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Generalized entropic criterion for separability
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We discuss the entropic criterion for separability of compound quantum systems for general nonadditive
entropic forms based on arbitrary concave functions f. For any separable state, the generalized entropy of the
whole system is shown to be not smaller than that of the subsystems, for any choice of f, providing thus a
necessary criterion for separability. Nevertheless, the criterion is not sufficient and examples of entangled states
with the same property are provided. This entails, in particular, that the conjecture about the positivity of the
conditional Tsallis entropy for all q, a more stringent requirement than the positivity of the conditional von
Neumann entropy, is actually a necessary but not sufficient condition for separability in general. The direct
relation between the entropic criterion and the largest eigenvalues of the full and reduced density operators of
the system is also discussed.
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The concept of quantum entanglement @1# has aroused
great interest in recent years, due to its deep implications for
quantum computation @2#, quantum cryptography @3#, and
quantum teleportation @4#. The relation between entropy and
quantum entanglement has also attracted attention from sev-
eral authors @5–15#. It is well known, for instance, that the
von Neumann entropy of a compound quantum system may
be larger or smaller than that of a subsystem @16,17#. How-
ever, if the system is in a separable ~i.e., unentangled! state,
the von Neumann entropy of the whole system is not smaller
than that of a subsystem @5,6#. Unfortunately, the converse is
not true, i.e., the same may occur when the system is in an
inseparable ~i.e., entangled! state, so that this entropy pro-
vides only a necessary test for separability. The von Neu-
mann based criterion is actually rather weak, being less strin-
gent than other equally simple necessary conditions
@5,18,19#. As discussed in @7,14,15#, the von Neumann en-
tropy is in fact not a good entanglement indicator even in
those cases where entanglement is fully determined by the
eigenvalues of the density operator r .

These facts suggest consideration of other information
measures which could capture more effectively the effects
associated with the separability or inseparability of a com-
pound quantum system. In particular, it has been shown that
nonadditive information measures like that of Tsallis @20# do
provide more stringent conditions for separability @11,12#.
Moreover, this entropy depends on a parameter q which can
be optimized. In fact, for q→` , necessary and sufficient
conditions for separability were obtained with this entropy
for some important classes of states, like Werner states for n
qubits and also n qudits @11,12#. In other situations @13#,
entanglement was detected, however, at finite values of q,
rather than in the q→` limit. Hence, the questions arise of
whether this entropy could provide a necessary and/or suffi-
cient test in general and whether other information measures
could lead to the same result.

In this article we will examine more general entropic
forms based on arbitrary concave functions, which include as
particular cases the von Neumann and Tsallis entropies. We
will show that any of these forms provide necessary condi-
tions for separability, which are not sufficient in general. It
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will also become clear why the Tsallis form provides neces-
sary and sufficient conditions for Werner states in the q
→` limit, and why it is not so in other situations. Finally,
other entropic forms providing similar results are given.

Let us consider a quantum system described by a density
operator r . We will examine the general entropic forms @15#

S f~r!5Tr f ~r!5(
i

f ~pi!, ~1!

where f is a smooth concave function @ f 8(p) decreasing for
pP(0,1)] satisfying f (0)5 f (1)50, and pi , i51, . . . ,n ,
are the eigenvalues of r (( ipi51). We assume a finite di-
mension n. The von Neumann entropy is recovered for

f ~p !52kp ln p , ~2!

with k.0, while the Tsallis entropy corresponds to @20#

f ~p !5~p2pq!/~q21 !, q.0, ~3!

which approaches 2p ln p for q→1. The generalized entro-
pies ~1! satisfy most basic properties of the conventional en-
tropy, except those related to additivity. In particular, S f(r)
>0, with S f(r)50 if and only if the system is in a pure
state (r25r), while its maximum is attained for the fully
mixed state r5I/n @21#. Concavity of f ensures concavity of
S f(r) @17# @S f(( jq jr j)>( jq jS f(r j) for 0<q j<1, ( jq j
51]. It can be shown @21,15# that if @p f 9(p)#8<0 (>0),
then S f is sub-~super!additive, i.e., S f(rA ^ rB)2S f(rA)
2S f(rB)<0 (>0). The condition @p f 9(p)#850 determines
in fact Eq. ~2!. The Tsallis entropy is, accordingly, sub-
~super!additive for q.1 (q,1).

A fundamental property of the forms ~1! which will be
employed in this work, and which justifies their use as infor-
mation measures, is that if r is more mixed than a density
operator r8, then

S f~r!>S f~r8!, ~4!
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for any f of the previous form @17#. Labeling the eigenvalues
of r and r8 in decreasing order, i.e., p1>p2>•••>pn , r is
said to be more mixed ~or disordered! than r8 if

Si5(
j51

i

p j<Si85(
j51

i

p j8 , i51, . . . ,n21, ~5!

i.e., if p1<p18 , p11p2<p181p28 , etc. ~for i5n , Sn5Sn8
51). Mathematically, this states that the set of probabilities
(p1 , . . . ,pn) is majorized by (p18 , . . . ,pn8). Equation ~4!
can be immediately derived by writing pi5Si2Si21 in Eq.
~1!, with S050. S f(r) is then a decreasing function of Si for
1<i<n21, as ]S f /]Si5 f 8(pi)2 f 8(pi11)<0 if pi>pi11
and f is concave @Eq. ~4! follows then from the mean value
theorem; note that the allowed values of Si form a convex set
defined by Si<Si11 , Si>(Si211Si11)/2, with S050, Sn
51].

Moreover, it can be shown @17# that r is more mixed than
r8 if and only if Tr f (r)>Tr f (r8) for any concave f, i.e., if
and only if Eq. ~4! holds ; f of the previous form @the con-
ditions f (0)5 f (1)50 fix just an arbitrary linear term ap
1b that can be added to f without affecting concavity or Eq.
~4!#. If the dimensions of r and r8 differ, we may apply the
same definition of ‘‘more mixed’’ by adding zero eigenvalues
to the density with the smallest dimension, which leaves S f
unchanged.

Let us consider now a system composed of two sub-
systems A and B. The quantity

S f
A~r![S f~r!2S f~rA!5Tr f ~r!2TrA f ~rA!, ~6!

where rA5TrBr is the reduced density matrix of system A
and Tr5TrATrB , plays the role of a conditional entropy. In
the von Neumann case, Eq. ~6! becomes the usual condi-
tional entropy @17#,

S f
A~r!5S~BuA !52Tr r@ ln r2ln rA ^ IB# ,

whereas, in the Tsallis case, it is proportional to the
q-conditional entropy defined in @11,12#, Sq(BuA)
5S f

A(r)/Tr rA
q .

For a discrete classical system described by a joint prob-
ability distribution pi j , Eq. ~6! is always non-negative, i.e.,

(
i , j

f ~pi j!2(
i

f ~pi!>0, pi5(
j

pi j , ~7!

since for any concave f satisfying f (0)50 we have f (p
1q)< f (p)1 f (q) if p>0, q>0 ~it may also be seen that
the set of probabilities $pi j% is more mixed than $pi%). This
implies that S f

A(r)>0 for any uncorrelated density r5rA
^ rB ~i.e., pi j5pi

Ap j
B) as well as for any density diagonal in

a basis of product states (r5( i , jpi juiA jB&^iA jBu). Neverthe-
less, in the general quantum case, S f

A(r) may of course be
negative. In particular, for a pure state r5uC&^Cu, S f(r)
50 and the positive eigenvalues of rA and rB are identical
@17#, whence

S f
A~r!52S f~rA!52S f~rB!<0. ~8!
04230
For f (p)52p log2p , this is just the usual definition of the
entanglement of a pure state uC& @22,23#.

Negative values of S f
A(r) are then indicative of distinctive

quantum correlations. In particular, for the case ~3! it has
been conjectured @11–13# that the sign of the difference ~6!
may provide a criterion for determining the separability of r
@13#. Let us recall that a mixed state r is separable ~or clas-
sically correlated! if and only if it can be written as a convex
combination of uncorrelated densities @24#,

r5(
a

varA
a

^ rB
a , 0<va<1, ~9!

with (ava51. Otherwise it is called entangled or insepa-
rable. For the Tsallis case, it has been shown @11,12# that the
criterion S f

A(r)>0 leads, for q→` , to the necessary and
sufficient condition for separability for some important
classes of states, like Werner states. Nevertheless, we will
show here that this does not hold in general. In particular, for
an entangled state S f

A(r) and S f
B(r) may in fact both be

positive for any concave f ~including the q→` limit in the
Tsallis case!, indicating that entanglement cannot always be
detected by such entropic criteria ~or, in general, by informa-
tion based on the eigenvalues of r and rA ,B alone!. This may
occur already for a two-qubit system, where the Peres nec-
essary criterion for separability @18# is known to be sufficient
@19#, so that the entropic criterion is here weaker than the
Peres criterion.

Let us first show that Eq. ~6! is indeed positive for any
separable r . A fundamental theorem demonstrated in @25#
states that if r is separable, then r is more mixed than rA
and rB ~disorder criterion for separability!. Hence, Eq. ~4!
implies that if r is separable, then

S f
A~r!>0, ~10!

and similarly S f
B(r)>0, for any concave f @satisfying f (0)

50]. This is in fact an equivalent entropic formulation of the
disorder criterion. For a separable state, Eq. ~10! will there-
fore hold ; q.0 in the case ~3!, implying Tr rq2TrA rA

q

<0 (>0) if q.1 (0,q,1). Note that this entails Sa(r)
>Sa(rA) ; a.0, where Sa(r)5(12a)21 ln Tr ra is the
Rényi entropy @26,5# @which is additive but not of the form
~1!, and approaches the von Neumann entropy for a→1].
The disorder criterion is, however, not sufficient @25#, so that
Eq. ~10! provides in general only a necessary test for sepa-
rability, as will be explicitly seen below.

For a system of two qubits, Eq. ~10! is actually an imme-
diate consequence of the more obvious fact that for any sepa-
rable state,

p1<p1
A , ~11!

where p1 (p1
A) denotes the largest eigenvalue of r (rA).

This is so because the difference

rd5rA ^ IB2r5(
a

varA
a

^ ~IB2rB
a! ~12!
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is a non-negative operator if all va>0 @27#. Hence, denoting
by ui& any eigenstate of r , we have

0<^iurdui&5^iurA ^ IBui&2pi<p1
A2pi , ~13!

since ^iurA ^ IBui&<^1A jBurA ^ IBu1A jB&5p1
A , where

rAu1A&5p1
Au1A& and u jB& is any state of B. For a two-qubit

system, Eq. ~11! already implies that r is more mixed than
rA : ( j51

i p j<p1
A1p2

A51 for i52,3,4.
There are two important remarks to make here. First, if

p1.p1
A , the state is certainly entangled, but rA is not nec-

essarily more mixed than r , entailing that S f
A(r) is not nec-

essarily negative for any f. Nevertheless, in the Tsallis case,
as well as for any set of entropic functions

f ~p !5k@p2gq~p !# , ~14!

where k.0 and gq(p) is a convex increasing function satis-
fying gq(0)50, gq(1)51, and

lim
q→`

gq~p8!/gq~p !50 if p8,p , ~15!

S f(r) will be a decreasing function of the largest eigenvalue
p1 for sufficiently large q and finite dimension @S f(r)
'k(12d1gq(p1)) in this limit, with d1 the multiplicity of
p1]. Hence, if p1.p1

A , S f
A(r) will become negative for suf-

ficiently large q, and the entropic criterion will be able to
detect entanglement. In other words, for q→` , S f

A(r),0 if
and only if p1.p1

A , which is a sufficient condition for in-
separability. Note that Eq. ~3! is of the form ~14! for q.1
and satisfies Eq. ~15!. Another example is @15#

f ~p !5
1
q F p2

eqp21

eq21 G , ~16!

which is concave ; q , approaches 1
2 p(12p) for q→0 @q

52 case in Eq. ~3!# and is of the form ~14! for q.0.
Nonetheless, and this is the second important remark,

there are entangled states for which p1<p1
A and p1

B , i.e., for
which the greatest eigenvalue of r remains smaller than that
of rA and rB . This may occur already for a system of two
qubits, in which case r will remain more mixed than rA and
rB , and S f

A(r),S f
B(r) will both be non-negative for any con-

cave f. This type of entanglement will therefore not be de-
tected by the previous entropic criterion.

An example is the state considered in @18#,

r5xuC0&^C0u1~12x !u↑↑&^↑↑u, 0<x<1, ~17!

where uC0&5(u↑↓&2u↓↑&)/A2 is the singlet ~a maximally
entangled state! and u↑↑& a maximally polarized separable
state. As shown in @18#, the Peres criterion determines that
this state is entangled ; x.0: the partial transpose of r
~defined as the transposition with respect to the indices of
system A), which is still a density operator if r is separable,
has always a negative eigenvalue for x.0, namely, s1
5 1

2 @12x2A122x(12x)# @s152x2/41O(x3) for x
→0].
04230
However, as the eigenvalues of r are (x ,12x ,0,0), and
those of rA and rB are (12x/2,x/2), the greatest eigenvalue
of r (p15x for x. 1

2 ) is greater than that of rA (p1
A51

2x/2) only for x.xc52/3 ~Fig. 1!. Hence, for 0,x,2/3,
entanglement will not be detected by S f

A ,B(r), for any f. This
can also be directly seen from the explicit expression

S f
A~x !5 f ~x !1 f ~12x !2@ f ~x/2!1 f ~12x/2!# .

Since for a two state system, the entropy f (p)1 f (12p) is a
decreasing function of the largest eigenvalue @ f 8(p)2 f 8(1
2p),0 for p.1/2 and f concave#, in this case S f

A(r),0 if
and only if p1.p1

A , i.e., S f
A(x),0 if and only if x.2/3, for

any f. The sign of S f
A(x) is independent of the choice of

entropic function f in this example, i.e., independent of q in
the Tsallis case or in Eq. ~16!, as shown in Fig. 1. For nor-
malization purposes, we have plotted the quantity

S̄ f
A~r!5S f

A~r!/Tr gq~rA!, ~18!

where gq(p)5pq in the Tsallis case ~3! @so that S̄ f
A(r)

5Sq(BuA)] and gq(p)5(eqp21)/(eq21) for Eq. ~16!.

FIG. 1. Top: The largest eigenvalue p1 of r and p1
A of rA , for

the density ~17!, as a function of the parameter x. The dotted line
depicts the lowest eigenvalue s1 of the partial transpose of r . Cen-
ter: The normalized entropic difference ~18! for the Tsallis case ~3!,
at the indicated values of q. The curve for q51 corresponds to the
von Neumann entropy, in which case S̄ f

A5S(BuA). Bottom: The
same quantity for the entropic function ~16!. The curve for q50
depicts the limit S̄ f

A5(1/2) Tr@rA
2 2r2# . The point where p15p1

A is
indicated by xc . Both x and the quantities plotted are dimension-
less.
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This situation is actually not very special. Consider for
instance the more general state

r5xuC0&^C0u1~12x !uuv&^uvu, ~19!

where uuv&5uu&Auv&B is an arbitrary separable pure state of
the two qubits. This state is again entangled ; x.0, since
the partial transpose of r has a negative eigenvalue

s15 1
2 @12x2A122x~12x !r# , r5 z^uuv& z2,

with s152x(12r)/21O(x2) for x→0. On the other hand,
the eigenvalues of r are

„

1
2 ~11z !, 1

2 ~12z !,0,0…, z5A122x~12x !~11r !,

while those of rA ,rB are again (12x/2,x/2). Hence, p1
5(11z)/2, p1

A5(12x/2), and p1.p1
A only for

x.xc52r/~112r ! .

Thus, S f
A(r),0 if and only if xc,x,1, for any concave f.

Again, the entropic criterion fails to detect entanglement for
0,x,xc . For r51, we recover the results of the previous
example, whereas for r50, i.e., uuv&5u↑↓&, s152x/2, and
xc50, so that S f

A(r),0 ; x.0. This is the only case
where the entropic criterion predicts the full interval of in-
separability.

Let us still consider the example of Refs. @28,18#,

r5xuC&^Cu1~12x !~ u↑↑&^↑↑u1u↓↓&^↓↓u!/2, ~20!

with uC&5au↑↓&1bu↓↑&, uau21ubu251. As shown in
@18#, this state is entangled just for

x.xe5~112uabu!21,

since the lowest eigenvalue of the partial transpose is
s15@12x(112uabu)#/2 for x.@2(11uabu)2 zuau2

2ubu2z#21. However, the eigenvalues of r are (x ,(12x)
/2,(12x)/2,0) while those of rA , rB are
@16x(ubu22uau2)#/2. The largest eigenvalue of r (p15x
for x.1/3) is greater than that of rA @p1

A5(11x zuau2

2ubu2z)/2# only for

x.xc5~22 zuau22ubu2z!21.

But xc>xe , with xc5xe just for uau5ubu or in the trivial
separable cases b50 or a50. Hence, if uau5” ubu and ab
Þ0, S f

A(r) will not detect entanglement for xe,x,xc .
Note also that, for x.xc , S f

A(r) is in this case not neces-
sarily negative for any f, but will become negative for suffi-
ciently large q in the Tsallis case or in Eq. ~14! or Eq. ~16!, as
shown in Fig. 2. The value of x where S f

A(r)50 actually
converges exponentially fast to xc for q→` in Eq. ~3! or Eq.
~16!. This will occur whenever the degeneracies of p1 and p1

A

coincide.
The entropic criterion will provide, however, necessary

and sufficient conditions for separability for any density r
diagonal in the Bell basis @7#, i.e., the basis of maximally
04230
entangled states uC0&,uC1&5(u↑↓&1u↓↑&)/A2,uC2,3&
5(u↑↑&6u↓↓&)/A2. In such a case,

r5(
i50

3

qiuC i&^C iu ~21!

is known to be entangled if and only if p1.1/2 @5#, where
p15Max@$qi%# is the largest eigenvalue of r . This may be
obtained directly with the Peres criterion, as the partial trans-
pose of r has eigenvalues 1

2 2qi . Now, for any pure Bell
state uC i&^C iu, the reduced density matrices are fully mixed,
with eigenvalues ( 1

2 , 1
2 ), so that the same will occur for any

state of the form ~21!. The condition p1<p1
A then becomes

equivalent, for any state ~21!, to p1<1/2, i.e., to the neces-
sary and sufficient condition for separability. The entropic
criterion will therefore always lead to this condition for q
→` in Eq. ~14!.

This explains why the entropic criterion for q→` yields
the necessary and sufficient condition for separability for
Werner-Popescu states @24,29#,

r5xuC0&^C0u1~12x !I/4, ~22!

where I5( i50
3 uC i&^C iu5IA ^ IB is the identity. The eigen-

values of r are p15(113x)/4 and (12x)/4 ~threefold de-
generate!, and the equation p1< 1

2 yields x< 1
3 , the necessary

and sufficient condition @18,30#. Accordingly, for x.xc
5 1

3 , S f
A(r) will become negative for sufficiently large q.

The root xr where S f
A(r)50 will approach xc for q→` , as

FIG. 2. Same details as Fig. 1 for the density ~20! with uau2

54/5. The values of q for the different lines in the center and
bottom panels are the same as those of Fig. 1.
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seen in Fig. 3, although the convergence is in this case less
rapid due to the different degeneracies of p1 and p1

A . For
large q,

xr'
1
3 1

2g ln 2
3q , ~23!

where g51 for the Tsallis case and g52 for Eq. ~16!.
Note that the state ~20! also becomes of the form ~21! for

a56b ~where the entropic criterion works!, as in this case
uC&5uC0& or uC1& @the remaining term in Eq. ~20! is pro-
portional to ( i52,3uC i&^C iu# .

Similar considerations hold for Werner-like states for n
qubits @31#,

r5xuC&^Cu1~12x !I/dn, ~24!

where d52, uC&5(u↑↑•••↑&1u↓↓•••↓&)/A2 is a maxi-
mally entangled state ~a Greenberger-Horne-Zeilinger state
@32#! and I the identity. The eigenvalues of Eq. ~24! are p1
5x1(12x)/dn and (12x)/dn @(dn21)-fold degenerate#.
Now, for a subsystem Am with m qubits (1<m<n21), the
reduced density matrix rm can be easily shown to have ei-
genvalues p1

m5x/d1(12x)/dm(d-fold degenerate! and (1
2x)/dm@(dm2d)-fold degenerate#. The necessary condition
for separability between the m and n2m subsystems, p1
<p1

m , leads to

x<xc
m[F11

dn21~d21 !

dn2m21 G21

, ~25!

FIG. 3. Same details as Fig. 1 for the density ~22!. The values of
q for the different lines in the center and bottom panels are the same
as those of Fig. 1.
04230
which is a decreasing function of m. The most stringent con-
dition is then obtained for m5n21, i.e., x<(11dn21)21,
which, according to Refs. @31,33#, is just the necessary and
sufficient condition for full separability. The entropic crite-
rion S f

Am(r)>0 will then lead to Eq. ~25! for q→` ~as
shown in @11# for the Tsallis case!. If d is an arbitrary integer
(>2), the previous discussion and expressions are actually
also valid for n qudits (nd-dimensional systems!, when uC&
is the fully entangled state (k50

d21uk&1•••uk&n /Ad @33#.
It should be stressed that for bipartite systems with sub-

system dimension d.2, the first violation of the majoriza-
tion relation between r and rA in an entangled state may also
occur for i.1 in Eq. ~5!. For instance, let us briefly discuss
the example given in @13#, dealing with a system of two
identical harmonic oscillators. It was shown that for certain
densities S f

A(r) becomes negative just in a finite interval of q
values in the Tsallis case, remaining positive for arbitrary
large q. This indicates that r is not more mixed than rA , and
hence entangled, but still has p1,p1

A , which ensures that
S f

A(r) remains positive for q→` . The first violation of the
inequalities ~5! is therefore taking place for i.1 ~we have
verified that this occurred for i52). Nevertheless, it should
be remarked that in such situations, if Si is only slightly
larger than S i

A and i.1, S f
A(r) may remain positive for all

q.0 in the case ~3!, and is then unable to detect entangle-
ment. The same happens with the entropy ~16!.

In summary, we have shown that the generalized entropic
criterion S f

A(r)5S f(r)2S f(rA)>0 constitutes, for any con-
cave entropic function f, a necessary condition for separabil-
ity. For q→` in Eq. ~3!, or in general Eq. ~14!, it becomes
equivalent to the condition ~11! between the largest eigenval-
ues of r and rA . Nonetheless, the entropic criterion is not a
sufficient one in general. We have provided examples of en-
tangled densities of two qubits where p1,p1

A , in which case
r remains more mixed than rA , implying S f

A(r)>0 for any
choice of entropic function f. However, the condition p1
<p1

A becomes sufficient in some important cases, which in-
clude any density diagonal in the Bell basis in a two-qubit
system, and also Werner-like states in n-qubit ~or qudit! sys-
tems. In these cases the inequality S f

A(r)>0 will lead, for
q→` in Eqs. ~3! or Eq. ~14!, to the necessary and sufficient
condition for separability.

The condition S f
A(r)>0 for any concave entropic func-

tion f is equivalent to the requirement that r be more mixed
than rA , a general necessary condition for separability @25#.
Let us remark that this requirement is stronger than the con-
dition S f

A(r)>0 ; q.0 in Eq. ~3! @or ; q in Eq. ~16!#.
Other families of concave entropic functions are required in
general to detect that r is not more mixed than rA when the
first violation of Eqs. ~5! occurs for i.1, although in many
cases this can also be seen with the entropies ~3! or ~16!. In
such situations S f

A(r) will remain positive for q→` but may
become negative at finite values of q.
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