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Interfaces with a single growth inhomogeneity and anchored boundaries
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The dynamics of a one-dimensional growth model involving attachment and detachment of particles is
studied in the presence of a localized growth inhomogeneity along with anchored boundary conditions. At large
times, the latter enforce an equilibrium stationary regime which allows for an exact calculation of roughening
exponents. The stochastic evolution is related to a spin Hamiltonian whose spectrum gap embodies the dy-
namic scaling exponent of late stages. For vanishing gaps the interface can exhibit a slow morphological
transition followed by a change of scaling regimes which are studied numerically. Instead, a faceting dynamics

arises for gapful situations.
DOI: 10.1103/PhysRevE.68.041603

I. INTRODUCTION

After two decades of investigations the dynamics of
growing interfaces continues to be a subject of enormous
interest, providing a framework to compare experiments,
simulations, and theory, let alone the wide range of applica-
tions encountered [1]. Despite the vast diversity of mor-
phologies in which growing surfaces can evolve, most nu-
merical analysis and theoretical studies pointed out the onset
of scaling regimes emerging at both large time and length
scales. This enabled a classification of apparently dissimilar
processes in terms of universality classes characterized by a
set of scaling exponents which dominate the late evolution
stages [1,2].

A common feature associated with these processes is the
emergence of rather slow temporal crossovers in which the
early dynamics exhibits quite different roughening character-
istics from those observed in the asymptotic limit [3]. The
presence of growth rate inhomogeneities or growth defects
localized within small spatial regions of the substrate plane
(columnar defects) is one of the simplest mechanisms
whereby such crossovers can be observed [1,4]. Another pos-
sibility is realized by anchoring conditions through which
nonequilibrium fluctuations are completely suppressed at the
interface boundaries [5]. The main interest in those situations
is in the morphological phase transitions that may occur at
large times. In this work we investigate the change of scaling
regimes accompanying these transitions by means of a pro-
totype restricted solid on solid (RSOS) growth model [6,7]
combining both of these mechanisms in one dimension. As
we shall see, anchored boundaries are essential for the ap-
pearance of equilibrium regimes which in turn allow for a
simple calculation of roughening exponents at late stages.

Morphological transitions in confined geometries actually
occur in flexible manifolds characterizing physical phenom-
ena as diverse as the unbinding of a directed polymer from a
wall [8], and the depinning of a flux line from a dislocation
in a type II superconductor [9]. At the phenomenological
level of the Kardar-Parisi-Zhang equation [10], thoroughly
studied in the continuum theory of kinetic roughening, large
scale morphology changes can be accounted for by assuming
a growth velocity that is a symmetric function of the local
inclination of the interface [4], so the latter can increase its
growth rate by adopting a nonvanishing tilt. Therefore, a
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macroscopic hill can emerge in response to a sufficiently
large growth rate inhomogeneity as this morphology grows
faster than the planar interface, in turn allowing the system to
accommodate the external bias [1]. Here, we show that a
similar scenario may also arise under equilibrium and near
equilibrium conditions dominated by unusual scaling re-
gimes.

In studying the latter it is useful to consider the mean
square fluctuations of the average interface height /()
which yields a measure of the interface width

1

WAL= T 2 ([ha()=h(OF), (1

where the brackets denote an ensemble average over all pos-
sible evolutions of heights {%,} forming the interface at time
t, which grows on a substrate of size L. On general grounds
it can be argued that W scales as [11]

W(L,t)=Lf(¢t/L?), (2)

where the scaling function f(c¢) satisfies

= for c<l,

c>1.

Cc

fle)~ 3)

const for

Hence, it follows that finite systems saturate as WL,
whereas in the thermodynamic limit the asymptotic growth is
ruled by the exponent 8= (/z, that is, WotP. The exponent
{ describes the roughness dependence of the interface width
on the typical substrate size. In turn the exponent z, often
known as the dynamic exponent, gives the fundamental scal-
ing between length and time.

In practice, Eqs. (2) and (3) yield a standard procedure
which is often followed to extract and corroborate scaling
exponents predicted by other approaches and certainly we
will make use of this hypothesis as well. However, due to the
presence of the crossovers referred to above, a complemen-
tary procedure would be needed if the former becomes ex-
ceptionally slow. To this aim, we will also exploit the known
equivalence between the RSOS growth models already men-
tioned and a one-dimensional gas of hard-core particles un-
dergoing an asymmetric exclusion process [1,6,7] (see Fig.
1). The idea is to cast the evolution operator of the associated
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FIG. 1. Schematic representation of monomer deposition-
evaporation onto a RSOS interface with anchored boundaries at
hy=h; . The equivalent spin-% (s,=h,+,—h,) or hard-core par-
ticle dynamics involves a left (right) particle hopping with rate e
(€") for monomer adsorption (desorption). The corresponding rates
for the inhomogeneity at /i, are €, and €.

master equation of this latter process [12] into a suitable
quantum spin representation [13,14] lending itself more
readily for a finite size scaling analysis. Since the dynamic
exponent z of Eq. (2) is ultimately embodied in the gap be-
havior of the evolution operator (or spin “Hamiltonian’), the
study of its lower spectrum can then provide information of
the late evolution stages in a more direct manner. Evidently,
this methodology along with the evaluation of the roughen-
ing exponent {—simplified greatly by the anchoring bound-
ary conditions—circumvents the problem of arbitrarily long
transient regimes though on the other hand is limited se-
verely by the affordable system sizes. 4 posteriori, it will
turn out that already modest lengths can yield clear finite size
trends. This strategy will be explained in Sec. II and its re-
sults compared with those of standard techniques given in
Sec. III. We end the paper with Sec. IV which contains our
conclusions, along with some remarks on extensions of this
work.

II. SPIN REPRESENTATION

Let us consider the dynamics of lattice aggregation mod-
els with no overhangs, including both adsorption and desorp-
tion of monomers at random locations of a one-dimensional
interface [6,7], such as that described in Fig. 1. As usual, on
a coarse grained level of description the state of a surface at
a given time is represented by a set of single-valued func-
tions 4,(¢) measuring the surface heights at positions 1<n
<L+ 1 of the growth substrate. As it was mentioned above,
we are interested in boundary conditions that suppress com-
pletely height fluctuations at n=1 and L+ 1 for all times,
i.e., the interface is anchored at the boundaries. For simplic-
ity, we study the case where L is even and h,=h; |,
whereas deposition and evaporation rates €, €' are taken
uniformly throughout the system except on site L/2+1
where these probability values are respectively €,€e,. To
prevent the divergence of interface fluctuations in the bulk,
we impose a RSOS constraint, namely, |4, ,,—k,|=1, V
n,t. Specifically, growth (evaporation) events h,—h,+2,
[h,—h,—2],withn=2,..., L, occur only at local minima
(maxima) of the evolving interface. These basic processes
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FIG. 2. Possible evolution scenarios. Typical snapshots for L
=10° using €'/e=1 with €)/€,=0.5 after r=10° steps per height
(left); €'/e=¢€y/€;=0.5 at t=500 (center); and €'/e=0.5 with
€y/€y=>5 at t=500 (right). For e#€’, fluctuations are progres-
sively reduced on their way to the pile configuration denoted by
dotted lines with slopes *1.

and their transition rates are schematized in Fig. 1. In turn,
the typical configurations resulting from these rules at large
times are displayed by the snapshots of Fig. 2.

It is often convenient to consider the interface slope rather
than the height, so hereafter we will exploit the known map-
ping between RSOS interface dynamics and quantum spin-3
systems. This correspondence can be easily visualized in the
scheme of Fig. 1. Associating the height difference s,
=h,.1—h, to an eigenvalue of the z component, say, of the

Pauli operator 5,, for site n, all relevant quantities of the
interface, such as its width and height-height correlations,
can be casted in terms of 3-spinors. By construction, it is
clear that the interface heights (relative to /) are obtained as
han;’; llsj for n=2,...,L+1. Therefore, the anchoring
condition /#;=h; ,, imposes the vanishing of the total mag-
netization throughout the underlying spin kinetics.

As is well known, the probability distribution of such
Markov processes is controlled by a master equation [12]

9,P(s,t)= >, [R(s'—s)P(s',t)—R(s—s")P(s,0)],
' )

whose transition probability rates R(s—s') e{€,€’,€;,€}
now denote the (biased) spin exchanges at which a generic
configuration |s)=|s,...,s;) evolves to |s’) through a
single exchange of two consecutive spins. Starting from a
given probability distribution |P(0))=3 P(s,0)|s), Eq. (4)
can be conveniently thought of as a Schrodinger-like repre-
sentation in which the ensemble averaged state vector | P(¢))
(playing the role of wave function) can be evaluated at sub-
sequent times from the action of an evolution operator (or
Hamiltonian) on the initial state, namely, |P(?))
=e M| P(0)) [13]. The specific form of H can be readily
obtained by introducing spin-5 raising and lowering opera-
tors 0,0, along with spin occupation fields n=c "o . It
is then straightforward to show that the stochastic dynamics
of Eq.(4) is accounted for by the operator

L—1

_ + - r _+ —
H= zl (Eno-n o-n+1+ €,0,410, )
n=

L—1
+Zl [Enﬁn+l(l_ﬁn)+6r’1ﬁn(1_ﬁn+l)]) (5)
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where €, , €, are shorthands denoting, respectively,

! f L
€, € or n= -,
€,,€ = 0 2 (6)

ns>*n

e, e’ otherwise,

while the anchoring condition 4, =/, ; confines the dynam-

ics within the subspace X,n,=L/2. The biased hopping
terms of Eq. (5) clearly describe the original growth-
desorption events (see Fig. 1), while conservation of prob-
ability requires in turn the appearance of the remaining (di-
agonal) particle-vacancy correlators. We address the reader
to Ref. [14] for a more detailed derivation in related systems.

A. Detailed balance

Before continuing with an alternative spin representation
more suitable to study dynamical aspects at large times, we
pause and consider the steady state (SS) of Eq. (5) along
with its implications on the interface character.

Given two spin configurations |s)=|...,s,,=5,,...),
[s"y=|...,=5,,5,,...), differing at most in the state of
two neighboring n,n+1 locations, evidently detailed bal-
ance probabilities in Eq. (4) will hold provided that

P(s)e,=P(s')e, if (s'|H|s)=—¢€,,

P(s)e,=P(s')e. if (s'|H|s)=—¢,. (7)

n

This can be readily satisfied defining a hard-core particle
(up-spin) potential

’ ’
€ €€

n €
V(n)= 2 ln( —I,) =nln
Jj=1 €

— | +1In O(n—L/7"2),
(8)

through which the equilibrium distribution is simply ob-
tained as

P(S],... . (9)

»S1) % exp—

%E V(n)(1+s,)

When e=¢€’, these probabilities further enable us to con-
struct the partition function (normalization constant), height
profiles (spin densities), as well as the spin correlation func-
tions needed to derive the equilibrium interface width. For
€# €' a rather involved recursive relation in the particle
number can be obtained for all these quantities, but its ana-
lytic solution is not reachable by standard means [15]. How-
ever, this case does not yield a rough interface as statistical
fluctuations become exponentially suppressed in time (see
Sec. III B).

If e= €', the step function potential (8) permits to divide
the system into two independent regions [1,L/2], [L/2
+1,L] with (51/2) configurations having L/2—m and m par-
ticles, respectively (0=m=L/2). Hence, the partition func-
tion normalizing the above SS distribution is given by
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2

L2
zZ=> , (10)
m=0

SE R
~
3

where r=¢€)/€,. Using analogous arguments, we can also
obtain the reduced partition function Z; which arises from
the occupation of a given site 7, and evaluate the spin density
(03)=2Z;/Z—1. This results in

(L2-1 (L L
——1 _ L
> |2 2 | for i< =,
m=0 2
m m
Zi:{
L2—1 L L—l
> 2 2 Pt otherwise,
L "7 \m+1 m

(11

which implies an equilibrium shock profile stemming en-
tirely from the inhomogeneous potential (8) at finite particle
densities. In particular, for L—co the analysis of Egs. (10)
and (11) yields the following discontinuity:

O g 2

Thus, in the height representation, so long as €;/€,<1
(>1) Eq. (12) entails the sideways growth of a hill (valley)
whose sides at large times are tilted by an amount of *=(s)
relative to the substrate. Though anchoring conditions were
used throughout, tilted profiles are also observable in non-
equilibrium systems such as those considered in Ref. [4] us-
ing periodic boundary conditions.

To determine whether this morphology is actually rough,
we focus attention on the equilibrium height fluctuations &,
=(h*)—(h,)*. Consequently, first we evaluate the spin-spin
correlations involved in (h2)=(n—1)+ 23, ey i{0i07).
Thus, once more we recur to the combinatorial reasoning and
calculate the reduced partition functions Z; ; resulting from
the occupation of two specific sites 7,j. After some elemen-
tary steps we obtain

(%) =[1-20(n—L/2))(s),

Li2-2 L_2 L
2 2 2| fori<j<—,
m=0 m m
L2-2 [ L . L .
7= Z 2 2 pmtl for i< 5</,
m=0
m+1 m
L2-2 L L )
2 2 rm*+2  otherwise,
=0\ m+2 m
(13)

from which the required spin correlations are computed as
(0705)=4Z; ;/Z—((o7)+(0;)+1). In the large size limit
the analysis of Egs. (10), (11), and (13) ultimately yields a
rough interface (see leftmost snapshot of Fig. 2), whose
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FIG. 3. Equilibrium interface width for e/€’=1. Upper and
lower dashed curves denote, respectively, the cases €;/€y=0 and 1,
whereas solid lines going downwards stand for €y/€,=0.1, 0.3, 0.5,
and 0.7.

height fluctuations (canceled at the boundaries), result dis-
tributed as 8,<(n—1)[1—(n—1)/L]. This simple form is
in contrast with that observed in nonequilibrium SS of an-
chored self-organized interfaces in which fluctuations in the
upper part of the hill are substantially reduced [5].

The above correlations can also characterize the satura-
tion width referred to in Sec. I. Specifically, in the spin rep-
resentation it can be easily checked that /7> may be rewritten
as

2

2
WA(L)= t5 Z, i(L=j)oio).  (14)

In Fig. 3 we display the size dependence of W for several
values of €)/€,. It turns out that the roughness exponent ¢
bears the discontinuous character of Egs. (11) and (13). More
precisely,

1 if € Fe,

= 15
¢ 12 if e;j=¢. (15)

Often, a value of {=1 is special because it signals that the
assumption of a well defined average orientation of the in-
terface (parallel to the substrate plane) becomes inconsistent.
Certainly, this is in line with the tilt obtained in Eq. (12). For
€,= € the conventional roughening is recovered; here the
tilt vanishes and the orientational fluctuations at large scales
estimated, for example, as W(L,t—)/L, decrease with L.
We shall revisit this point later on in Sec. III A.

B. Self-adjoint representation

As is known [12], detailed balance guarantees the exis-
tence of a representation in which the evolution operator (5)
is self-adjoint. Although an exact solution of the (real) H
spectrum in the thermodynamic limit seems unlikely irre-
spective of its representation, at least a self-adjoint descrip-
tion can facilitate the numerical analysis of a finite size scal-
ing approach. Specifically, one can readily find a similarity
transformation to map Eq. (5) into a Hermitian matrix, and
thereafter obtain the lower eigenmodes dominating the
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asymptotic kinetics via recursion-type algorithms, e.g., the
Lanczos technique [16], appropriate to study fair system
sizes.

To this aim and with the aid of the particle potential in-
troduced in Eq. (8), we rotate the above operator around the
z spin direction using a pure imaginary site dependent argu-
ment ¢(n),

o(n)=3V(n). (16)

This rotation is produced by the nonunitary similarity trans-
formation U=e "5 with §=1 2, ¢(n)o;,, which in turn re-
sults in the direct product

o VAV (n) 0

U=®I’1Un5Un= (17)

0 RO

While the diagonal terms of Eq. (5) remain unaltered by U, it
is straightforward to show that
U,o, U, '=eTi¢Mg= (18)
From this latter transformation, one can immediately verify
that the rotated (self-adjoint) operator H=UHU ' becomes

an open XXZ ferromagnet with a defect coupling under /ocal
magnetic fields, namely,

L—1

1
H==75 > Jlotoy ol +A (oo —1)]

nl

—h(oi—07) = (ho=h) (07~ 071 1), (19)
where
Jy=Ve,e,
A,=(e,+€)/\J4e,e!,
ho=(€y—€))/4, (20)
h=(e—€')/4,

with €,, €, taken as in Eq. (6). Thus, we are left with a
diagonalization problem which, to some extent, is now con-
trollable by standard recursive techniques (Sec. III).

For the sake of completeness it is worth pointing out that
the similarity transformation (17) also enables us to obtain
the SS distribution (9). In fact, exploiting that H is a stochas-

tic operator, we can express its left SS (| as an equally

weighted sum of all accessible configurations [12], i.e., (&

|=(0IZ,, . ..,,0u 0, . where (0| denotes the ferro-

magnetic down-spin state. Hence, by construction |)
=U""|¢) is a (unnormalized) ground state of 7, and there-
fore the SS distribution in the initial H representation is con-
structed as

041603-4
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- - + +
e V(nl). ..e V(nL/Z)O' e a'nL/2|0>’

21

thus recovering the equilibrium distribution (9).
Returning to the dynamics, the average value of a diago-

nal quantity W—such as the “width operator” involved in
Eq. (14)—varies according to {J|We ™ #!|P(0)) [14]. Since
W is invariant under U, it is a simple matter to check that in
the self-adjoint representation (JV) reads

W

(| UIP(0)),
(22)

ML, = (oW o)+ 2 e iy

A>0

where {| )} is a complete orthonormal set of eigenstates of
H (all with N\=0). As expected, the role of initial conditions
becomes irrelevant near the equilibrium regime. If the spec-
trum gap vanishes in the thermodynamic limit, the width
approach to equilibrium will involve arbitrarily large times
for sufficiently large systems. In those situations, finite size
scaling analyses of the first excited levels \; would then
provide the dynamic z-exponent ruling over the late rough-
ening stages referred to in Sec. I.

A distinctive feature arises when all components of the
total angular momentum SI%En&n are preserved by H,
namely, for e=¢€’ and €,= ¢, . Since W just involves opera-
tors of the form oo’ [see Eq. (14)], then rather restrictive
selection rules hold for its matrix elements in Eq. (22). Spe-
cifically, given that {|#,)} can be classified according to the
total spin S [S’=S(S+1)], the nonvanishing contributions
to Eq. (22) come only from states |,) having S=L/2—1
and L/2—2 [17]. What should be emphasized here is that as
soon as [H,S]#0 the effective density of states, partly re-
sponsible for the temporal asymptotic behavior of Eq. (22)
when L—o0, is drastically modified as these selection rules
no longer apply. We will come back to this issue within the
numerical context of Sec. Il A.

III. NUMERICAL RESULTS

To explore the dynamical consequences of these argu-
ments we have carried out Monte Carlo simulations as well
as finite size scaling analyses of the RSOS model referred to
above, for a variety of situations. First we focus attention on
the subcase e=¢€’ where the roles of €, and €, are clearly
interchangeable, so we restrict the analysis to, say, €)/¢€
=<1. In this situation the interface actually roughens and ex-
hibits two different scaling regimes accompanying a large
scale morphological transition. The discussion of different
bulk probability rates is addressed at the second part of the
section. It will turn out there that fluctuations decay very
rapidly and prevent the roughening of anchored interfaces at
large times. Instead, a faceting dynamics will emerge regard-
less of the inhomogeneity growth rates.
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FIG. 4. Growth of interface width for e€/€’=1 using €;/¢€,
=0.5 (circles) and €)/€,=0.8 (squares showing an incipient
asymptotic deviation) for L= 10* averaged over 200 histories. The
carly and late slopes of dashed lines are, respectively, 8= 1/4 and
1/2. The inset displays the height profile evolution for €;/€,=0.5
averaged over 2000 histories with L=1000, at ¢=1.5x10%
6x10% 2x10°, and 10° [the dotted line at the top following
closely the tilt s of Eq. (12)].

A. e=¢€'

Starting from an initially flat configuration we studied the
evolution of the interface width and monitored the height
profiles at different growth stages. Figure 4 displays the
width behavior obtained for €)/€,=0.5 and 0.8. The rather
slow crossover (particularly for 0.8, where it is only incipi-
ent) deterred us from using larger substrates, though prelimi-
nary simulations averaged over few evolution samples indi-
cated similar trends. The early growing stages support a
power law growth Wot? extended over more than four de-
cades with an exponent 8==1/4. This typical diffusive behav-
ior is accompanied initially by a height profile which is al-
most parallel to the substrate, except in the neighborhood of
the growth inhomogeneity. As is shown in the inset of Fig. 4,
on approaching the asymptopia however, the slopes of the
hillsides steepen until they reach the equilibrium tilt alluded
to in Eq. (12). This progressive orientation departure signals
a large scale morphological transition which in turn is also
reflected in the increase of the growth exponent. In the late
dynamic stages, this can be well fitted by a value of S
=1/2 for nearly two decades.

An alternative determination of this rather peculiar value
[18] can be implemented by resorting to the phenomenologi-
cal scaling assumption referred to in Eq. (2) along with the
findings and arguments of Sec. II. Notice that this provides
two independent numerical procedures to estimate the dy-
namic z exponent needed for the knowledge of 8. On one
hand, the former can be calculated by studying the finite size
behavior of the first excited levels of H (in principle, just the
lowest will do), so we diagonalized it exactly via a recursion
type Lanczos algorithm [16] applied on the zero magnetiza-
tion subspace. The huge dimensionality of this sector, grow-
ing as (é/ %), as well as the lack of translational symmetry of
the evolution operator, limited our computations to chain
lengths of up to 24 spins. Nevertheless, they proved to be
sufficient for a fair estimation of the spectrum gap. We direct
the reader to Fig. 5 which suggests a decrease « L~ for the
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FIG. 5. Finite size behavior of the three lowest excited levels of
the evolution operator (5) for €/€’=1 and €)/€,=0.5. Solid lines
have slopes z=2. The inset compares the lower spectrum of this
case (L =20, 10 spin excitations, framed at the left), with the effec-
tive levels of the regular situation (€,/ey=1, L=20, 2 spin exci-
tations).

gap and other excited levels consistent with a common value
of z=2. On the other hand, an independent evaluation of this
exponent can be attained by studying the scaling behavior of
the interface width [Eq. (2)]. Figure 6 exhibits the results of
our simulations for growth substrates of 2500 and 5000
heights on approaching their saturation regimes. Here, the
data collapse was obtained upon setting (z,{)=(2,1), which
confirms not only the Lanczos estimation but also corrobo-
rates the roughness exponent quoted in Eq. (15). Thus, from
Eq. (2) it follows that the fast roughening behavior already
observed in Fig. 4 is now recovered by the ratio {/z.

Since the Lanczos analysis continues to yield values of
z=2 holding up to the homogeneous situation (as it should),
a natural question one can pose is therefore the following:
through which feature does the dynamics render a com-
pletely different roughening behavior at large times as soon
as €,7 € ? In an attempt to provide a plausible explanation
for the appearance of this abrupt change [see also Eq. (15)],
we resort to the observations given by the end of Sec. II B.

W/L ‘ .
Y
002 | 772 4
& W
Al ke
E"b 0.1 i
o
o]
001 |F o ]
) aaﬂ . 0550 10°
/ﬂ N )
0.1 1
t/L2

FIG. 6. Asymptotic finite size scaling regime of the interface
width averaged over 200 histories using /€' =1, €,/€,=0.5, for
L=5000 (squares), and L=2500 (circles). The saturation values
(horizontal line) coincide with those of Egs. (13) and (14). The
dashed line is fitted with the slope calculated from the data of Figs.
3 and 5 (i.e., B={/z). The inset exhibits an early scaling regime
which behaves diffusively (8= 1/4), like the initial data of Fig. 4.
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The inset of Fig. 5 displays the lower part of the 7 spectrum
for both inhomogeneous and homogeneous situations. As
stated above, the latter involves at most L(L —1)/2 contrib-
uting levels with S=L/2—1,L/2—2, while in the former
case the sum of Eq. (22) becomes much denser as [H,S]
#0 and an exponential number of new states arises. Of
course, the new matrix elements might eventually change
from zero in a continuous manner, but the density of states (a
measure of which is given by the inverse of the level spac-
ing) varies abruptly. Moreover, some of the low lying exci-
tations controlling the asymptotic regime (1—% holding
t/L*<1) suggest a rather narrowly peaked structure which is
entirely absent for e,= € .

Also, it is interesting to examine whether the large scale
morphology transition embodied in the slow temporal cross-
over of W affects the usual scaling hypothesis of Egs. (2) and
(3). Thus, we turn to the early dynamic scaling of 7 shown
by the inset of Fig. 6. In contrast to the faster growth ob-
served at late stages, here the data collapse arises by setting
standard diffusive exponents (z,{)=(2,1/2), which in turn
yield a scaling function o(#/L?)"* in agreement with the
early B exponent measured in Fig. 4. Hence, combining the
late and early scaling regimes it follows that

W(L,t,7)=Lf(t/L?), (23)

where 7 is a crossover time which depends solely on €/¢€
(eventually diverging in the limit €;—¢€,) and f(c) is a
universal function defined over three different scales as

" for c<7/L? (£=172)
fe)~4 ¢ for 7/LP<c<1 ({=1) (24)
const for c¢>1.

In what follows we finally address the e# €’ situation.

B. e¥€’

A quick glance at the evolution of the interface width
displayed in Fig. 7 might render the (wrong) impression that
the general case €# €', €)% €, bears similar characteristics.
However this time the growth exponent exhibits an
asymptotic value of 8=3/2, which is not understandable in
terms of conventional kinetic roughening theories [18]. In
fact, as we shall see below, the interface does not roughen.

Let us first provide a simple explanation for this large
value of B by means of the following heuristic consider-
ations. For clarity of argument, assume vanishing desorption
rates and €= €. Starting from a flat configuration, say with
hoy=1,hr,—1=0, a deterministic dynamics arises as (L
—2)/2 deposition attempts occur on the initial (L —2)/2 in-
terface minima. Next, we are left with /., =1,h,,_ =2,k
=h;,1=0, and (L—4)/2 contiguous minima over which
new (L —4)/2 depositions will be once again deterministic.
By iterating this argumentation ¢ times, this dynamics leads
to a configuration resembling a truncated pyramid (see cen-
tral snapshot of Fig. 2, though for a nondeterministic situa-
tion, i.e., €’ #0). Specifically, there will be (L—2¢)/2 con-
tiguous minima in between /4, ,=t+1 and h; _,_ =h,. .
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FIG. 7. Evolution of the interface width for €'/€=0.5, €)/¢€,
=5, and L=10°. The initial and final slopes of dashed lines are
B=1/4 and 3/2, respectively. From top to bottom the inset exhibits
the profile of 10* heights at £=5x10%, 2x10% 10%, and 4X10°.
Both width and height fluctuations become negligible at large times.
At the width level, results of different €y/¢, values closely follow
each other in all evolution stages. In turn, for e;<g¢, the early
profile has no tilt around the inhomogeneity.

Using the common definition of Eq. (1), it is then easy to
verify that the ““width” of such configuration is simply

3
W(L,t)=\/§—tL[l+O(t/L)], ie, B=3/2. (25

The above argument describes rather a faceting process
(terminating at ¢~ L/2), which strictly applies for €' =0.
Certainly, as soon as €' >0 the dynamics is no longer deter-
ministic, no matter how small €’ is. However, for €’ <1 the
early desorption attempts become gradually unsuccessful as
the active region of the interface, i.e., the number of avail-
able minima decreases inasmuch as the sideways region is
increasingly jammed (Fig. 2). Thus, at large times a process
similar to a faceting dynamics might be expected, at least for
small bulk desorption rates. In fact, for e> €’ and €)= €, our
numerical simulations confirm these considerations. No dif-
ferences were observed between sampling histories at large
times, so fluctuations become asymptotically negligible. For
€9<e€ the situation is similar though another faceting pro-
cess shows up around the inhomogeneity, as displayed by the
height profiles in the inset of Fig. 7 (see also rightmost snap-
shot of Fig. 2). Of course, for e<e’ the roles of €, and ¢
are interchanged. Ultimately, the whole process approaches a
nonfluctuating pile of slope =1, so long as €' #e.

To provide an alternative understanding of this fast fluc-
tuation decay for generic rate values, we recur once more to
the analysis of the spectrum of the evolution operator (19).
The gap and levels obtained for the sizes within our reach are
shown in Fig. 8, but in contrast to the e= €’ situation, here
the finite size trend of these quantities needs further analysis.
To this end, we studied the H spectrum within the subspace
S§?=L/2—1 (single spin excitation), which corresponds to
the much simpler anchoring case /4, —h;=L—2. For this
sector, it is straightforward to check that Eq. (19) reduces to
the tridiagonal matrix
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FIG. 8. Finite size behavior of lower excited levels in the single
spin approximation (S§7=L/2—1) of operator (26) for €'/e= €}/ €,
=1/2 (solid lines). Circles and triangles stand, respectively, for lev-
els \| and \, of Hamiltonian (5) with S°=0. Above \,, further
collective excitations (not shown) appear between successive solid
lines. The inset suggests a power law convergence of A (L)
(circles, S*=0) towards the gap g obtained in the main panel.

F e’ y 0o ... cee 0
vy ete vy
0
Yy €ete Y, 0
H= )
0 Y, €+e vy
0
y e€te vy
L 0 0 0% €]
(26)
where

v=—+€€', ’)/0:—\/6066. (27)

Evidently, this just constitutes the simplest approximation to
the many body problem of $?=0. Nevertheless, the compari-
sons of Fig. 8 indicate that the eigenvalues of Eq. (26) yet
provide an excellent estimation of the actual gap and other
excited levels obtained through the Lanczos scheme. (It is
worth pointing out in passing that an excellent fit of these
quantities was also found for e=¢€"). Using the spectrum
gap of the single spin approximation, the inset of Fig. 8
strongly suggests that the same gap will persist for A in the
thermodynamic limit of Eq. (19). Similar gapful results were
obtained for other values of €)/€,. Thus, fluctuations would
be suppressed at large times, which is in line with the almost
invariant values of W observed over many sample histories.

Also, at the gap level the density of states diverges as L in
the simplified version of the problem. For S*=0 however,
one might conjecture a much stronger divergence, probably
growing like ~e’, as the number of levels between two
single excitations tends to increase exponentially with the
system size (at least for the small lengths at hand). This
would leave us with a saturation time «L in Eq. (22), which
on the other hand would be in agreement with the termina-
tion time of the faceting process idealized above. In fact, the
numerical simulations displayed in Fig. 9 lend further sup-
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0.01

FIG. 9. Late scaling regime of W for €'/e=¢€,/€,=0.5 using
L=10* (circles) and L=2X10* (squares). The dashed line slope
and scaling form are both consistent with the faceting process con-
jectured in Eq. (25), whereas differences between sample histories
become gradually negligible. In contrast, the inset results, averaged
over 200 histories, indicate an early scaling regime which is typi-
cally diffusive ({=1/2,z=2, B={/z).

port to these speculations. Clearly, these results exhibit both
a saturation time «L, as well as an asymptotic scaling re-
gime consistent with Eq. (25), i.e., W/Lx(¢t/L)*?, during
which both height and width fluctuations are absent.

In contrast, at early stages the interface displays typical
roughening features. Specifically, the inset of Fig. 9 exhibits
a diffusive scaling regime W/ JL =f(t/L?), in turn corrobo-
rated by the growth exponent 8= 1/4 obtained in larger sys-
tems (Fig. 7). This strong departure from the faceting de-
scription occurs on temporal scales smaller than a crossover
time which turns out to decrease when €'/e— 0 (irrespective
of €)/€g), but eventually diverging in the limit €' —e€, €

— €.

IV. CONCLUSIONS

We have analyzed the characteristics of both early and
asymptotic dynamics of one-dimensional anchored interfaces
under a growth inhomogeneity. There are two sets of results
related, respectively, to equal or different growth-evaporation
rates in the bulk.

For e= €', even the slightest departure from the homoge-
neous €,= € situation is able to produce finite interface tilts
as well as huge temporal crossovers. The problems posed by
the latter have been bypassed studying separately the rough-
ness { and dynamic z exponents, the evaluation of which was
significantly simplified by the appearance of equilibrium SS.
In analyzing finite size scaling trends of the spectrum gap via
the Lanczos method, we found no changes with respect to
the homogeneous situation, i.e., z=2. Consequently, it was
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argued that the breaking of the full rotational invariance of
the evolution operator is ultimately responsible for the emer-
gence of a much heavier density of states accounting for both
the discontinuity of the roughness exponent ¢ (or alterna-
tively, for a different asymptotic growth exponent 3) as well
as for the rise of a new scaling regime at large times. These
expectations were confronted independently with standard
numerical simulations monitoring the evolution of the inter-
face profile and width. At early stages, the latter exhibits a
diffusive scaling regime having basically a nontilted profile
(except in the inhomogeneity neighborhood), but progres-
sively approaching a final regime consistent with our scaling
exponents {=1,2=2. However for €,— €, in practice this
new regime might occur at a time so large as to render it
numerically unobservable.

For e# €' the situation is entirely different. Here, the
spectrum gap does not vanish in the thermodynamic limit
regardless of the inhomogeneity rates, and fluctuations be-
tween evolution histories at large times become negligible.
This confirms a heuristic description (in turn, tested indepen-
dently by simulations), suggesting that the asymptotic dy-
namics becomes almost deterministic. We may also think of
a synchronous discrete time process in which a randomly
chosen finite fraction, or possibly all of the growth sites, are
simultaneously updated in a single time step. One character-
istic feature of such synchronous models is the occurrence of
faceting transitions at large times [1], which also turned out
to be the case here. In contrast, at early stages the interface
actually roughens following a typical diffusive pattern ac-
companied by a standard scaling regime.

The analysis of nonequilibrium asymptotic situations,
even for d=1, might become rather involved. In this sense,
it will be interesting to elucidate whether a direct evaluation
of ¢ could be achieved using the matrix approach to the
asymmetric exclusion process [19] with both injection and
ejection of particles at the boundaries, including one or more
hopping defects (that is, unanchored boundaries and growth
inhomogeneities in the height representation).

Higher dimensional extensions of this study would be
clearly desirable and more realistic. However, the analysis of
the corresponding quantum spin analogy should involve a
projector operator to discard all those spin configurations
having magnetic loops, i.e., Z,0.#0, with r on a given
closed path. Otherwise, the mapping would no longer repre-
sent an interface. The issue as to whether or not such ideas
are actually practical in d>1 remains quite open.
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