency fs = 30 Hz (ωs = 2π fs). (b) Angle of incidence θmax where 1VP reaches its maximum. The upper
and lower dashed lines are computed from eq. (23) for strongly and weakly consolidated sandstones, respectively. The black dots correspond to porosities and
bulk moduli of various dry sandstones listed in Table 2.

For a typical seismic frequency fs = 30 Hz, the discrepancies in the P-wave velocity between the two models are smaller than those in
the low-frequency limit, although they present a similar behaviour with respect to the porosity and bulk modulus of the dry background rock
(Fig. 8). This result is expected since the additional excess compliances reach their maximum values in the relaxed state. The discrepancies
between the TLM and the LST approach in the computation of longitudinal phase velocities decrease as frequency increases. However, we
observe that for seismic frequencies these differences are still appreciable and the additional excess compliances are needed to fully describe
the effective anisotropic response of the probed fractured rock mass.

3.3.2 Seismic attenuation due to wave-induced FPD

Proceeding in a similar fashion as for the analysis of phase velocities, we study the impact of the excess compliances on the P- and SV-wave
attenuation due to FPD between fractures and background. With this goal in mind, we compute the inverse quality factors Q−1

m and Q̃−1
m , m

= P, SV, for the TLM and the LST approach, respectively, as functions of the angular frequency ω and the angle of incidence θ (Krzikalla &
Müller 2011)

Q−1
m (ω, θ ) = = ©

v2
m(ω, θ )

ª
< ©

v2
m(ω, θ )

ª , (43)

Q̃−1
m (ω, θ ) = = ©

ṽ2
m(ω, θ )

ª
< ©

ṽ2
m(ω, θ )

ª . (44)

To quantify the discrepancies between the inverse of the quality factors obtained with each model, we compute the relative difference 1Q−1
m

1Q−1
m (θ ) = maxω

©
Q̃−1

m (ω, θ )
ª − maxω

©
Q−1

m (ω, θ )
ª

maxω

©
Q−1

m (ω, θ )
ª . (45)

Please note that, in the calculation of eq. (45), the inverse of the quality factors Q−1
P and Q̃−1

P are computed at the frequencies of their
corresponding maxima ωc and ω̃c, respectively, as we have verified that the difference between these frequencies is relatively small.

For normal incidence (θ=0◦), in both the TLM and the LST approaches the amplitude of the P-wave attenuation peak decreases as the
consolidation of the background rock decreases (compare Figs 9a and b). This decrease is due to the fact that a well consolidated porous rock
with fractures exhibits a larger compressibility contrast between the fractures and their embedding background than a poorly consolidated
one. Therefore, the induced fluid pressure gradients and the associated seismic attenuation due to FPD are stronger for well consolidated
background rocks. If we now compare the results obtained for each model, we observe that the attenuation levels for the TLM are significantly
smaller than those for the LST approach. This difference increases as the consolidation of the background decreases, reaching values of up
to 80 per cent for the limiting case of poorly consolidated and high-porosity sandstones (Fig. 9c). In most cases though, it reaches values of
up to 40 per cent, which is still of importance. These discrepancies are explained by the presence of the additional excess compliances in
the TLM. For lower degrees of consolidation, the additional excess compliances attain their maximum values whereas the influence of the
normal compliance is less significant (Fig. 4). When these excess compliances are not taken into account, the additional deformation normal
to the fracture set due to the presence of the fractures increases, thus increasing the amplitude of the attenuation peak for the fractured rock.
It is interesting to note that these additional compliances also influence the effective seismic response of the fractured medium even for a
normally incident P wave. This can be explained by considering the analysis of the anisotropic Poisson ratio ν21 in Section 3.2.2. Therein,
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Figure 9. Maximum of the inverse P-wave quality factors (a) Q−1
P and (b) Q̃−1

P for a P-wave propagating normally to the fractures (θ = 0◦) for the TLM and
the LST, respectively. (c) Relative difference between these two models. The upper and lower dashed lines are computed from eq. (23) for strongly and weakly
consolidated sandstones, respectively. The black dots correspond to porosities and bulk moduli of various dry sandstones listed in Table 2.

we show that the additional excess compliances account for the FPD effect on the coupling between deformations normal and parallel to the
fractures when the fractured rock is subjected to stress only normal to the fracture planes.

For an oblique incidence (θ = 25◦), the amplitude of the P-wave attenuation peak for both the TLM and the LST approaches exhibit
a similar behaviour as in the normal incidence case, although their magnitudes are smaller (Fig. 10). This decrease in amplitude prevails
because maximum FPD occurs when the component of the induced stress field normal to the fractures attains its maximum, which occurs at
normal incidence. However, the discrepancies between both models are larger for oblique incidence (Figs 9c and 10c). The relative differences
reach values of up to 50 per cent in most cases, although they can be as large as 90 per cent for the limiting case of poorly consolidated
and high-porosity sandstones. As opposed to the normal incidence case, the stress field induced by a P-wave propagating obliquely to the
fractures has components in a direction parallel to the plane of the fractures. In this scenario, since the LST is not able to model the coupling
due to FPD between orthogonal deformations of the fractured rock, the deformation normal to the fractures, and thus the pore fluid pressure
gradients and the energy loss, are overestimated with this approach.

Finally, as expected for a relatively low incidence angle (θ = 25◦), the maximum attenuation corresponding to the propagation of a shear
wave for both the TLM and the LST approaches is significantly lower than that of a compressional wave (Fig. 11). Although the relative
differences between the two models still reach values of up to 90 per cent for low-porosity and relatively poorly consolidated sandstones,
as opposed to the P-wave attenuation case, the LST exhibits a lower maximum attenuation than the TLM (Fig. 11c). This behaviour can be
explained as follows. For an oblique incidence, the stress field induced by an SV wave has a component parallel to the fractures directed
oppositely to that of a P wave. Therefore, the resultant deformations perpendicular and parallel to the fractures in the SV wave case have
opposite sign, while in the P-wave case have the same sign. Since the LST is not able to model the coupling due to FPD between orthogonal
deformations of the fractured rock, the deformation in the direction perpendicular to the fractures, and thus the pore fluid pressure gradients
and the energy loss, are underestimated with this approach.
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Figure 10. Maximum of the inverse P-wave quality factors (a) Q−1
P and (b) Q̃−1

P for a P-wave propagating at an angle of incidence θ = 25◦ for both the TLM
and the LST, respectively. (c) Relative difference between these two models. The upper and lower dashed lines are computed from eq. (23) for strongly and
weakly consolidated sandstones, respectively. The black dots correspond to porosities and bulk moduli of various dry sandstones listed in Table 2.

4 D I S C U S S I O N A N D C O N C LU S I O N S

We modeled a fluid-saturated porous rock with aligned planar fractures of finite thickness as a sequence of very thin, highly porous and highly
compliant poroelastic layers representing the fractures, alternating with relatively thick, much stiffer and less porous layers representing
the background. The associated fracture excess compliance matrix for this TLM approach has additional elements to those present in the
classical LST approximation and, due to FPD between fractures and their embedding background, they can be of significant importance. We
explored the impact that these additional excess compliances have on the effective anisotropic response of the fractured medium for different
combinations of dry background rock properties and analysed the observed behaviour.

The reason for only considering variations of the background rock properties is that, the way they were selected, they cover a wide range
of fracture weaknesses, a parameter that provides information on the relative difference in stiffness between fractures and background, and
thus, on the overall fractured rock characteristics. Besides, the physical and geometrical properties of the model were chosen so that the LST
approach remains valid , that is, the thickness fraction hc is of the order of 10−3 and the moduli K dry

c and μc satisfy K dry
c /Kg = O(hc) and

μc/Kg = O(hc) (Brajanovski et al. 2005). The presented analytical derivation also allows to study the impact of varying fracture properties
and type of fluid infill. Moreover, as the TLM is based on poroelastic Backus averaging, we can consider a pore fluid for the fractures different
from that of the background rock. In the case that we increase the thickness fraction of the fractures or reduce the elastic moduli of their solid
frame, so that the fractures become more compliant, the FPD effects as well as the relative differences in the anisotropic response between
the TLM and the LST approach will increase. We would get the opposite result if we adjust the aforementioned parameters in a way that
renders the fractures stiffer. Concerning the properties of the pore fluid, Kong et al. (2017) showed that, when the fractures are saturated with
a very compressible fluid, such as gas, and the background rock is fully saturated with water, seismic attenuation may also be important.
Although the analytical derivation presented in our work could be used to study the discrepancies between the TLM and LST approaches in
such context, the corresponding analysis is beyond the scope of this paper and will be the subject of future work.
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Figure 11. Maximum of the inverse SV-wave quality factors (a) Q−1
SV and (b) Q̃−1

SV for an SV-wave propagating at an angle of incidence θ = 25◦ for both the
TLM and the LST, respectively. (c) Relative difference between these two models. The upper and lower dashed lines are computed from eq. (23) for strongly
and weakly consolidated sandstones, respectively. The black dots correspond to porosities and bulk moduli of various dry sandstones listed in Table 2.

Even though we presented the anisotropic seismic response through the analysis of phase velocities and attenuation, we examined other
useful anisotropy indicators, such as the Thomsen parameters ² and δ (Thomsen 1986). We found, for both parameters in the low-frequency
limit, that the relative differences between the TLM and LST approaches can reach values of up to 50 per cent, which indicates that the
additional excess compliances could play an important role for the quantification of the overall anisotropy of fractured rocks. However, these
results are not shown for the sake of brevity as, in the context of this work, they do not provide a further understanding on how FPD affects
the accuracy of the LST approach.

The results shown in this work may have important practical implications. Several recent studies have attempted to characterize sets of
vertically aligned fractures through measurements of both velocity and attenuation anisotropy obtained from surface seismic data (Verdon
et al. 2009; Vizuett & Davis 2017; Chen & Innanen 2018). In these studies, the effective anisotropic response of the fractured reservoir
is based on a LST approach and, to account for FPD effects, the real-valued fracture compliances of the classical LST are replaced with
complex-valued and frequency-dependent ones (Bakulin et al. 2000; Chichinina et al. 2006; Guo et al. 2018). However, our results indicate
that these approaches ignore the effects of FPD on the coupling between deformations normal and parallel to the fractures which, in turn, can
lead to incorrect estimates of the seismic signatures of the probed medium. The complete assessment of the effective anisotropic response of
a fluid-saturated porous rock mass with aligned fractures of finite thickness considerably depends on the additional excess compliances that
are present in the TLM. Care must be taken when using the LST approach to model this response, as its inherent limitations to account for
anisotropic FPD effects could lead to an incorrect characterization of the fractured reservoir of interest.
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In the unrelaxed case, the coefficients of the effective stiffness matrix Cu of the layered medium are (Barbosa et al. 2018)
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Here, hFi refers to the thickness-weighted average of the enclosed property F, that is, hFi = hbFb + hcFc with the subscripts b and c referring
to background and fracture properties, respectively. In eqs (A1) to (A9), the undrained Lamé parameter λsat and the undrained P-wave modulus
Psat are given by

λsat = K dry − 2

3
μ + α2 M, (A10)

P sat = λsat + 2μ. (A11)

The Biot–Willis coefficient α and the fluid storage modulus M are given by

α = 1 − K dry

Kg
, (A12)
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In the relaxed case, the coefficients of the stiffness matrix Cr are given by (Barbosa et al. 2018)
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where λdry and Pdry correspond to the dry Lamé parameter and the dry P-wave modulus, respectively

λdry = K dry − 2

3
μ, (A23)

Pdry = λdry + 2μ. (A24)

The poroelastic constants X, Y and Z are computed as
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