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We investigate a simple model of a frustrated classical spin chain coupled to adiabatic phonons under an
external magnetic field. A thorough study of the magnetization properties is carried out both numerically and
analytically. We show that already a moderate coupling with the lattice can stabilize a plateau at 1 /3 of the
saturation and discuss the deformation of the underlying lattice in this phase. We also study the transition to
saturation where either a first- or second-order transition can occur, depending on the coupling’s strength.
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I. INTRODUCTION AND MOTIVATION

The study of frustrated spin systems continues to be a
subject of intense research, in particular in low dimensions
where the effect of quantum fluctuations is more dramatic,
leading to fairly rich phase diagrams. On the one hand, one-
dimensional frustrated quantum spin systems are in general
well under control, mainly thanks to the availability of pow-
erful techniques like bosonization1 and density matrix renor-
malization group sDMRGd.2–4 On the other hand, these tech-
niques have unfortunately not been successfully generalized
to the two-dimensional case and there is then a strong need
for the development of useful techniques to analyze these
systems.5

A standard way to study quantum spin systems is to start
from the analysis of the classical slarge Sd limit and then try
to include the effects of quantum fluctuations in a systematic
manner.6 In certain cases, this procedure can lead to a rea-
sonable description of an otherwise intractable problem. Re-
lated to this, the interplay between frustration and classical
phonons has been shown to lead to interesting features, even
for the classical spin system on the pyrochlore lattice,8 like
the stabilization of a magnetization plateau at 1 /2 of satura-
tion. Then, a natural question that arises is whether the clas-
sical limit could be generally a good starting point to tackle
the issue of the interplay between frustration and lattice de-
formations and its incidence on the appearance of magneti-
zation plateaus. In the present paper we analyze this point by
focusing on a one-dimensional J1-J2 model coupled to clas-
sical phonons, where both the quantum and classical situa-
tions can be analyzed and compared. This and related prob-
lems have been studied in the past,9–11 but to the best of our
knowledge, the magnetization properties have not been ana-
lyzed so far.

The quantum version of this model has been studied in a
recent article,12 where it has been shown that the effects of
lattice distortions coupled to a given frustrated quantum spin
system can lead to new phases, in particular to plateaus and
jumps in the magnetization curve. Although plateau phases
are also present in the pure spin system,13 it has been shown
that lattice effects can lead to the enhancement of these
phases under certain circumstances. It is worthwhile men-

tioning that inorganic compounds like CuGeO3 sRef. 14d and
LiV2O5 sRefs. 15 and 16d are well described by the J1-J2
model, rendering its study both theoretically and experimen-
tally relevant. Values for the exchange integrals, such as J1
<160 K and the ratio J2 /J1<0.36, have also been proposed
for copper germanate.17

We shall address the question of whether the effects of
these lattice deformations can already lead to interesting
magnetization properties at the classical level. The main mo-
tivation for the present study is to analyze the origin of such
plateaus in the particular case of a classical zigzag chain.
Although this case is particularly simple and the quantum
model can be treated using bosonization, understanding the
role of lattice deformations for classical spins could lead to a
way to study more involved situations, such as two-dimen-
sional frustrated systems, where analytical techniques are not
as powerful as in one-dimensional frustrated systems as in-
dicated earlier.

Let us consider the J1-J2 frustrated chain coupled to adia-
batic phonons

H =
1

2
Ko

i

di
2 + J1o

i

s1 − Ã1didSi · Si+1

+ J2o
i

Si · Si+2 − Ho
i

Si
z. s1d

In the previous Hamiltonian, we chose to modulate only the
nearest-neighbor sNNd interaction term, and to consider there
is no effect on the next-to-nearest-neighbor sNNNd coupling.
This minimizes the number of parameters in the Hamil-
tonian. We have, however, checked that the inclusion of such
a modulation on the NNN couplings does not belie our main
conclusions.

In the classical system, phonons can be integrated out,18

leading to an extra quartic interaction among the spins. The
effective Hamiltonian, written in units of J1, reads

Heff = o
i
FSi · Si+1 + aSi · Si+2 −

A1
2

2
sSi · Si+1d2G − ho

i

Si
z,

s2d

where the following reduced quantities, a=J2 /J1, A1

=
Ã1

sK/J1d1/2 , and h=H /J1 were defined. Even though one should
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study the effect of the elastic constants K and Ã1 separately,
we will focus on the reduced coupling A1 whenever possible,
reducing the number of parameters to a manageable size.

In Sec. II we study the magnetic phase diagram using
numerical and analytical techniques. We pinpoint a region in
the parameters space where a plateau appears at Mz=1/3
only. This should be contrasted with the quantum model,
which shows in addition a clear Mz=0 plateau in a wide
region of the parameters space, and another at Mz=1/2 in a
narrower region. Looking into the detailed structure of the
ground state at these plateaus, one can understand this dis-
crepancy in the following way: the structure at Mz=1/3 is of
the “up-up-down” sUUDd type, indicating a classical
plateau,20 while in the Mz=0 case the singlet structure can be
identified with a quantum one.

In Sec. III we discuss the transition to saturation, which is
found to be either of first or second order depending on the
ratio between frustration a and effective lattice coupling A1.

II. 1 /3 MAGNETIZATION PLATEAU

Let us analyze the magnetic phase diagram of the model
s2d. In the absence of an external magnetic field and when
A1,Î4a−1, the ground state is a spiral with a pitch angle u
given by cos u=1/ sA1

2−4ad. Its energy is

Espiral =
1

2
cos u − a . s3d

When A1.Î4a−1 the ground state is Néel ordered. The
magnetization curves of this system show interesting fea-
tures, which vary depending on the relation between a and
A1, as we discuss below.

In Fig. 1 we represent Mshd for a fixed value of the frus-
tration a=1/2 and different values of the spin-phonon cou-
pling A1. The data were obtained using classical Monte Carlo
sMCd based on the usual Metropolis algorithm. Starting at
high temperatures we perform several thousands of MC
sweeps, and then cool down the system to a fraction of the

initial temperature. This procedure is then repeated, slowly
annealing the system to zero temperature. We observe that a
steady magnetization plateau at 1 /3 appears as soon as the
coupling to the lattice is slightly turned on, whose length
increases with A1. One can notice that the way the system
enters the plateau from the low-field side and eventually
saturates differs depending on the effective lattice coupling
A1. For A1*0.6 the two are first-order transitions. Another
interesting characteristic seen in Fig. 1 is that all curves rep-
resented sexcept oned cross at the same field h<3.35 for
which M3=Mshd<0.745. We shall discuss this point at the
end of Sec. III. This brief overview suggests that the cou-
pling with the phonons stabilizes the state at Mz=1/3. Since
the plateaus are observed at zero temperature, we can fairly
assume that this effect is energy driven.

After this numerical preamble, it is time to derive some
analytical predictions on the characteristics of the magneti-
zation plateau. For this purpose, we need to find out which
states describe the system in the low- and high-field regions
around Mz=1/3. It is not surprising that in the plateau phase
the system adopts the UUD state, but it will be a crucial
point in our discussion as we shall see later. In this state, the
spins are aligned along the z axis, two up spins alternating
with one down spin which is precisely the structure seen at
the 1/3 plateau in the quantum model.12

The classical MC data indicate that the situation in the
low-field region is more complicated. On the one hand, the
transition to the UUD state can occur at a very low field,
where the system is not far from its zero-field ground state.
Then, there is no small unit cell structure providing a good
description of the system, as the spiral structure still prevails.
On the other hand, when the transition is smooth in the low-
field region, a plausible assumption is to consider that the
system adopts a coplanar “Y” configuration parametrized by
a single angular degree of freedom u ssee Fig. 2d. The unit

FIG. 1. sColor onlined Magnetization curves Mshd for N=30
spins with a=0.5 and A1=0.0, . . . ,0.8 in steps of 0.2. Periodic
boundary conditions are applied on the chain. The system is gradu-
ally cooled to T<0 over 33106 Monte Carlo sweeps.

FIG. 2. sColor onlined Configurations observed in the low-field,
the 1/3 magnetization plateau, and the high-field regions. The chain
is viewed in the xy plane. The arrows denote the projection of Si in
this plane, whereas the circles represent the Sz component: red
sgrayd for Sz.0, yellow slight grayd otherwise, and radius propor-
tional to uSzu. The parametrization of the states is given for each
configuration.
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cell energy for this state reads

EYsud = s1 + adf2 cos uscos u − 1d − 1g

−
A1

2

2
f2 cos2 u + s2 cos2 u − 1d2g − hs2 cos u − 1d .

s4d

This expression can be minimized for any set of the param-
eters h , a, and A1. As the magnetic field increases, the solu-
tion will eventually yield u=0 corresponding to the UUD
state. This configuration is always a solution of ]uEYsud=0,
but it is only a minimum of the energy when h$hY =1+a
−3A1

2. We should emphasize that this discussion only makes
sense whenever hY is positive. For a given value of the mag-
netic field, there can be other solutions satisfying

h = s1 + ads2Î1 − X2 − 1d − A1
2s3 − 4X2dÎ1 − X2, s5d

where X=sin u sassuming cos u.0d. The study of Eq. s5d
boils down to finding the sign of a polynomial expression.
Introducing D=2s1+ad−11A1

2, we can show that when D
$0 there is exactly one more extremum of the energy for
h#hY and that it is always a minimum. This solution be-
comes precisely the UUD state at h=hY. Under these as-
sumptions, we can conclude that the critical field for which
we recover Mz=1/3 from the low field regime is

hc1 = 1 + a − 3A1
2, D $ 0. s6d

This can be compared to our MC results. For instance, the
data for a=0.5 and A1=0.4, which correspond to the solid
pink sgrayd curve in Fig. 1, allow us to obtain a precise
estimate for hc1 at T<0. We get hc1=1.02±0.01. For this set
of parameters, D is positive so that we are ruled by the pre-
vious assumptions. The analytical expression s6d yields hc1
=1.02, which is in excellent agreement with the simulations.

For D,0 there can be up to two extra solutions when h
$hY. As there is always one solution that never turns out to
become UUD for a certain value of the magnetic field, we
ought to perform a detailed comparison of the two solutions’
energies in order to conclude. We shall not step further into
this discussion, which can nevertheless be conducted nu-
merically using the previous analytical expressions. For in-
stance, we performed it when a=1/2 , A1=0.6, leading to
hc1<0.46. This is in good agreement with the MC data
which gives hc1<0.47±0.01 sthe dotted curve in Fig. 1d. It
can be understood from the previous discussion that hY is
always a lower boundary of the critical field

hc1 $ 1 + a − 3A1
2, D , 0. s7d

If we increase A1 while keeping a fixed, hY eventually
becomes negative sas is the case for A1=0.8; dash-dotted
curve in Fig. 1d and we can generally not conclude using this
small unit cell configuration. The reader should keep in mind
that the regime where A1 becomes large is not well described
by our initial Hamiltonian s1d since in that case one should
include the effects of the lattice also in the NNN interactions.

We shall now focus on the state observed in the high-field
region to find the corresponding upper critical field hc2 above
which the plateau disappears. By comparing hc1 to hc2, we

should be able to conclude on the existence of the 1/3 mag-
netization plateau. In the upper critical region, the situation is
far more under control. The system can be seen to be well
described by a three-spin coplanar “canted” configuration
with two degrees of freedom ssee Fig. 2d. The energy of such
a configuration is given by

Ecantedsu1,u2d = s1 + adf1 − 2Usu1,u2dg −
A1

2

2
f1 + 2Usu1,u2d2g

− hs2 cos u1 − cos u2d , s8d

where Usu1 ,u2d=sin u1 sin u2+cos u1 cos u2.
The configuration UUD, which corresponds to u1=u2=0,

is always a critical point of the function Ecantedsu1 ,u2d. A
closer look at the second-order derivatives with respect to u1
and u2 shows that it is a local minimum only for 0#h#1
+a+A1

2. The other critical points satisfy the following set of
equations:

Y = 2X , s9d

h = f1 + a + A1
2s2X2 + Î1 − X2Î1 − 4X2s1s2dg

3s2Î1 − X2 − Î1 − 4X2s1s2d , s10d

where

sin u1 = X, cos u1 = s1
Îs1 − X2d , s11d

sin u2 = Y, cos u2 = s2
Îs1 − Y2d . s12d

The quantities s1 ,s2= ±1 account for all the possible signs
of both cosines. We see from Eq. s9d that there is a strong
constraint on su1 ,u2d verified regardless of the values of the
couplings. At h=1+a+A1

2, Eq. s10d admits only one solution
which turns out to be UUD. For a larger value of h, UUD can
no longer be a critical point, which implies

hc2 = 1 + a + A1
2, s13d

corresponding to the exit of the plateau in the high-field re-
gion. From this discussion it can be concluded that whenever
our assumptions are correct, there is a plateau at Mz=1/3 of
length Dh1/3=4A1

2 starting at hc1. This result has been
checked to be consistent with the MC computations and the
analytical value of hc2 matches the value estimated from all
the curves in Fig. 1.

There is one more question we need to address: for which
set of parameters sA1 ,ad can we observe this plateau? Under
the previous assumptions regarding the states observed in the
low- and high-field regions, we can conclude it exists for any
A1.0. Yet the system cannot be described in such a manner
for all values of a and A1. Working at a fixed lattice coupling
A1=0.3, we were able to obtain some magnetization curves
varying the frustration a. Some of those curves are plotted in
Fig. 3, which clearly shows that there is only a narrow region
in a where the plateau is observed. A precise answer to the
previous question is rather challenging, and we shall first try
to discuss this point in a more qualitative manner before
adopting a more precise strategy. At Mz=1/3, we can of
course expect to see many different configurations, depend-
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ing on the values of the couplings. However, the MC simu-
lations suggest that the plateau always corresponds to the
UUD configuration. This state is perfectly collinear, mini-
mizing the quartic contribution to the effective Hamiltonian
s2d. For instance, it can be seen numerically that for a
=1/2 with no coupling to the lattice, the system reaches 1/3
magnetization in the UUD configuration. Even a small posi-
tive value of A1 will then stabilize the UUD state enough for
it to be stable when the field is slightly increased. On the
opposite, if one antiferromagnetic coupling dominates the
other, the system will be in a different state at Mz=1/3. In
the extreme case where a<0 for instance, the system will
favor Néel order in the xy plane, each spin having the same
z-axis projection Sz=1/3. This layout already trades off some
collinearity in favor of magnetic field alignment. There is no
surprise that this trade-off will be further enhanced as the
magnetic field is increased, so that no plateau should be ob-
served.

A more accurate way to tackle this issue is to start from
the h=0 spiral ground state and ponder over the state
adopted by the system when the magnetic field increases. We
have already performed part of this task earlier, suggesting
that the system slowly moves to a “Y” configuration, whose
out-of-plane components make it a “precursor” of the UUD
configuration. Another plausible solution is that the spins,
while keeping their spiral structure in the xy plane, all ac-
quire the same Sz projection. In this case, the nth spin reads

Sn = „
Î1 − z2 cossnud,Î1 − z2 sinsnud,z… , s14d

with cos u=1/ sA1
2−4ad. The energy per site

Eszszd = z2 + s1 − z2dcos u + afz2 + s1 − z2dcos 2ug

−
A1

2

2
fz2 + s1 − z2dcos ug2 − hz s15d

can be minimized with respect to z to find the lowest energy
configuration at a given magnetic field. Our idea is to per-
form this minimization at h=hc1, and to see if the corre-

sponding configuration is of lower energy than UUD at the
same field. If so, the system will not enter the plateau at hc1,
and of course, as mentioned in the previous paragraph, no
plateau should be observed. For a fixed value of A1, we can
determine the range in a leading to UUD at hc1. The roots of
the polynomial equation are evaluated numerically, from
which we sketch the phase diagram represented in Fig. 4.
This approach only makes sense when we have a precise
value for hc1, which we saw is the case if A1 is not too large
sA1&0.5 from the MC datad. We notice that the diagram is in
agreement with the situation depicted in Fig. 3, as well as the
one in Fig. 1, when A1 is not too large. The most remarkable
feature is that for an arbitrarily small, yet strictly positive A1,
one can find a value of a for which the plateau phase is
observed.

The effect of temperature on the magnetization plateau is
potentially important as an “order by disorder” effect19 could
further stabilize the plateau. We investigated this point by
performing our MC simulations at different temperatures,
without annealing the system. A sample is given in Fig. 5,
and in general we observed no remarkable features. The in-
creasing thermal fluctuations quickly destroy the plateau. We
should also mention that we observed no strong finite-size
effects in the numerical simulations, which is why we were
always able to work on systems with less than a hundred
spins.

We conclude this section by focusing on the lattice defor-
mations. Until now, we studied the effective spin-only
Hamiltonian s2d which embodies the straightforward analyti-
cal approach to the problem. It is, however, important to get
more insight on the structure of the lattice deformation inside
the plateau phase. For that matter, we modified our MC al-
gorithm to take into account the lattice degrees of freedom as
well. Starting from the Hamiltonian s1d, we used the Me-
tropolis algorithm for both the spin positions and orienta-

FIG. 3. sColor onlined Magnetization curves Mshd for N=30
spins with A1=0.3 and a=0.0,0.4,0.6,0.8. Periodic boundary con-
ditions are applied on the chain. The system is gradually cooled to
T<0 over 33106 Monte Carlo sweeps.

FIG. 4. sColor onlined Qualitative sA1 ,ad phase diagram. The
filled area between the two full curves corresponds to the region of
the parameters space where the Mz=1/3 plateau is observed. The
hatched region between the two dashed curves is the region of the
parameters space for which our approach is no longer observed to
be fully valid. Also represented, the limit between Néel and spiral
ground states at h=0 sdash-dotted lined and the region where 1
+a−3A1

2,0 sdotted lined.
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tions, applying periodic boundary conditions on the chain.
We studied the normalized histograms of the displacements
di at finite temperature. We fixed a=0.4 and A1=0.3, the
same values used in Fig. 5 to allow a direct comparison
between the two figures, and selected the magnetic field so
that the system is at Mz<1/3. Besides the value of A1

= Ã1 /ÎK, we need to give K, the spring constant in Eq. s1d, a
sensible value. We took K=103J1, large enough to make sure

the displacements remain small. This corresponds to Ã1
<9.5. We mention that both K and A1 are of the same order
of magnitude as the one for a more complex two-
dimensional material such as SrCu2sBO3d2 sRef. 7d and that
they can be considered at least as “realistic” for copper ger-
manate or lithium vanadate.21 The results are given in Fig. 6.

We see that the lattice deformations are not uniform and
that their histogram presents two peaks at T=0.01J1. They

are centered around a negative and positive value of the dis-
placement di. This suggests that the underlying deformation
consists of up-down-up sUDUd trimers on the chain. Let us
introduce d+ the displacement between two consecutive tri-
mers and d− the displacement between the down spin and its
two nearest neighbors inside the trimer. The energy of this
unit cell is given by

E = 3Kd−
2 + 4J1Ã1d− − J1 + J2 − H , s16d

where the periodic boundary conditions imply d+=−2d−.
Minimizing the energy, the deformation should become

d+ = − 2d− =
4Ã1J1

3K
s17d

at T=0 K. Going back to Fig. 6, at T=0.01J1 the distribution
clearly exhibits two peaks and we can see that they are al-
most centered around d+ and d−, respectively. The ratio be-
tween the height of the two peaks is about 2, a consequence
of the fact there are twice as many up spins than down spins
in the UUD state. Those results seem to validate the trimer
scenario at low temperature. When the temperature increases
to T=0.04J1, the peaks start to overlap, betraying the gradual
destruction of the plateau already seen in Fig. 6. Finally at
T=0.08J1, we end up with a single peaked almost-Gaussian
distribution: the plateau eventually disappeared. We end up
by stating that the expectation value of the displacement is
always zero as the periodic boundary conditions applied en-
sure the length of the chain remains fixed throughout the
simulation.

III. TRANSITION TO SATURATION

The study of the upper critical magnetic field yields an-
other interesting result: we can get a precise picture of how
the system eventually reaches saturation. This result can be
foreseen using classical MC, which shows that the canted
state describes the system quite well even for h.hc2. A close
look at Fig. 1 shows that two different behaviors of the mag-
netization between hc2 and the saturation value are observed.
For different values of spin-phonon coupling, the system can
undergo a first- or second-order transition to reach saturation.
We are going to demonstrate that this result can be derived
from energetic considerations on the canted state. From Eq.
s8d, we see that the saturated state, reached for u1=0 and
u2=p, minimizes the energy for a magnetic field greater than
hc3=3s1+a−A1

2d. This imposes a lower boundary on the
saturation field hU. We assume that the couplings A1 and a
are such that hc2,hc3, a situation where the previous discus-
sion on the existence of the 1/3 magnetization plateau still
holds. To be consistent with the state of system for h.hc2,
we set s1=1 and let s2=−s take the values ±1 so as to be
able to move from UUD to saturation continuously. At a
given magnetic field, one can obtain the corresponding criti-
cal configurations by finding the roots of Eq. s10d. This task
reduces to the study of the two functions hs;

hssXd = f1 + a + A1
2s2X2 − Î1 − X2Î1 − 4X2sdg

3 s2Î1 − X2 + Î1 − 4X2sd . s18d

FIG. 5. sColor onlined Magnetization curves Mshd for N=30
spins with A1=0.3 and a=0.4 around Mz=1/3 for different tem-
peratures T=0,0.04,0.08 in units of J1. Averages are computed on
222 sweeps through the lattice after an initial 218 sweeps of thermal-
ization. Increasing the temperature quickly destroys the plateau ob-
served at Mz=1/3.

FIG. 6. sColor onlined Normalized lattice displacement histo-
grams for N=30 spins with a=0.5, A1=0.4 sK=103J1d, and h
=1.5 at different temperatures. 300 points were used in the interval
f−0.1,0.1g. The two dotted vertical lines correspond to the T=0
limit calculated in the text. The data were obtained using a direct
classical Monte Carlo for the Hamiltonian s1d.

INFLUENCE OF LATTICE DISTORTIONS IN¼ PHYSICAL REVIEW B 74, 014428 s2006d

014428-5



Their roots can be determined graphically for a fixed field
h0 as they are the values of X for which the line h=h0 inter-
sects hssXd. The “low magnetization” function h− will give
us solutions with one spin still pointing down, whereas the
“high magnetization” function h+ will give us states where
all the spins have a positive Sz component. Figure 7 is a plot
of both functions for two sets of values a ,A1. In both cases,
the curves for h+ and h− join at hc4=Î3s1+a+A1 /2d sdots as
shown in Fig. 7d. For this value of the magnetic field, the
root of hs corresponds to a configuration in which one of the
three spins lies precisely in the xy plane. Two possible be-
haviors are observed. For instance, when a=A1=0.5 fwhich
corresponds to the green sdark grayd curves in Fig. 7g, we see
that for a fixed magnetic field hP fhc2 ,hc3g there is only one
critical point of the energy, which can be shown to be a
minimum. We are able to follow easily the state of system as
the magnetic field increases. The two up-spins first slightly
tilt to let the down-spin reach the xy plane and then they all
progressively align along the z axis while still satisfying Eq.
s9d. The three-spin unit cell configuration smoothly goes
from UUD to saturation.

For A1=0.8 sblack curves as shown in Fig. 7d, the “high
magnetization” function h+ ssolid black curve as shown in
Fig. 7d presents a maximum. In this case, three states are
potentially competing for h between hc3 and its maximum
value: the saturated state and the two roots of h+. We ought
to compare their energies to conclude, but it is not surprising
that the outcome can be a first-order transition to saturation.
We numerically solved the analytical equations involved to
get the magnetization curve from the exit of the plateau to
saturation for A1=0.8. The saturation field we obtain is hU
<3.17063, for which the system jumps from Mz<0.58434
to saturation. The comparison between this minimization and
the MC data is given in Fig. 8 and shows the excellent agree-
ment achieved.

A more in-depth study of the hs functions’ extrema allows
us to work out the range in sa ,A1d for which the transition to
saturation is of first or second order. The former, which are

related to the existence of a nontrivial maximum in h+, occur
only if 1# s1+ad /A1

2#
11
2 in agreement with our numerical

observations.
Finally, it can be pointed out from Eq. s18d that for X

=1/Î5, the function h+ no longer depends on the coupling
A1. This state sif reachedd will be the minimum of the canted
configuration energy for a magnetic field

h3 =
5
Î5

s1 + ad . s19d

At this field the magnetization is Mz=M3=5/ s3Î5d. This
explains why for our selection of parameters, all the curves
except one in Fig. 1 cross at a field whose estimate, given in
Sec. II, coincides with h3. Regardless of the value of A1, if
the system is not saturated at h3, then its magnetization will
always be M3.

IV. SUMMARY AND CONCLUSION

The effect of lattice deformations at the classical level in
a frustrated spin system has been illustrated working on a
simple J1-J2 spin chain coupled to adiabatic phonons. We
provide an overall picture of the magnetization properties for
a large set of the parameters a ,A1 introduced in our model.
We have found that a plateau at Mz=1/3 is present in a
certain region of the parameter space, while no other plateaus
are observed. Frustration is a necessary ingredient, as the
plateaus can only arise when the zero-field ground state is a
spiral. The other ingredient, the coupling to lattice deforma-
tions, is such that for an arbitrarily small, yet strictly positive
A1, one can find a value of a for which the plateau phase is
beheld. Further increasing A1 will broaden the region in the
parameter space for which the plateau occurs, until the effec-
tive coupling is no longer mild enough for our analytical
approach to be valid, even if a numerical approach is still
achievable. It should be emphasized that the stabilization
mechanism is purely energy driven and triggered by the
quartic interaction induced by the lattice coupling in the ef-
fective Hamiltonian s2d. The underlying lattice deformation

FIG. 7. sColor onlined Low magnetization sdashedd and high
magnetization ssolidd curves as functions of X=sin u1 for a=0.5,
A1=0.5 in green sdark grayd, and a=0.5, A1=0.8 sblackd. The typi-
cal shape of the minima’s unit cell along the green curves are de-
picted in the different magnetic field regions. The intersections
scrossesd with the horizontal line h=h0 in red sgrayd gives the com-
peting critical point at this magnetic field. The colored dots corre-
spond to the minimal configuration with one spin in the xy plane.

FIG. 8. sColor onlined Upper region of the magnetization curve
for a=0.5 and A1=0.8 at T=0. The full line represents the results
obtained using the analytical minimization of the canted state en-
ergy. Crosses represent the data obtained by Monte Carlo.
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shows the chain is made of UDU trimers inside the plateau
phase.

The absence of plateaus at Mz=0 and Mz=1/2 in the
classical model as compared to the quantum case can be
understood by analyzing the ground-state structure of the
plateaus in the quantum case. It is only for Mz=1/3 that one
observes a classical type of spin configuration, of the UUD
type, while in the other cases a quantum state is apparent.
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