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It has been shown recently that a neutron placed in an external quasistatic electric field develops an

induced electric dipole moment pIND due to quantum fluctuations in the QED vacuum. A feasible

experiment which could detect such an effect is proposed and described here. It is shown that the peculiar

angular dependence of pIND on the orientation of the neutron spin leads to a characteristic asymmetry in

polarized neutron scattering by heavy nuclei. This asymmetry can be of the order of 10�3 for neutrons

with epithermal energies. For thermalized neutrons from a hot moderator, one still expects experimentally

accessible values of the order of 10�4. The contribution of the induced effect to the neutron scattering

length is expected to be only 1 order of magnitude smaller than that due to the neutron polarizability from

its quark substructure. The experimental observation of this scattering asymmetry would be the first ever

signal of nonlinearity in electrodynamics due to quantum fluctuations in the QED vacuum.
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I. INTRODUCTION

Classical electrodynamics is well known to be a linear
theory leading to the superposition principle. At the quan-
tum level, the basic QED Lagrangian remains quadratic in
the electromagnetic fields, so that the theory still appears to
be linear. However, quantum fluctuations in the QED vac-
uum induce nonlinear effects that lead to a breakdown of
the superposition principle [1]. In particular, these QED
fluctuations make the vacuum appear as an electrically and
magnetically polarizable medium. The size of these cor-
rections in nonlinear QED (NLQED) is very tiny, so that
experiments with ultrahigh intensity lasers have been pro-
posed to search for these effects, e.g. eþe� pair production
from the vacuum [2,3], vacuum birefringence [4,5], light
diffraction by a strong standing electromagnetic wave [6],
and nonlinear Compton scattering [7]. A different pro-
posal, involving quasistatic external electromagnetic fields
interacting with given electric or magnetic sources, has
been made recently [8,9]. In [8], general expressions were
obtained for the induced electric and magnetic fields in
such circumstances, and applied to the case of an electri-
cally charged sphere in the presence of an external, quasi-
static magnetic field. As a result of QED nonlinearity, there
appears an induced magnetic dipole moment, as well as
corrections to the Coulomb field of the sphere. In spite of
this being a dramatic effect, experimental detection ap-
pears very challenging. The complementary case of a
purely magnetic dipole moment placed in an external,
quasistatic electric field E0 was considered in [9]. The
result is an induced electric dipole moment pIND, plus
corrections to the magnetic field produced by the magnetic
dipole. It was then suggested that the neutron could be used
as a probe in the presence of large electric fields of order

jE0j ’ 1010 V=m, such as present in certain crystals. A
distinctive feature of this induced electric dipole moment,
which should help in its detection, is its peculiar depen-
dence on the angle between pIND and E0, or equivalently
the angle between pIND and the neutron spin.
In this paper, we follow up on the experimental observ-

ability of such an induced electric dipole moment of the
neutron. On the theoretical side, we complete the analysis
of [9] by computing the interaction Hamiltonian of the
neutron immersed in a large external quasistatic electric
field E0, and an external, quasistatic, magnetic field B0 of
ordinary strength. Given the nonlinearity of the problem,
one needs to check that (a) the magnetic interaction energy
is of the usual form, (nonlinear magnetic corrections due to
B0 are negligible), and (b) that the induced electric dipole
does interact with the electric fieldE0 that generates it. The
latter interaction energy is expected to have the standard
functional form Hint / pIND � E0, albeit with an a priori
unknown coefficient which we determine. Next, we study
the quantum behavior of pIND by means of the Heisenberg
equation of motion. This is important for experiments
based on potential changes in the Larmor frequency of
the neutron spin around an external magnetic field due to
the presence of pIND. We find no effect here, thus ruling out
experiments of this type to detect an induced electric
dipole moment of the neutron. Finally, we discuss in
some detail a different approach based on neutron-nucleus
scattering and conclude that this experiment offers an
excellent opportunity to observe such an effect. This is
due to the peculiar angular dependence of pIND. We find
that for sufficiently large momentum transfers, a scattering
asymmetry is induced with such particular characteristics
that it would be easy to distinguish from other standard
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effects. The experimental discovery of such an asymmetry
would be the first ever signal of a nonlinear effect in
electrodynamics due to quantum fluctuations in the QED
vacuum.

II. INDUCED ELECTRIC DIPOLE
MOMENT OF THE NEUTRON

An appropriate framework to discuss nonlinear effects
induced by quantum fluctuations in the QED vacuum is
that of the Euler-Heisenberg (EH) Lagrangian [1]. This is
obtained from the weak-field asymptotic expansion of the
QED effective action at one-loop order leading to

L ð1Þ
EH ¼ �ð4F 2 þ 7G2Þ þ . . . ; (1)

where the omitted terms are of higher order in the expan-
sion parameter � . In SI units,

� ¼ 2�2
EM�

2
0ℏ

3

45m4
ec

5
’ 1:3� 10�52 Jm

V4
; (2)

with �EM ¼ e2=ð4��0ℏcÞ the electromagnetic fine struc-
ture constant,me and e the mass and charge of the electron,
respectively, and c the speed of light. The invariantsF and
G are defined as

F ¼ 1
2ðE2 � c2B2Þ ¼ �1

4F��F
��; (3)

G ¼ cE � B ¼ �1
4F��

~F��; (4)

with F�� ¼ @�A� � @�A� and ~F�� ¼ 1
2 �

����F��. The

so-called critical field Ec, which plays the role of a refer-
ence field strength for the onset of nonlinearity, is given by

Ec ¼ m2
ec

3

ℏe
’ 1:3� 1018

V

m
: (5)

This estimate is obtained by computing the electric field
needed to produce an electron-positron pair in a spatial
length of one Compton wavelength. For fields stronger
than Ec, the weak-field asymptotic expansion leading to
Eq. (1) breaks down. In [8], general expressions were
obtained for electric and magnetic fields induced by non-
linearity, to leading order in � , in the presence of external
quasistatic weak fields (smaller than Ec) and arbitrary
sources. These induced fields are

E ðxÞ ¼ �

2��20
rx

Z d3y

jx� yj ry �
�
4FMDM þ 7

c
GMHM

�
;

(6)

BðxÞ ¼ �

2��20c
2
rx �

Z d3y

jx� yj ry

� ð�4FMHM þ 7cGMDMÞ; (7)

where DM and HM are the Maxwell (classical) fields
produced by the arbitrary sources. Notice that these fields

vanish as ℏ ! 0 (� ! 0). In the case of a current density
uniformly distributed on the surface of a sphere of radius a,
or equivalently, for a uniformly magnetized sphere of the
same radius, the Maxwell, magnetic-dipole-type field, is
given by

B d ¼ �0

4�

�
3ðm � erÞer �m

r3
�ðr� aÞ þ 2m

a3
�ða� rÞ

�
;

(8)

where m is identified with the magnetic dipole moment of
the source, and er is a unit vector in the radial direction.
Since the central expressions, Eqs. (6) and (7), were de-
rived assuming E � cB < Ec, the following constraint
follows:

jmj
a3

<
2�m2

ec
2

ℏe�0

: (9)

For instance, if jmj ¼ 0:96� 10�26 Am2, as for the neu-
tron, then it follows that a * 10 fm. At this point, it is
important to recall that Eq. (1) is valid for slowly varying
fields interpreted as the dominant terms in a gradient
expansion of the effective action for the electromagnetic
field. This requires that the variations of the fields be small.
But, this smallness must be established within a specific
context. In the present one, it is reasonable to neglect field
derivative contributions if they are smaller than the critical
field divided by some typical length, which in our case can
be taken as the a parameter. Since the strongest variation of
the magnetic field occurs in the radial direction and for
r ! aþ, from Eq. (8) one can write

j@rBrjr¼a <
3�0jmj
2�a4

<
Bc

a
¼ m2

ec
2

aℏe
; (10)

which leads to Eq. (9) with a factor of order Oð1Þ in the
parameter a. This will be taken into account later in
Sec. V in defining a scattering asymmetry. If this mag-
netic source is placed in an external, constant electric
field E0, it has been shown [9] that there is an induced
electric field of the dipole type

E ðxÞ ¼ �rx

�
1

4��0

pðc ÞIND � er
jxj2

�
þOðjxj�6Þ; (11)

where c is the angle between the external electric field,
lying in the x-z plane, and the magnetic dipole moment
pointing along the z axis, i.e. E0 ¼ jE0jðsinc ex þ
cosc ezÞ, and m ¼ jmjez. The induced electric dipole
moment pðc ÞIND is given by

p ðc ÞIND ¼ ��0jmj2jE0j
10��0a

3

�
36

E0

jE0j � 49

�
E0

jE0j � ex
�
ex

�
:

(12)

This induced electric field is of the electric dipole type in
its radial 1=jxj3 dependence, but it has a manifestly
peculiar angular dependence. For instance, along the z

O. ZIMMER et al. PHYSICAL REVIEW D 85, 013004 (2012)

013004-2



axis, and unlike a standard electric dipole field, it has a
nonzero component along e	 that depends on the azimu-
thal angle 
. It also has a nonzero component along the
direction of e
, as may be appreciated by writing the

induced electric field in spherical coordinates ðr; 	; 
Þ,
i.e.

EðxÞ ¼ ��0jmj2jE0j
40�2�20a

3jxj3 f2½36 cos	 cosc

� 13 sin	 cos
 sinc �er þ ½13 cos	 cos
 sinc

þ 36 sin	 cosc �e	 � 13 sin
 sinc e
g: (13)

In addition to the induced electric field Eq. (11), there is
an induced magnetic field (a correction to the field pro-
duced by the magnetic dipole source), which can be
derived from a vector potential, i.e. BðxÞ ¼ r�AðxÞ,
where after a lengthy calculation one finds

AðxÞ ¼ ��0

4��0jxj2
f4jE0j2ðer �mÞ � 7½m �E0

þ 3ðE0 � erÞðm � erÞ�ðer �E0Þ þ 7ðE0 � erÞ

� ðm� E0Þg
�
1þO

�
�0jmj2
a6�0jE0j2

��
þOðjxj�4Þ:

(14)

Notice that while E grows linearly with jE0j, B depends
quadratically on jE0j. We proceed to discuss the interac-
tion energy of the magnetic dipole source and its induced
electric dipole with the external constant field E0, and
with an external uniform magnetic field B0 weak enough
not to induce nonlinear effects, i.e. cjB0j � Ec. Given the
nonlinearity of the problem, it is important to verify that
the magnetic interaction Hamiltonian has the expected
form �m �B0, given the strength of B0. In addition,
the electric interaction energy of the induced electric
dipole and the external field E0 is a priori unknown.
This need not be exactly of the form

Hint ¼ �1
2p �E0; (15)

as one would obtain for a linearly polarizable particle
immersed in an external electric field, e.g. for a polar-
izable neutron on account of its quark substructure. In
fact, the electric interaction Hamiltonian due to nonline-
arity lacks the factor 1=2 as shown next. The canonical
energy-momentum tensor is defined as

T�
� ¼ @Ltot

@ð@�A�Þ ð@�A�Þ �Ltot�
�
�; (16)

where the total Lagrangian density is Ltot ¼ L� j�A
�,

with L ¼ �0F þLð1Þ
EH and Lð1Þ

EH given in Eq. (1). This
equation can be rewritten as

T�
� ¼

�
@L
@F

F�� þ @L
@G

~F��

�
F�� �L��

� þ ðj � AÞ��
�

þ A�@�

�
@L
@F

F�� þ @L
@G

~F��

�

� @�

��
@L
@F

F�� þ @L
@G

~F��

�
A�

�
: (17)

Since the last term on the right-hand side above is the
total divergence of an antisymmetric tensor, employing
the equations of motion

@�

�
@L
@F

F�� þ @L
@G

~F��

�
¼ j�; (18)

one can define another energy-momentum tensor as

	�� ¼ T�
� þ @�

��
@L
@F

F�� þ @L
@G

~F��

�
A�

�

¼
�
@L
@F

F�� þ @L
@G

~F��

�
F�� �L��

�

þ ðj�A�Þ��
� � j�A�: (19)

Notice that this tensor is symmetric and gauge invariant
except for the last two terms. The total energy density of
the system is defined as the component 	00,

H tot ¼ 	00 ¼
@L
@E

� E�L� j �A
¼ D � E�L� j �A: (20)

In general, for a given configuration of the fields the
interaction Hamiltonian is defined as the difference of
the total Hamiltonian with and without the sources. In a
quantum theory, it is defined as the difference of the total
Hamiltonian evaluated at the fields in the interaction
picture, with and without the external sources. Then, the
interaction Hamiltonian Hint, i.e. the volume integral of
the interaction Hamiltonian density H int, is

Hint ¼
Z

H intd
3r ¼ �

Z
j �Ad3r

¼ �
Z

j � ðA0 þAÞd3r; (21)

where A ¼ A0 þA, with A given in Eq. (14), and
A0 is the vector potential associated with B0, i.e. B0 ¼
r�A0, and A0 ¼ 1

2B0 � r. The current j corresponding

to the magnetized sphere producing the field, Eq. (8), is
j ¼ 3

4�a3
m� er�ðr� aÞ. In Eq. (21), the self-energy of

the magnetized sphere, independent of the external field,
has been omitted. After performing the integration in
Eq. (21), one finds

Hint ¼ �m �B0 � pðc ÞIND � E0; (22)

which has the correct magnetic interaction term as in

OBSERVABILITY OF AN INDUCED ELECTRIC DIPOLE . . . PHYSICAL REVIEW D 85, 013004 (2012)

013004-3



the linear theory. The electric interaction energy is of
the expected form, but it involves a coefficient different
from the case of linear QED as a result of nonlinearity.
In the absence of the external magnetic field B0, and
using Eq. (12), the interaction Hamiltonian becomes

Hint ¼ � ��0jmj2jE0j2
10��0a

3
ð36� 49sin2c Þ

¼ ��0jmj2jE0j2
10��0a

3
ð13� 49cos2c Þ: (23)

Notice the dependence of Hint on a�3. It should be
pointed out that in an experimental situation one would
typically be interested in a point magnetic dipole. This
source would produce very strong fields in its proximity
so that the limit a ! 0 would obviously not be allowed.
Instead, we assume that even in such a case the large
distance solution for the fields is well described by the
first-order approximation to the effective Lagrangian

Lð1Þ
EH in Eq. (1). We also assume that this solution is

robust against short-distance modifications of the source
as long as its symmetry is preserved. In this sense, the
parameter a is to be considered as a measure of our
ignorance about the higher-order corrections to this
effective Lagrangian, something necessary when dealing
with strong fields. The specific value of a will be
discussed later in Sec. IV. The fact that Hint depends
on the orientation of m with respect to E0 through the
angle c can be used as a distinctive feature in the
design of an experimental asymmetry as described be-
low in Sec. V.

We consider next the quantum behavior of pIND using
the Heisenberg equation of motion. To this end, we con-
sider a particle with magnetic dipole moment m related to
the spin through the standard relationm ¼ gℏS, where g is
the gyromagnetic ratio. Assuming that the dynamics of this
particle is described by the Hamiltonian Eq. (22), and
given that pIND / jmj2, Hint to first order in � contains
only quadratic terms in the spin, whose components are the
dynamical variables of the problem. The effective
Hamiltonian involving these dynamical variables must be
symmetrized in order to ensure Hermiticity. Hence, the
quadratic terms in the spin entering the Heisenberg equa-
tion of motion lead to the commutator

½fSi; Sjg; Sk� ¼ i�jklfSi; Slg þ i�iklfSj; Slg: (24)

For a spin 1=2 particle, such as the neutron, we have
Si ¼ 1

2�i, and fSi; Slg ¼ 1
2�il. In this case,

½fSi;Sjg;Sk�¼ i�jkl
1

2
�ilþ i�ikl

1

2
�jl¼ i

2
ð�jkiþ�ikjÞ¼0:

(25)

Therefore, dS=dt ¼ 0 so that if one is interested in the
time evolution of a spin 1=2 particle, and Eq. (22)
describes its effective Hamiltonian, we find no contribu-

tion from this leading-order nonlinear correction. In
other words, the precession of the spin is not affected.
This is not the case, though, for spin-one particles. This
unfortunate feature rules out experiments to detect the
induced electric dipole moment of the neutron based on
Larmor frequency changes. A different approach involv-
ing neutron scattering off nuclei is discussed next.

III. NEUTRON-ATOM SCATTERING
AMPLITUDE AND CROSS SECTION

Scattering of slow neutrons by a free atom can be
described by a scattering amplitude in the Born approxi-
mation, which in the center-of-mass system is given by
(see e.g. [10])

fðq; sÞ ¼ � M

2�ℏ2

Z
expðiq � rÞHintðq; sÞd3r; (26)

where M is the reduced mass

M ¼ mnmA

mn þmA

; (27)

with mn the neutron mass, and mA the mass of the atom.
The three-momentum transfer q is q ¼ k� k0, with k and
k0 the neutron wave vectors before and after scattering,
respectively, and s the neutron spin in units of ℏ. The
magnitude of q will be denoted as jqj � q in the sequel.
The total Hamiltonian Hint involves all known interactions
between the neutron and the atom, to which we add now
the new interaction due to NLQED given in Eq. (23).
Correspondingly, the total scattering amplitude can be
written as

fðq; sÞ ¼ fNðq; sÞ þ fMAGðq; sÞ þ feðqÞ þ fPOLðqÞ
þ fSOðq; sÞ þ fPVðq; sÞ þ fINDðq; sÞ; (28)

where the various contributions are as follows. The term
fNðq; sÞ is due to the hadronic interaction of the neutron
with the nucleus, and is usually the dominant term. The
amplitude fMAGðq; sÞ corresponds to the interaction of the
neutron magnetic moment with the atomic magnetic field
(for atoms with unpaired electrons). This term can be of a
similar size as fNðq; sÞ. The next three terms arise from
various electromagnetic interactions, i.e. feðqÞ is due to
scattering of the neutron charge radius by the electric
charges in the atom, fPOLðqÞ arises from the electric polar-
izability of the neutron due to its quark substructure, and
fSOðq; sÞ corresponds to the spin-orbit interaction of the
neutron in the electric field of the nucleus. The term
fPVðq; sÞ is a weak interaction, parity-violating amplitude
which we list separately from fNðq; sÞ as it has a different
dependence on neutron spin. Finally, fIND is the new
component due to the induced electric dipole moment of
the neutron, which we wish to isolate experimentally. The
scattering amplitude, Eq. (28), enters the differential cross
section for elastic neutron scattering by a single atom in the
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ground state,

d�

d�
ðq;PÞ ¼ hjfðq; sÞj2i; (29)

which includes an ensemble average over nuclear and
electronic spin degrees of freedom (if present), and the
neutron spin. The incident neutrons are characterized by a
polarization defined as P ¼ 2hsi. In the absence of nuclear
and electronic polarization of the atom, the case of interest
here, the kinematic scattering variables are q and P.
Experimentally, one determines neutron scattering cross
sections using a sample containing a macroscopic number
of atoms. Considering a single atomic species, the en-
semble average in Eq. (29) still has to account for the
isotopic composition and the different states of total spin
of a neutron scattering off a nucleus with nonzero spin. For
slow neutrons with wavelengths much larger than the
nuclear radius RN, the hadronic amplitude fN is practically
independent of q. This is in the absence of nuclear reso-
nances for thermal and epithermal neutrons, i.e. for the
energy range of interest here. Scattering thus proceeds in
an s-wave and is isotropic in the center-of-mass system.
One defines a neutron scattering length operator as

aNðsÞ ¼ �lim
q!0

fNðq; sÞ: (30)

For a nucleus with spin ℏI, one has

aNðsÞ ¼ ðI þ 1Þaþ þ Ia�
2Iþ 1

þ 2ðaþ � a�Þ
2I þ 1

s � I; (31)

where aþ and a� are the eigenvalues of aNðsÞ for the
two states of total spin I � 1=2 (see e.g. [10]). For a
sample with all nuclear species unpolarized, scattering
by the ith isotope enters with statistical weight factors
wiþ ¼ ðIi þ 1Þ=ð2Ii þ 1Þ and wi� ¼ Ii=ð2Ii þ 1Þ. The
leading term in the cross section is then given by

jaNj2 ¼
X
i

ci½wiþjaiþj2 þ wi�jai�j2�; (32)

where the bar indicates the averaging over isotopes and
spin states, and ci stands for the relative abundance of
the ith isotope. In next-to-leading order, the cross sec-
tion contains interference terms between small ampli-
tudes like fIND and a usually dominant coherent nuclear
scattering length aN, which for unpolarized nuclei is
given by

aN ¼ X
i

ci½wiþaiþ þ wi�ai��: (33)

Most scattering lengths aN are found to be positive with
typical values of a few fm. Neutron optical measure-

ments determine a coherent bound scattering length �b,
related to the corresponding scattering length �a of a
free atom through

�b ¼ �a

�
1þ mn

mA

�
: (34)

This relation includes the contributions �limq!0
�fi due to

all amplitudes (i ¼ N; POL . . . ) appearing in Eq. (28).
Lacking sufficiently accurate theoretical predictions for
the nuclear part, however, one cannot even extract from
�b the sum of all nonhadronic components, which normally
contribute less than 1%. Instead, one needs to perform
measurements for q � 0. Values for �b and the total neu-
tron scattering cross section of an atom fixed in space,
�s;b ¼ 4� �b2, can be found e.g. in [11]. For later use, we

quote the values for lead with natural isotopic abundances

�b ¼ ð9:401� 0:002Þ fm;

�s;b ¼ ð11:187� 0:007Þ � 10�24 cm2:
(35)

For low neutron energies, one also has to take into account
interference effects of the neutron waves scattered from
different atoms, as e.g. in condensed-matter studies.
Classical examples are Bragg scattering by single crystals
and measurements of phonon dispersion relations.
However, for sufficiently large momentum transfer q as
considered here, interatomic interferences and eventual
nuclear spin correlations between different atoms can be
neglected. We thus consider the cross section in the
center-of-mass system as given by

d�

d�
’ jaNj2 þ hjfSOðq; sÞj2i þ . . .

�X
j

h2Re½aNfjðq; sÞ�i; (36)

where the dots stand for the remaining contributions of
squared amplitudes from Eq. (28), and the sum is over
j ¼ e, MAG, POL, SO, PV, and IND. The formulas to
transform this expression to the laboratory reference
frame can be found in Ref. [10]. As long as the nucleus
is free to recoil, the total cross section does not change
and changes in the angular distribution of the scattered
neutrons appear only at order mn=mA. Since we are not
interested in angular distributions and will only consider
atoms much heavier than the neutron, we may use the
scattering cross section as given above in Eq. (36).
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IV. SCATTERING AMPLITUDE DUE
TO THE NLQED INDUCED ELECTRIC

DIPOLE MOMENT

We now turn to the calculation of the new amplitude
fIND due to the NLQED induced electric dipole moment
pIND given in Eq. (12). The magnetic moment of the
neutron, m, can be written as

m ¼ �n�; (37)

where

�n ¼ �9:662� 10�27 Am2; (38)

and � ¼ 2s are the Pauli matrices. From Eq. (9), there
follows the lower bound

a > 7:6 fm: (39)

According to Eq. (22), pIND interacts with the atomic
electrostatic field, which for simplicity we consider as
given by a pointlike nucleus with electric charge Ze,

E 0 ¼ 1

4��0

Ze

r2
er: (40)

As discussed later, one can neglect electric field shielding
due to the atomic electrons. Using Eqs. (40), (23), and (26),
one obtains

fINDðq; R; a; �Þ ¼ �M�0�
2
nZ

2e2

320�4ℏ2�30a
3
½�13I1ðq; RÞ

þ 49I2ðq; R; �Þ�; (41)

where � is the angle between s and q. The two integrals
I1ðq; RÞ and I2ðq; R; �Þ can be easily calculated analyti-
cally in polar coordinates with q along the polar axis. They
are given by

I1ðq; RÞ ¼
Z expðiq � rÞ

r4
d3r; (42)

and

I2ðq; R; �Þ ¼
Z expðiq � rÞ

r4
ðcos� cos	

þ sin� sin	 cos’Þ2d3r: (43)

The radial integration extends over all space, excluding a
sphere of radius R around the nucleus. For a heavy nucleus
like lead, electric fields as strong as 1023 Vm�1 exist close
to the nuclear surface. This exceeds by far the critical field,
Eq. (5), beyond which higher-order terms in the one-loop
effective Lagrangian in Eq. (1) become important [12] and
thus cannot be neglected. Therefore, R has to be much
larger than the nuclear radius RN, and we choose it here as
the distance from the nucleus to where the critical field is
reached, i.e.

Ec ¼ 1

4��0

Ze

R2
: (44)

For lead isotopes with Z ¼ 82, one has R ’ 300 fm. The
integrals Eqs. (41) and (42) can be solved analytically with
the result

I1ðq; RÞ ¼ 2�

R

�
cosðqRÞ þ sinðqRÞ

qR
þ

�
SiðqRÞ � �

2

�
qR

�

’ 4�

R

�
1� �

4
qRþ 1

6
ðqRÞ2 � . . .

�
; (45)

where SiðxÞ is the Sine integral, and

I2ðq; R; �Þ ¼ �

4R

�
1

ðqRÞ2 ½2þ 3ðqRÞ2 þ ð6þ ðqRÞ2Þ

� cosð2�Þ� cosðqRÞ � 1

ðqRÞ3 ½2� 3ðqRÞ2

þ ð6� ðqRÞ2Þ cosð2�Þ� sinðqRÞ
� qRð3þ cosð2�ÞÞ

�
�

2
� SiðqRÞ

��

’ 4�

3R

�
1� 3�

32
ð3þ cosð2�ÞÞqR

þ 1

10
ð2þ cosð2�ÞÞðqRÞ2 � . . .

�
: (46)

Using Eqs. (45) and (46) in Eq. (41), one finds the final
expression for the scattering amplitude due to the NLQED
induced electric dipole moment

fINDðq;R;a;�Þ

¼ �M�0�
2
nZ

2e2

320�3ℏ2�30a
3R

�
49½1þ3cosð2�Þ�½qRcosðqRÞ�sinðqRÞ�

2ðqRÞ3

þ1

4
½43þ49cosð2�Þ�

�
cosðqRÞþsinðqRÞ

qR

þ
�
SiðqRÞ��

2

�
qR

��

’�M�0�
2
nZ

2e2

24�3ℏ2�30a
3R

�
1� 3�

320
½43þ49cosð2�Þ�qR

þ 1

100
½33þ49cosð2�Þ�ðqRÞ2� ...

�
: (47)

The scattering amplitude fIND exhibits a welcome peculiar
dependence on the angle � between the neutron spin s and
the three-momentum transfer q. This dependence introdu-
ces an asymmetry which for suitable experimental condi-
tions is essentially free from background contributions due
to other well-known effects. The largest effect is obtained
by evaluating fIND at � ¼ 0 and at � ¼ �=2. This feature
will then play a crucial role in the experimental detection
of the NLQED induced electric dipole moment of the
neutron, as discussed in the following section.
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V. SCATTERING ASYMMETRY DUE TO THE
NLQED INDUCED ELECTRIC DIPOLE MOMENT

We define the scattering asymmetry as

Aðq; R; aÞ ¼ ðd�=d�Þk � ðd�=d�Þ?
ðd�=d�Þk þ ðd�=d�Þ? ; (48)

where the differential cross section, Eq. (36), is evaluated
for two neutron polarization states Pk and P?, parallel and
perpendicular to the scattering vector q, respectively. The
interference term between the coherent nuclear amplitude
and the amplitude of interest leads to

AINDðq; R; aÞ ¼ 4�

�s

aNðfIND? � fINDkÞP; (49)

where fINDk ¼ fINDðq; R; a; 0Þ and fIND? ¼
fINDðq; R; a; �=2Þ, P ¼ jPkj ¼ jP?j, and �s ¼ �s;bM

2=
m2

n is the total scattering cross section of the free atom.
We argue below that in a well-designed experiment
possible influences of interference terms other than be-
tween aN and fIND are negligible. Hence, Aðq; R; aÞ ’
AINDðq; R; aÞ, so that the asymmetry defined in Eq. (48)
should allow for a detection and determination of the new
amplitude. Using the values for natural lead from Eq. (35)
in Eq. (49), one obtains

Aðq; R; aÞ ’ fIND? � fINDk
9:5 fm

P: (50)

From Eqs. (47) and (50), it follows that Aðq; R; aÞ /
ðqRÞ=R, where  is a function of the dimensionless
parameter qR. The maximum of Aðq; R; aÞ occurs for
(see Fig. 1)

qR ¼ 1:68: (51)

Using the value of a given in Eq. (39), the asymmetry
becomes

Að5:6� 1012 m�1; 300 fm; 7:6 fmÞ ¼ 1:4� 10�3P;

(52)

a result which appears experimentally accessible.
Neglecting nuclear recoil, valid in good approximation
for neutron scattering off a heavy target, one may use the
relation

q ¼ 2k sin
�

2
; (53)

where � is the angle between k and k0, and k � jkj ¼
2:197� 10�4 fm�1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EðeVÞp

, with E the neutron kinetic
energy in eV. In a backscattering geometry, i.e. for
� ’ �, the maximum asymmetry, Eq. (52), is obtained
with epithermal neutrons of energy E ’ 165 eV. The result
for the asymmetry depends explicitly on the radii R and a
of spheres centered on the nucleus and on the neutron,
respectively. These parameters play the role of separating
the short-distance physics close to the electromagnetic
sources from the long-distance effects involving fields
weak enough for the Euler-Heisenberg approximation to
be valid. In this regard, it is important to point out that
electric and magnetic fields induced by quantum fluctua-
tions in the QED vacuum involve various multipolarities
[8]. For instance, in the case of a neutron in an external,
quasistatic electric field jE0j<Ec, the induced electric
field Eq. (11) has a dipole-type term of order Oðjxj�3Þ,
as well as a higher multipole of order Oðjxj�6Þ, while the
induced magnetic field involves terms of order Oðjxj�3Þ,
Oðjxj�5Þ, and Oðjxj�9Þ, with x ¼ r� rn. These higher-
order multipoles can be safely neglected in the interaction
energy as long as the weak-field approximation remains
valid. However, it is not clear what happens at distances
closer to the nucleus or to the neutron. This problem is
similar to that of the separation into far and near field
regions around a localized charge/current distribution in
classical electrodynamics, where the lowest-order multi-
pole provides the long-distance solution. Although one
cannot compute the interaction energy due to QED vacuum
effects stemming from the regions r < R and jr� rnj< a,
their contribution to the asymmetry would presumably
have a different dependence on s and q. For large q, it
might smear out the oscillations appearing in Fig. 1. For
small q, corresponding to small spatial resolution in prob-
ing the QED vacuum, the asymmetry should not be af-
fected much by the short-distance physics. This statement
is underlined by the fact that at leading order in qR the
�-dependent term in fIND, Eq. (47), does not depend on R.
For qR � 1, one thus obtains a prediction for the asym-
metry which should be robust against variations in the
choice of R, i.e.

Aðq � R�1; R; aÞ ’ Aðq; aÞ ¼ 49

320

aN
�s

�M�0�
2
nZ

2e2

�ℏ2�30a
3

qP:

(54)

0 2 4 6 8 10 12 14
0.0005

0.0000

0.0005

0.0010

0.0015

q R

A
P

FIG. 1. The scattering asymmetry Aðq; R ¼ 300 fm;
a ¼ 7:6 fmÞ, Eq. (50), normalized to the neutron polarization
P as a function of the dimensionless variable qR.
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For a neutron energy of 1 eV in a backscattering geometry,
one expects

Að4:4� 1011 m�1; 7:6 fmÞ ¼ 2:2� 10�4P: (55)

From a practical point of view, the polarization of epither-
mal neutrons with more than 100 eV requires a spin filter of
polarized protons. This is technically demanding if one
wishes to polarize a beam with a diameter of several cm.
The measured energy-dependent neutron polarization
cross section of a polarized-proton spin filter for the energy
range of interest may be found in Ref. [13]. On the other
hand, neutrons with energies up to �1 eV are available
from a hot moderator in a reactor neutron source with much
higher intensity than epithermal neutrons. They can be
polarized using magnetic monochromator crystals, or by
a spin filter of polarized 3He gas [14] which has a polar-
ization cross section proportional to k�1. For the fluxes
available at the Institut Laue-Langevin in Grenoble, an
asymmetry as in Eq. (55) appears experimentally acces-
sible within a few days of beam time.

To conclude this section, we stress that the neutron
scattering asymmetry due to nonlinear QED has two char-
acteristic properties which should make it rather easy to
detect and distinguish from other effects. First, the asym-
metry attains its maximum value for perpendicular orien-
tations of the neutron polarization and vanishes for
opposite orientations. This is in contrast to most ordinary
asymmetries which become maximal for opposite orienta-
tions. Second, AINDðq; R; aÞ exhibits a characteristic q
dependence with a broad maximum around the value of q
given in Eq. (51). These features are discussed in more
detail in the sequel.

VI. ANALYSIS OF BACKGROUND ASYMMETRIES

In this section, we study the contributions to the asym-
metry Aðq; R; aÞ, Eq. (48), from the various ordinary
scattering amplitudes defined in Eq. (28). The neutron
spin-dependent amplitudes can be written as

fðq; sÞ ¼ f0ðqÞ þ f1ðqÞ½s � wðqÞ�; (56)

where f0ðqÞ is spin independent, and w is a vector not
correlated with the neutron spin. In the case of the weak
amplitude fPV, the vector q must be replaced by k. For
instance, for the nuclear amplitude in Eq. (31), w is inde-
pendent of q and given by the nuclear spin I. It can be
shown in general that the terms proportional to hðs � wÞ2i in
the differential cross section, Eq. (36), are all independent
of the neutron polarization and therefore cannot generate
an asymmetry. In principle, these terms influence the size
of Aðq; R; aÞ through the total scattering cross section �s,
Eq. (49). For scattering angles � ! 0, the pure spin-orbit
cross section, quadratic in the amplitude fSO, might be-
come large enough to have an impact on �s. However, for
sufficiently large �, and in the absence of nuclear and
electronic polarization, corrections to �s due to squared-

amplitude terms can be safely neglected. The interference
terms between the nuclear and the other scattering ampli-
tudes in Eq. (36) may however affect the asymmetry
Aðq; R; aÞ through their dependence on the neutron polar-
ization. This requires careful consideration, and we start
with the amplitude fSO for spin-orbit scattering. It origi-
nates in the interaction of the neutron magnetic moment
with the magnetic field present in the neutron rest frame
due to its motion through the atomic electric fields. Its
expression is (see e.g. [15])

fSOðq; sÞ ¼ i
M

mn

cotð�=2Þ�n�0

2�ℏ
eZ½1� FðqÞ�ðs � nÞ;

(57)

where eZ½1� FðqÞ� is the Fourier transform of the electric
charge density of the atom. This term involves the nuclear
charge Z and the atomic form factor FðqÞ normalized to
Fð0Þ ¼ 1. This form factor is measured e.g. in x-ray scat-
tering off atoms, and is a real function of the momentum.
The unit vector n points along k� k0, so that the ampli-
tude can contribute only if the neutron polarization has a
component out of the scattering plane. The asymmetry due
to the spin-orbit interaction is given by

ASO ¼ ImaN
�s

M

mn

cotð�=2Þ�n�0

ℏ
eZ½1� FðqÞ�

� ðPk � n� P? � nÞ: (58)

The imaginary part of aN above is due to nuclear absorp-
tion and can be calculated using the optical theorem. Lead
nuclei absorb neutrons only weakly so that ImaN ’
ð4�Þ�1k�s for neutron energies of interest here. For a
scattering angle � ¼ �=2, a neutron kinetic energy of
E ’ 330 eV would be required to observe the maximum
asymmetry according to Eq. (52). In this case, the atomic
form factor FðqÞ ’ 0, and a maximum asymmetry ASO

should be observed for P? perpendicular to the scattering
plane, i.e. P? � n ¼ P (while Pk � n ¼ 0 by definition). As
a result, for E ¼ 330 eV one has ASO ’ 4:8� 10�4P,
while for E ¼ 1 eV together with the conservative value
FðqÞ ¼ 0, the asymmetry becomes ASO ’ 2:6� 10�5P.
These values are already smaller than the corresponding
values of AIND, but with suitable experimental settings
they can be reduced even further. Notice that the condition
P? � q ¼ 0 required for fIND? can be realized for different
orientations of P?, while also fulfilling P? � n ¼ 0. Hence,
choosing a backscattering geometry, for which
cotð�=2Þ � 1 together with P? � n ’ 0, and using realis-
tic assumptions about the experimental definition of the
directions of q and P, one can easily suppress ASO by a
factor 50. Hence, the impact of ASO can be kept well under
the 1% level. Next, the amplitude aN of the neutron-
nuclear interaction in Eq. (31), when squared, gives rise
to interference between its spin-dependent and spin-
independent parts. After ensemble averaging, this becomes
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proportional to P and to the nuclear polarization PN. In
thermal equilibrium, PN ¼ tanhð�NB=ðkBTÞÞ for nuclei
with magnetic moment �N in a magnetic field B (kB is
the Boltzmann constant). If the target is at room tempera-
ture, and given that no magnetic field is needed at the
position of the sample, the P-dependent cross section is
orders of magnitude too small to have an impact on the
asymmetry. We consider next the amplitude fMAG, which is
due to the interaction of the neutron magnetic moment with
the magnetic field produced by unpaired atomic electrons
of paramagnetic contaminants in the sample. The operator
structure of this amplitude is given by

fMAG / s � ½eq �MðqÞ � eq�; (59)

where MðqÞ is the Fourier transform of the total (spin and
orbital) magnetization of the atom, and eq ¼ q=q. The

interference term with aN thus involves the neutron polar-
ization and the sample-averaged magnetization. It would
only influence the asymmetry if (1) the ratio B=T is suffi-
ciently high to result in a sizable magnetization, (2) para-
magnetic centers are sufficiently abundant, (3) the two
neutron polarization states in the asymmetry have different
projections perpendicular to the scattering plane [which is
a consequence of the term in brackets in Eq. (59)], and
(4) measurements are performed for sufficiently small q,
where the magnetic form factor still has a sizable value.
Regarding the latter, even for the smaller value of q envis-
aged in Eq. (55), the magnetic form factor leads to a strong
suppression of fMAG. Hence, with the conditions 1, 2, and 3
under experimental control one can safely disregard mag-
netism as a source of an asymmetry.

Finally, the parity-violating amplitude fPV due to the
hadronic weak interaction may lead to a different type of
asymmetry which has indeed been observed in neutron
transmission experiments. Effects depend on the neutron
helicity, hence w ¼ k in Eq. (56), with a complex coeffi-
cient to describe both parity-violating spin rotation and
transmission asymmetry. The amplitude is normally so
small that it requires special efforts to detect it. For thermal
neutrons, transmission asymmetries for longitudinally po-
larized neutrons [16] have typical sizes of a few times
10�6. However, for neutron energies in the vicinity of
p-wave resonances of complex nuclei a strong enhance-
ment due to the weak nuclear interactions may appear. A
prominent example is the transmission asymmetry of 7%
found at the p-wave resonance of 0.76 eV in 139La [17].
However, no effect sufficiently strong to affect the asym-
metry AIND is known for lead in the relevant energy range.
In addition, an experimental test can easily be performed.
In fact, taking the neutron polarization P parallel and
antiparallel to q, i.e. � ¼ 0 and � ¼ �, it follows from
Eqs. (47) and (49) that AIND ¼ 0 for these two polarization
orientations. In contrast, for fPV one has APV / sinð�=2Þ,
which could be measured separately and corrected for if
the need arises.

VII. COMPARISON OF THE NLQED AMPLITUDE
WITH ORDINARY ELECTRIC AMPLITUDES

The electric amplitudes fPOL and fe do not generate any
known scattering asymmetry. However, owing to their
characteristic q dependences a comparison with the
NLQED amplitude fIND is needed. Like fIND, the ampli-
tude fPOL due to the electric polarizability of the neutron,
�n, is induced by the nuclear electric field, Eq. (40). In SI
units, �n is defined by p ¼ 4��0�nE0, so that its dimen-
sion is ½�n� ¼ m3. The calculation of fPOL follows from
Eq. (26) with the interaction energy given by Eq. (15). This
leads to the integral Eq. (42) with the result given in
Eq. (45). However, the lower limit of the radial integration
is now different from that for fIND. In fact, this lower limit
can now be extended down to the nuclear radius RN, since
for r > RN the neutron probes only the long-range electric
forces. For r < RN, the electric interaction is small in
comparison with the nuclear force, so that in early calcu-
lations [18,19] it has simply been included in the nuclear
amplitude. In SI units and for the electric field given in
Eq. (40), the dependence of fPOL on q is given by

fPOLðqÞ ’ 1

4��0

M

ℏ2

Z2e2

RN

�n

�
1� �

4
qRN

þ 1

6
ðqRNÞ2 � . . .

�
: (60)

The term linear in q is characteristic of the r�4 dependence
of the Hamiltonian, and it also enters the interference term
in the cross section. This feature has been exploited in the
past to measure �n. Conflicting results from experiments
performed during more than three decades show that a
proper assessment of all systematic errors has been difficult
(see e.g. the table in Ref. [20]). The most recent result [21],
derived from energy-dependent neutron transmission
through a 208Pb target, and reporting the smallest uncer-
tainty, is

�n;exp ¼ ð1:20� 0:15� 0:20Þ � 10�3 fm3: (61)

Calculations using quark bag models [22] agree with this
result. An early estimate of Breit and Rustgi [23] using
data on pion photoproduction already indicated that �n <
2� 10�3 fm3. These authors also analyzed other effects
which might mimic a signal from the neutron electric
polarizability. From an estimate of vacuum polarization
effects close to the nucleus, and using the Uehling potential
[24], they concluded that this contribution to neutron scat-
tering can be safely neglected. Turning now to the question
of shielding of the nuclear charge by the atomic electrons,
one notices that this might quench the amplitude fIND.
Since fPOL and fIND both depend quadratically on the
electric field E0, one can draw parallels with the analysis
of fPOL. We recall that in our calculation of fIND one
needs to exclude a spherical region of radius R around
the nucleus inside which the weak-field expansion of the
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Euler-Heisenberg Lagrangian breaks down. This proce-
dure was followed (for different reasons) in the early
calculations of fPOL [18,19,23] where the nuclear region
with radius RN was excluded. A more recent analysis
which does not rely on a simple model for the nuclear
charge distribution gives [25]

fPOLðq ! 0Þ ¼ 1

4��0

ffiffiffiffi
3

�

s
M

ℏ2

Z2e2

rN
�n; (62)

where rN is the root mean square charge radius of the
nucleus. This shows that slow neutrons are indeed insensi-
tive to details at this length scale. Notice that this result is
nearly identical to the leading term in Eq. (60) after replac-
ing RN by rN. In the derivation of Eq. (62), the following
intermediate result was obtained in [25]:

fPOLðq ! 0Þ /
Z 1

0
jFNð�Þ � Fð�Þj2d�

¼
Z 1

0
jFNð�Þj2d�½1�OðRN=RAÞ�; (63)

where FNð�Þ and Fð�Þ are the charge form factors of the
nucleus and of the electron distribution in the atom, re-
spectively. With RN=RA ’ 10�5, shielding of the nuclear
charge can be neglected in fPOL. Even in the limit q ! 0,
the neutron feels the full unscreened nuclear charge as far
as the electric polarizability is concerned. For the NLQED
induced electric dipole moment, it follows that, with R ’
300 fm for lead, the corresponding correction term of order
OðR=RAÞ is much larger than the one of order OðRN=RAÞ.
However, R=RA & 10�2 is still small enough so that one
can neglect shielding of the electric field in the region
around the nucleus. We now compare the two amplitudes
fPOL and fIND in the limit q ! 0, i.e. their respective
contributions to the neutron scattering length. Setting

RN ¼ 1:2 fmA1=3 and using Eq. (61), one can estimate
the leading-order term in Eq. (60) as

fPOLðq ! 0Þ ’ 0:04 fm: (64)

From Eq. (47), the corresponding leading term in fIND is

fINDðq ! 0Þ ¼ 1

4��0

M

ℏ2

Z2e2

R
�IND; (65)

where

�IND ¼ ��0�
2
n

6�2�20a
3
’ 3:3 fm3

ða½fm�Þ3 : (66)

With the value of a from Eq. (9), one obtains

�IND ¼ 7:5� 10�3 fm; (67)

which is larger than �n, Eq. (61). However, the impact of
this polarizability on the amplitude fIND for q ! 0 is sup-
pressed with respect to fPOL due to R 	 RN. In fact, for
lead one obtains

fINDðq ! 0Þ ’ 0:006 fm: (68)

This result, though, is not even an order of magnitude
smaller than fPOLðq ! 0Þ, Eq. (64). It would thus contrib-
ute about 5� 10�11 eV to the neutron optical potential of
solid lead, which is quite substantial given the high preci-
sion of some neutron optical methods. The contribution of
the NLQED electric dipole moment to the total cross
section is �IND ’ �8� �afINDðq ! 0Þ, where aN ’ �a in
Eq. (36) has been used. Numerically, this becomes

�INDðq ! 0Þ ¼ �0:014� 10�24 cm2: (69)

We discuss next the amplitude fe which describes the
interaction of the electric charges of the atom with
the internal charge distribution of the neutron as charac-
terized by its mean squared charge radius. The amplitude
for a bound nucleus is given by fe ¼ �beZ½1� FðqÞ�,
with the atomic form factor FðqÞ given in Eqs. (57) and
(63), and the neutron-electron scattering length is be ’
�1:35� 10�3 fm as determined from measurements of
the total cross sections of lead and bismuth at different
neutron energies [26,27]. For lead and sufficiently large q,
fe ¼ 0:11 fm, which leads to a contribution to the
total scattering cross section [25] �e ’ �8� �abeZ ’
0:25� 10�24 cm2. It is also interesting to notice that since
feðq ! 0Þ ! 0 this amplitude does not contribute to the
neutron scattering length. The atomic form factor changes
significantly at small q where interference of neutron
waves from different atoms cannot be neglected. Hence,
the macroscopic state of the sample enters crucially in the
analysis of scattering data. In contrast, in the case of fIND
where larger effects show up at much higher values of q,
interatomic interferences do not play any significant role.
To conclude this section, we discuss the contribution of

fIND as a potential background in measurements of the
amplitudes fPOL and fe performed with unpolarized neu-
trons. For the polarization averaged fIND, one obtains

hfINDðq; R; aÞi ¼ 1

2

Z �

0
fINDðq; R; a; �Þ sin�d�

¼ �M�0�
2
nZ

2e2

48�3ℏ2�30a
3R

�
cosðqRÞ þ sinðqRÞ

qR

þ
�
SiðqRÞ � �

2

�
qR

�
: (70)

To analyze the impact on fe, one may approximate rela-
tivistic Hartree-Fock results for FðqÞ by the simple func-

tion ½1þ 3ðq=q0Þ2��1=2 [25]. With Fðq0Þ ¼ 1=2, the
momentum q0 provides a scale at which significant
changes in fe take place. For lead, q0 ¼ 8:3� 1010 m�1,
and

feðq0Þ � feð0Þ ¼ 50� 10�3 fm: (71)

In contrast, the change of hfINDi is much smaller due to its
milder q dependence and its smaller magnitude (see
Fig. 2),
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hfINDðq0Þi � hfINDð0Þi ¼ �0:11� 10�3 fm: (72)

Since the precision of the best measurements of be is at the
level of a few percent, potential background due to hfINDi
is negligible. A similar argument leads to the same con-
clusion for the determination of �n from fPOL.

VIII. CONCLUSIONS

Many, if not most proposals to detect nonlinear effects
due to quantum fluctuations in the QED vacuum rely on
experiments involving lasers of ultrahigh intensities [2–7].
These intensities, though, are at least 2 orders of magnitude
below current values. An alternative approach has been
discussed in this paper, based on the theoretical prediction
of an induced electric dipole moment of the neutron, pIND,
in an external quasistatic electric field [9]. The peculiar
features of this dipole moment, particularly its dependence

on the angle between pIND and the neutron spin, suggest
the definition of an asymmetry which could be detected in
the scattering of polarized neutrons from heavy nuclei. We
have introduced this asymmetry and discussed all possible
sources of background asymmetries. We have also com-
pared the new NLQED amplitude with ordinary electric
scattering amplitudes, particularly the one due to the po-
larization of the neutron in an electric field due to its quark
substructure. The conclusion from this detailed analysis is
that the asymmetry due to NLQED should be observable
using epithermal neutrons, and even using thermalized
neutrons from a hot moderator. This would be the first
ever experimental confirmation of nonlinearity in electro-
dynamics due to QED vacuum fluctuations. The numerical
predictions for the asymmetry made in this paper were
calculated using definite values for the parameters R and
a. These were derived from the condition that the electric
and magnetic fields should be below their critical values,
beyond which the weak-field expansion of the effective
Lagrangian breaks down. While the value of the asym-
metry A for small q does not depend on R, it does
depend on a as seen from Eq. (23) Hence, the numerical
results given here should be correct up to a numerical
factor of order one.
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