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Far-from-equilibrium growth of thin films in a temperature gradient
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The irreversible growth of thin films under far-from-equilibrium conditions is studied in (2 + 1)-dimensional
strip geometries. Across one of the transverse directions, a temperature gradient is applied by thermal baths at
fixed temperatures between T1 and T2, where T1 < T hom

c < T2 and T hom
c = 0.69(1) is the critical temperature

of the system in contact with an homogeneous thermal bath. By using standard finite-size scaling methods,
we characterized a continuous order-disorder phase transition driven by the thermal bath gradient with critical
temperature Tc = 0.84(2) and critical exponents ν = 1.53(6), γ = 2.54(11), and β = 0.26(8), which belong to
a different universality class from that of films grown in an homogeneous bath. Furthermore, the effects of the
temperature gradient are analyzed by means of a bond model that captures the growth dynamics. The interplay
of geometry and thermal bath asymmetries leads to growth bond flux asymmetries and the onset of transverse
ordering effects that explain qualitatively the shift in the critical temperature.
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From an experimental and applied science perspective,
thin films are extremely useful in a variety of areas, from
the manufacture of optics (for reflective and antireflective
coatings, self-cleaning glasses, etc.) to electronics (layers of
insulators, semiconductors, and conductors from integrated
circuits) and packaging [e.g., aluminum-coated poly(ethylene
terephthalate) (PET) films]. Since the growth temperature is
one of the key parameters in the formation of ordered thin films,
several experiments have focused on the influence of a temper-
ature gradient during film growth. In an early experiment by
Tanaka et al. [1], magnetic Tb-Fe films were grown between
two substrates with a temperature gradient, reporting the
observation of perpendicular magnetic anisotropies and other
gradient-driven structural features. More recently, Schwickert
et al. [2] introduced the temperature wedge method, where
a calibrated temperature gradient of several hundred Kelvin
was established across the substrate during codeposition of
Fe and Pt on MgO(001) and MgO(110) substrates. Also,
Yongxiong et al. [3] have investigated the evolution of Fe
oxide nanostructures on GaAs(100) by using a multitechnique
experimental setup. In these studies, nanoscale epitaxial Fe
films were grown, oxidized, and annealed using a gradient
temperature method, which led to nanostripes with uniaxial
magnetic anisotropy. Moreover, experimental progress in this
field has led to a variety of technological applications as
well [4].

From a theoretical standpoint, the so-called gradient
percolation method was originally introduced to investigate
the percolation transition and later applied to a variety of
problems [5], as, e.g., first- and second-order irreversible phase
transitions in far-from-equilibrium systems [6]. In magnetic
systems, damage spreading processes in a temperature gradient
[7] and studies of several one-dimensional models [8] have
been followed by the investigation of the kinetic Ising model
in two dimensions under different kinds of dynamics [9].

In the context of these recent experimental and theoretical
investigations, this Rapid Communication focuses on the
irreversible growth of magnetic thin films in a transverse
temperature gradient by means of extensive Monte Carlo

simulations. This study of the growth of magnetic films
presents a full characterization of a gradient-driven phase
transition and universality class. Magnetic films growing under
far-from-equilibrium conditions are investigated by using the
magnetic Eden model [10], an extension of the classical Eden
model in which particles have an additional degree of freedom
(the spin). Notice that, despite the fact that we use a magnetic
terminology throughout, this work is not restricted to magnetic
films and can be applied to other physical systems, e.g.,
binary alloys. Earlier studies have shown that films growing
in (d + 1)-dimensional strip geometries in an homogeneous
thermal bath are noncritical for d = 1 [11]. However, for d = 2
they undergo order-disorder phase transitions that take place
at T hom

c = 0.69(1). Intriguingly, the critical exponents for this
far-from-equilibrium growth model agree within error bars
with the exact exponents for the equilibrium Ising model in
d = 2 [11].

Here, magnetic films in (2 + 1) dimensions are studied in
a square-lattice geometry Lx × Ly × Lz, where Lz À Lx =
Ly ≡ L is the growth direction. The starting seed for the
growing film is a plane of L × L up spins (i.e., S = 1)
placed at z = 1 and film growth takes place along the
positive longitudinal direction (z > 2). The growth process is
characterized by an initial transient length `T ∼ L2, followed
by a nonequilibrium stationary state that is independent
of the initial configuration [11]. Therefore, any choice for
the seed leads to the same stationary states for z À `T .
By disregarding the transient region, all results reported in
this Rapid Communication are obtained under stationary
conditions. Across one of the transverse directions (the y

axis), a temperature gradient is applied by thermal baths at
fixed temperatures linearly varying between T1 and T2. Hence,
we adopt open boundary conditions along the y direction.
Across the other transverse direction (the x axis), continuous
boundary conditions are considered, meaning that sites at
(x = 1,y,z) and (x = L,y,z) are lattice neighbors. Notice
that the assumption of continuous boundary conditions is
the standard method used in Monte Carlo simulations to elim-
inate the impact of surface effects that would arise otherwise
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due to missing neighbors in the lattice boundaries [12]. Unless
stated otherwise, results below correspond to T1 = 0.5 and
T2 = 1.5. We checked that changing the gradient has only mild
finite-size effects that become negligible in the thermodynamic
limit. That is, by applying different gradients, the system’s
observables such as the magnetization, susceptibility, and
higher-order cumulants are shifted in the transition region by
small amounts, which vanish in the L → ∞ limit. More details
with a full account of finite-size effects will be published
elsewhere [13].

Films are grown by selectively adding spins (Sr = ±1)
to perimeter sites, which are defined as the nearest-neighbor
(NN) empty sites of the already occupied ones. Let us recall
that the substrate is a three-dimensional cubic lattice and
therefore each lattice site has 6 NN sites. The deposition of
new spins is irreversible (i.e., once added, spins do not flip,
detach, nor diffuse). Considering a ferromagnetic interaction
of strength J > 0 between NN spins, the energy of a given
configuration of spins is given by E = −(J/2)

P
hr,r0i SrSr0 ,

where the summation is taken over occupied NN sites. The
Boltzmann constant is set equal to unity throughout, and
both temperature and energy are measured in units of J . The
probability for a perimeter site to be occupied is proportional to
the Boltzmann factor exp(−1E/T ), where 1E is the change
of energy involved in the addition of the new particle and
T is the temperature at the perimeter site. At each step, all
perimeter sites have to be considered and the probabilities
of adding a new (either up or down) spin to each site
must be evaluated. Since this procedure requires updating
the probabilities at each time step, the algorithm is very
slow compared with those used in equilibrium spin models.
Involving a significant computational effort, clusters having up
to 109 spins have been generated for lattice sizes in the range
12 6 L 6 96. As in the case of the classical Eden model,
the magnetic Eden model leads to a compact bulk and a
self-affine growth interface [10]. Snapshots and further details
on the growth behavior will be given elsewhere [13].

In order to study magnetic films growing in a gradient,
the appropriate order parameter is the mean absolute magne-
tization of transverse columns at constant temperature, i.e.,
h|m|i(y) = (1/L)h|Px Sxyz|i, where h· · ·i denotes averages
along the growth direction z, and the absolute value avoids
shortcomings due to finite-size effects, as in standard Monte
Carlo simulations [12].

The Binder cumulant U4(y) ≡ 1 − hm4i/3hm2i2 is useful to
locate the critical temperature because, in the low-temperature
ordered region, U4 tends to the value 2/3, while in the high-
temperature disordered region, U4 tends to 0. Thus, in the
thermodynamic limit, U4 becomes discontinuous exactly at
the critical temperature [14]. Figure 1 shows U4 as a function
of the layer temperature for different system sizes. Notice that,
by our setup assumptions, each layer at fixed y is subjected to a
constant temperature T (y) = T1 + (T2 − T1)(y − 1)/(L − 1)
maintained by a thermal bath. We assume that each layer’s
temperature can be maintained at the same value through the
film’s growth process (that is, we assume that the deposition
process does not affect the layer’s temperature, which is fixed
by that layer’s thermal bath). The results from Fig. 1 show
evidence for the existence of a continuous phase transition
driven by the temperature gradient. Indeed, if a nontrivial
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FIG. 1. Binder cumulant as a function of the layer temperature
for different system sizes, as indicated. The inset shows the cumulant
intersections for the larger systems (32 6 L 6 96), which determine
Tc = 0.84(2).

critical temperature exists in the thermodynamic limit, we
should expect the cumulants for different lattice sizes to
intersect near the critical temperature [14]. The inset in Fig. 1
shows a detailed view of the data for the largest lattice sizes
available, where the intersection region is also indicated. Based
on this observation, we determine the critical temperature in
the thermodynamic limit as Tc = 0.84(2).

In the following, we apply standard finite-size scaling
techniques [12,15] to determine the critical exponents that
characterize the system’s critical behavior and universality
class. Figure 2 shows a log-log plot of the finite-size pseu-
docritical temperature Tc(L) as a function of the inverse of the
system linear size, where Tc(L) is defined as the temperature
corresponding to h|m|i = 0.5. The finite-size scaling theory
predicts that |Tc − Tc(L)| ∝ L−1/ν , where ν is the exponent

10
-3

10
-2

10
-1

L
-1

0.9

1.0

1.1

1.2

1.3

1.4

1.5

T
c (

L
)

fit with T
c
=0.82

fit with T
c
=0.84

fit with T
c
=0.86

0.1 1 10

|T-T
c
| L

1/ν

1

<
|m

|>
 L

β/
ν

L=32
L=48
L=64
L=96

FIG. 2. (Color online) Log-log plot of the finite-size pseudocriti-
cal temperature Tc(L) as a function of the inverse of the system linear
size L−1. Finite-size scaling fits to the data obtained by using Tc =
0.82, 0.84, and 0.86 lead to the critical exponent ν = 1.53(6). Inset:
Plot of h|m|i × Lβ/ν vs |T − Tc| × L1/ν (with β = 0.26) showing a
data collapse for different system sizes in the range 32 6 L 6 96.
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that characterizes the divergence of the correlation length at
criticality. Least-squares fits to the data obtained by using
Tc = 0.82, 0.84, and 0.86 are also shown. We observe that the
finite-size scaling relationship fits the data very well within the
range of values for the critical temperature that was derived
from the intersection of Binder’s cumulants. From these fits,
we obtain the critical exponent ν = 1.53(6), where the error
bars reflect the error derived from the evaluation of Tc as well as
the statistical error. On the other hand, the finite-size scaling
theory predicts that plots of h|m|iLβ/ν vs |T − Tc|L1/ν for
different lattice sizes should collapse near the critical region.
The inset to Fig. 2 shows the data collapse obtained by using
β = 0.26 (that is determined from the hyperscaling relation,
as explained below) with two separate branches corresponding
to the low- and high-temperature regions.

Let us now calculate the critical exponent γ , which
describes the divergence of the susceptibility at the critical
point. The susceptibility is defined as χ = (L2/T ) × (hm2i −
h|m|i2). From the finite-size scaling theory [15], the exponent
ratio γ /ν is related to the peak of the susceptibility measured
in finite samples of size L by χmax ∝ Lγ/ν . Figure 3 shows the
maxima of χ vs L, where the solid line is a fit to the data that
yields γ /ν = 1.66(3), where the error bars reflect the statistical
error from the fit. By using this ratio and the value already
obtained for ν, we determine γ = 2.54(11). The insets to
Fig. 3 display plots of χL−γ /ν vs |T − Tc|L1/ν for different
lattice sizes in the range 32 6 L 6 96. Using the critical
temperature as determined by the susceptibility peaks, the data
collapse is shown separately for (a) the low-temperature branch
and (b) the high-temperature branch. In the former case, data
from low-temperature layers near T1 = 0.5 depart from the
collapse and have been removed. However, the collapse near
the critical region is remarkable and agrees very well with the
expectations from the finite-size scaling theory.

By replacing the exponents ν and γ in the hyperscaling
relation dν − 2β − γ = 0 with d = 2, we determine the
exponent β = 0.26(8). Indeed, we anticipated this value
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FIG. 3. (Color online) Log-log plot of the susceptibility maxima
as a function of the system linear size, where the solid line is a
finite-size scaling fit that yields γ /ν = 1.66(3). The insets display
plots of χL−γ /ν vs |T − Tc|L1/ν showing separately the data collapse
for (a) the low-temperature branch and (b) the high-temperature
branch.

of β when we considered the data collapse of the scaled
magnetization (see the inset to Fig. 2 above). The excellent
data collapse near the critical region confirms the consistency
and robustness of the obtained results. Based on these findings,
we conjecture that magnetic Eden films grown in a temperature
gradient belong to a new universality class characterized by
critical exponents ν = 3/2, γ = 5/2, and β = 1/4. In contrast,
previous studies found that the critical exponents for magnetic
Eden films grown in an homogeneous bath agree within error
bars with the exact exponents for the Ising model in d = 2 [11],
namely, ν = 1, γ = 7/4, and β = 1/8.

Let us now explore the growth dynamics by means of
a bond representation. For this purpose, to each pair of
neighboring sites we assign a directed bond that points from
the earlier occupied site to the later occupied one. The
components of the bond flux field Eφ at a site Es = x ı̆ + y Ê̆ + zk̆

are defined as φx(Es) = b[Es,Es + ı̆], φy(Es) = b[Es,Es + Ê̆], and
φz(Es) = b[Es,Es + k̆], where b[ Es1, Es2] = +1 (−1) if the bond
points from Es1 to Es2( Es2 to Es1). Figure 4 shows the components
of the mean bond flux as a function of the gradient span
1T ≡ T2 − T1 for L = 32 and T1 = 0.5. As expected from
the symmetry along x, one has that hφxi = 0 regardless of
1T . For 1T = 0, the system is also symmetric along y, so no
net bond flux is observed. When a gradient is applied, however,
this symmetry is broken. Since the growth probabilities depend
on the Boltzmann factor exp[−1E/T (y)], where T (y) is
the layer’s temperature, the thermal asymmetries introduced
by the gradient favor spin deposition on the colder layers.
This phenomenon is captured by the observed net bond flux
hφyi > 0. Indeed, as shown in Fig. 4, the thermal asymmetries
cause hφyi to grow steeply up to hφyimax ≈ 0.75, followed
by a moderate decrease for larger gradients, which is due
to the onset of bulk disorder within the hotter layers. Since
the net transverse growth bond flux is directed from the
ordered (cold) layers toward the disordered (hot) ones, this
gradient-induced transverse ordering mechanism causes the

0 0.5 1 1.5 2 2.5
ΔT

0

0.2

0.4

0.6

0.8

1

m
ea

n 
bo

nd
 f

lu
x

<φ
x
>

<φ
y
>

<φ
z
>

FIG. 4. Mean growth bond flux components as a function of the
gradient span 1T for L = 32 and T1 = 0.5. Asymmetries due to the
temperature gradient and the substrate geometry are responsible for
net bond fluxes along the y and z directions. Along the tranverse
direction x the system is fully symmetric, so no net bond fluxes are
observed.
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system’s critical temperature to increase from T hom
c = 0.69(1)

to Tc = 0.84(2). On the other hand, for 1T = 0, hφzi = 1
due to the longitudinal asymmetries in the substrate (i.e., the
semi-infinite strip geometry constrains the system to grow
along the z > 0 direction). However, when the transverse
gradient is applied, two effects contribute to decrease hφzi: (i)
the onset of the transverse bond flux, which creates transverse
domains in the active perimeter and causes some of the added
spins to grow backward and (ii) the bulk disorder induced
in the hotter layers (which also causes hφyi to decrease, as
discussed above).

As a summary, we studied the growth of thin films under
far-from-equilibrium conditions in (2 + 1)-dimensional strip
geometries, where a temperature gradient is applied across one
of the transverse directions. In order to investigate the system’s
critical behavior, we applied the finite-size scaling theory. The
critical temperature is Tc = 0.84(2) and the critical exponents
are ν = 1.53(6), γ = 2.54(11), and β = 0.26(8). Based on
these findings, we conjecture that the exact exponents are ν =

3/2, γ = 5/2, and β = 1/4, which satisfy the hyperscaling
relationship and point out the existence of a new universality
class for film growth in a thermal gradient. Moreover, we
investigated the system’s growth dynamics by means of a bond
model. We found that the interplay of geometry and thermal
bath asymmetries leads to growth bond flux asymmetries
and the onset of transverse ordering effects that explain
qualitatively the shift observed in the critical temperature.

We believe that this work provides a full characterization
of a gradient-driven phase transition of growing films under
far-from-equilibrium conditions. Given the great experimental
and theoretical interest in thin films growing in temperature
gradients, as well as the wide variety of technological
applications that benefit from these efforts, we hope that this
Rapid Communication will contribute to the progress of this
research field and stimulate further work.

This work was financially supported by CONICET, UNLP,
and ANPCyT (Argentina).
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