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We study the competition between the nematic and the hexatic phases of a two-dimensional spinless Fermi
fluid near Pomeranchuk instabilities. We show that the general phase diagram of this theory contains a bicriti-
cal point where two second-order lines and a first-order nematic/hexatic phase transition meet together. We
found that at criticality and deep inside the associated symmetry broken phases, the low energy theory is
governed by a dissipative cubic mode, even near the bicritical point where nematic and hexatic fluctuations
cannot be distinguished due to very strong dynamical couplings.

DOI: 10.1103/PhysRevB.78.035114 PACS numberssd: 71.10.Hf, 71.10.Ay, 71.10.Pm, 05.30.Fk

I. INTRODUCTION

Nowadays, there is a large amount of theoretical and ex-
perimental work studying new phases of strongly correlated
fermionic systems that spontaneously break rotational and/or
translational symmetry. These electronic states were called
quantum liquid crystals1 because they are anisotropic metals
sharing the same symmetry properties, as usual liquid crys-
tals. Today, we have several examples of smectic2 and
nematic3 quantum liquid phases. It is interesting that, at me-
soscopic scale, we can understand the basic physics of these
phases just on symmetry grounds, without relying on the
detailed microscopic description. Of course, the final fate of
the phase depends on thermal and/or quantum fluctuations
and on dimensionality.

The quantum nematic state is probably the best candidate4

to explain the anisotropies observed in two-dimensional elec-
tron gas s2DEGd at half filled Landau levels.5 This state is
also expected to appear in other strongly correlated systems
such as high Tc superconductors6,7 and in heavy fermion
compounds.8

The first consistent description of the quantum nematic
state was done in Ref. 3, and its nonperturbative one-particle
properties were studied in Ref. 9. Several important results
were obtained in the case of the two-dimensional isotropic-
nematic quantum phase transition.9–12 At criticality, the low
energy properties are ruled by a dissipative collective cubic
mode v, iq3. The coupling of this mode with fermions
wipes off the quasiparticle pole in the spectral functions sex-
cept for some symmetrical pointsd, implying that the
isotropic-nematic transition, from the electronic point of
view, is a Fermi/non-Fermi-liquid phase transition. These
calculations, initially done in Hartree-Fock approximation,3

were confirmed with a nonperturbative treatment of the Po-
meranchuk instability, using multidimensional bosonization,9

and with the more usual Landau theory of Fermi liquids.10

In recent years, there was an increasing interest on Pomer-
anchuk instabilities13 not only in continuous models but also

in the lattice.3,9,14–19 Concerning quantum Hall samples at
moderate magnetic fields, there are experimental evidence5,20

and theoretical proposals21,22 pointing to the idea that a huge
number of phases are present, which depend on the filling
factor and temperature, that is, a rich and delicate competi-
tion between several liquid states smetallicd and crystal states
sinsulatorsd. Very near integer filling factor, a Wigner crystal
state is by now well established.23,24 Thermal fluctuations of
this state could melt the crystal into a hexatic phase, which is
homogeneous and anisotropic, with the residual symmetry of
the Wigner triangular lattice. Increasing fluctuations would
produce more disorder, leading to a hexatic/isotropic transi-
tion. There is a clear region in the phase diagram where the
isotropic, nematic, and hexatic phases compete very
closely.21 The aim of this paper is to characterize this quan-
tum phase transition as a first step to understand real Hall
liquids.

In order to simplify, we study a version of Landau theory
for spinless Fermi liquids,25 where we consider the effect of
the curvature of the fermionic dispersion relation14 around
the Fermi surface and possibly four-body interactions. In par-
ticular, we analyze quantum fluctuations in a region where
the Landau parameters F2 and F6 are very near the Pomer-
anchuk instability. The main results are depicted in Fig. 2,
where we draw a mean-field phase diagram for the Fermi
liquid in terms of the Landau parameters. We clearly see two
second-order lines, corresponding to the isotropic/nematic
and the isotropic/hexatic phase transitions. These transitions
meet together at a bicritical point where a first-order nematic/
hexatic transition emerges.

Along the two second-order lines, the nematic and hexatic
order parameters are weakly coupled and we expect a similar
behavior of these two phases. However, very near the bicriti-
cal point the coupling is very strong and it is not possible to
distinguish between nematic and hexatic fluctuations. We
find that the critical theory at the bicritical point is governed
by a low lying collective mode with dynamical exponent z
=3. We also found that, in the symmetry broken phase, the
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orientations of the nematic and hexatic principal axes are not
independent; they differ by specific angles dictated by sym-
metry. In the two ordered phases, the Goldstone mode asso-
ciated with the angle fluctuation is also a dissipative cubic
mode, retaining the criticality of the theory deep inside the
two symmetry broken phases. Near the bicritical point, they
are separated by a discontinuous transition and the dynamics
in this region is related with metastability. In Secs. II–V we
show the details of the model and the main reasoning leading
to the above mentioned results.

II. 2D ISOTROPIC-NEMATIC-HEXATIC PHASE
TRANSITION

The order parameters for two-dimensional nematic and
hexatic phases can be cast in terms of complex fields,
namely,

c2 = r2ei2x2,

c6 = r6ei6x6, s2.1d

where c2 is the nematic order parameter and c6 is the hexatic
one. The complex representation is typical of two dimen-
sions in which the rotation group Os2d is isomorphic to the
unitary group Us1d. Defined in this way, the parameters in
Eq. s2.1d have nematic and hexatic symmetries, x2→x2+p
and x6→x6+p /3, respectively.

Near a phase transition the order parameters are small so
that we can write down a polynomial free energy, keeping
just quartic terms in the expansion. At mean field, consider-
ing uniform c2 and c6, the more general local and rotational
invariant free energy is

F =
l2

2
c2

pc2 +
l6

2
c6

pc6 +
g

4
suc2u4 + uc6u4d +

m

2
uc2u2uc6u2

+
b

2
sc2

3c6
p + c.c.d , s2.2d

where “c.c.” means complex conjugate. In order to simplify,
we have considered the same g.0 for the quartic terms
associated with both order parameters, however, we could
allow different values without changing any substantial
physics. We also consider m.0, while l2 and l6 are control
parameters of the phase transitions. The parameter b is spe-
cial, since it changes the symmetry of the system. If b=0,
the system is invariant under a global Us1d3Us1d transfor-
mation, since we can change the phases of the two order
parameters independently. However if bÞ0 the symmetry is
reduced from Us1d3Us1d→Us1d. This is more evident if
we rewrite Eq. s2.2d in polar form,

F =
l2

2
r2

2 +
l6

2
r6

2 +
g

4
sr2

4 + r6
4d +

m

2
r2

2r6
2

+ br2
3r6 cos 6sx2 − x6d , s2.3d

where the free energy depends on the difference between the
two angles x2−x6, preserving global rotational invariance.

To study the mean-field phase diagram, we minimize the
free energy with respect to the independent variables r2, r6,

and x2−x6. The minimization with respect to the angles is
straightforward. If b.0, x2−x6 will take the values 1 /6p,
1 /2p, or 5 /6p to make the last term in Eq. s2.3d negative.
On the other hand, if b,0, x2−x6 will take the values 0,
1 /3p, or 2 /3p. Therefore, the principal axes of the nematic
and hexatic phases will not necessarily be aligned. This will
have very interesting consequences, especially in the case of
first-order transitions where we can have metastable liquid
crystal states with different principal axes.

After optimizing the angle variables, let us analyze the
phase diagram associated with

F =
l2

2
r2

2 +
l6

2
r6

2 +
g

4
sr2

4 + r6
4d +

m

2
r2

2r6
2 − br2

3r6, s2.4d

considering all coefficients positive except, of course, our
control parameters l2 and l6. We begin by considering the
case b=0. In this case, the free energy is very similar to that
occurring in several antiferromagnetic systems with weak
anisotropy26 and presents in general multicritical points. The
results are summarized in Figs. 1 and 2. Note that r2=r6
=0 are extrema of the free energy for any value of the pa-
rameters. In particular, if l2.0 and l6.0 they are the ab-
solute minima, representing the isotropic phase. When l2 ,l6
switch to negative values, different types of solutions
emerge, depending on the other parameters of the model. For
instance, for l6,0 and for any value of l2, we find the
solutions r2=0 and r6

2=−l6 /g. On the other hand, if l2,0,
for any value of l6, the solutions are r2

2=−l2 /g and r6=0.
These solutions determine two second-order phase transi-
tions, isotropic/nematic and isotropic/hexatic, in the l2=0,
l6.0 and l2.0, l6=0 semiaxes, respectively ssee Figs. 1
and 2d.

If l2 and l6 are negative, there are in addition solutions
where both order parameters are different from zero,

r2
2 =

− gl2 + ml6

g2 − m2 , s2.5d

FIG. 1. Phase diagram for the free energy in Eq. s2.2d for g
.m. The bold lines represent second-order phase transitions and, in
the case of Fermi liquids, the control parameters are given by l2

=1+F2 and l6=1+F6. For b=0, the symmetry of the model is
Us1d3Us1d, thus allowing the coexisting phase. However, for b
Þ0 this phase turns out to be nematic.
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r6
2 =

ml2 − gl6

g2 − m2 . s2.6d

Which of all these extrema are absolute minima depends
essentially on the relative values of g and m. Indeed, if g2

.m2, the solutions of Eqs. s2.5d and s2.6d are valid in the
region g /ml2,l6,m /gl2. Therefore, the straight lines l6
=g /ml2 and l6=m /gl2 determine the two second-order
phase transitions shown in Fig. 1. Inside this region, the pure
nematic and the pure hexatic solutions become unstable,
leading to a coexistence phase, where the two order param-
eters are different from zero. This region is possible due to
the Us1d3Us1d symmetry, which makes the phases of the
two order parameters independent. Note that the region of
coexistence is controlled by the coupling m between the two
order parameters. If m→0, they decouple and this region
covers the complete third quadrant, as it should be. For
higher m, the region is stretched between the two lines shown
in Fig. 1, and for the limiting value m=g, the area of coex-
istence shrinks to zero. The second-order transition collapses
into a first-order one, valid in the case of m.g; this is de-
picted in Fig. 2.

If g2,m2, the solutions of Eqs. s2.5d and s2.6d svalid now
in the region m /gl2,l6,g /m,l2d are unstable, and the
true ground state is the pure nematic and the pure hexatic
solution, separated by a first-order line ssee Fig. 2d. Now, let
us analyze the bÞ0 case. If b is large enough, the system
will present unstable directions in the sr2 ,r6d plane, invali-
dating the quartic expansion of the free energy. Moreover, it
is not difficult to realize that there is a critical value bc below
which the theory is stable, in the case of having m,g and
bc,0.77g. As we mentioned, an important effect of the b
term is to reduce the symmetry of the model from Us1d
3Us1d→Us1d, establishing a relationship between the rela-
tive phases of the two order parameters; a direct consequence
is that the coexisting phase of Fig. 1 is now a nematic one,

since we cannot freely change the phases independently. On
the other hand, the term b,bc does not change the character
of the phase transition we have described. Therefore, in Fig.
1, the lines remain as second-order transitions, except that
we should consider now the coexisting phase as a nematic
one.

In the case m.g sFig. 2d, we will still have two second-
order lines and a first-order line between the nematic and
hexatic phases. The explicit solutions can be evaluated per-
turbatively in b.

To be more precise, for the case m.g, the isotropic and
hexatic phases are the same as those we have described for
b=0. However, when l2,0 and l6.0, r6 assumes a value
of order b given by

r6 = −
b

g

ul2u3/2g1/2

gul6u + mul2u
+ Ofsb/gd2g . s2.7d

We are tempted to interpret this as a coexisting phase, how-
ever, as stated before, we are not allowed to change the
phases of the two order parameters independently. Then, the
residual symmetry is the nematic one and the global phase is
nematic with higher harmonics. This solution remains the
global minimum deep inside the l6,0 region, when it finds
the first-order line depicted in Fig. 2, and jumps discontinu-
ously to the pure hexatic phase. Therefore, the main effect of
the b term is to slightly modify the first-order line l2=l6 and
to add higher harmonics to the nematic solution. As we have
discussed, this term is also responsible for the relative align-
ment between the principal axes of the nematic and hexatic
phases.

Of course, this analysis is only valid very near the multi-
critical point where the order parameters are small. Note that
the different phases are separated by straight lines just be-
cause we are calculating at leading order in the order param-
eters. We expect that higher order corrections, as well as
fluctuations, will curve these lines as occurs when studying
multicritical behavior in anisotropic antiferromagnets.26

However, the character of the phase transitions will not
change.

An important point to discuss is whether this mean-field
phase diagram survives fluctuations or not. In the case of
classical systems, thermal fluctuations will turn the second-
order phase transitions into Kosterlitz-Thouless-type27 ones.
The reason is that the angular correlations have logarithmic
divergences that destroy the real order of the phase, keeping
a quasi-long-range order in the correlations.4,28 We expect
that the first-order transition will be more robust against fluc-
tuations, keeping its discontinuous character or possibly be-
coming slightly rounded.

At T=0, quantum fluctuations depend on the dynamics of
the Goldstone modes associated with the spontaneously bro-
ken symmetry. In the case of Fermi liquids, we will show in
Secs. III–V that fluctuations of the nematic and hexatic order
parameters provide a dynamical exponent z=3, implying an
effective dimension equal to 5, above the upper critical di-
mension. Therefore, the order of the transitions studied at
mean field is expected to be valid in the quantum case.

FIG. 2. Phase diagram for the free energy in Eq. s2.2d for g
,m. The bold lines represent second-order phase transitions, while
the dot line corresponds to a first-order transition. In the insets, we
draw the Fermi surfaces computed with Eq. s3.5d. The relative angle
between the orientation of the principal axis between the nematic
and hexatic phases was fixed to p /2.
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III. POMERANCHUK INSTABILITIES IN THE NEMATIC
AND HEXATIC CHANNELS

We consider a spinless Fermi liquid with an initially cir-
cular Fermi surface.25 Interactions between quasiparticles
can be written in terms of an effective action of the form

Sint =
Ns0d

2 o
S,T
E d2xd2x8dtdnSsxdUS,Tsx − x8ddnTsx8d

+
gNs0d

4! o
S
E d2xdtfdnSsxdg4. s3.1d

Here, Ns0d is the density of states at the Fermi surface, S and
T label patches defined by coarse graining the Fermi surface,
and the density fluctuations of quasiparticles in each patch
are given by dnSsxd=nSsxd−nS

0sxd. The kernel US,Tsx−x8d is
therefore the particle-hole pair interaction between the
patches S and T and can be split into diagonal and off-
diagonal components in the form

US,Tsx − x8d = Ns0ddsx − x8ddS,T + FS−Tsx − x8d . s3.2d

The quartic term in Eq. s3.1d could receive contributions
from different processes, especially four-body interactions in
the fermion language. In Ref. 14, a term of this class was
obtained as a consequence of the curvature of the fermionic
dispersion relation around the Fermi surface. While the qua-
dratic term in Eq. s3.1d is marginal in the renormalization-
group sense,29 the quartic term is irrelevant. That means that
in the isotropic phase, where the quadratic part is positive
definite, the quartic term will not influence the asymptotic
correlation functions sbesides renormalization of the param-
eters of the modeld, obtaining the usual correlations associ-
ated with Landau Fermi liquids. However, near a Pomeran-
chuk instability, the quartic term is responsible for the
stabilization of the anisotropic phases discussed in this
paper.9,14

Since the density fluctuation is periodic around the Fermi
surface, we can Fourier expand it as

dnS =Î 2

N
o
,=0

N/2

r, coss,fuS − x,gd s3.3d

and introduce the Fermi-liquid parameters by means of

FS-T =
1

N
F0 +

2

N
o
,.0

F, cos ,suS − uTd , s3.4d

where N is the number of patches covering the Fermi sur-
face. Of course, at the end of the calculations, we take the
limit29,30 N→`, keeping the density finite.

Since we are interested in the nematic/hexatic instabilities
we will set, as a definition of our model, F,=0 for all ,
Þ2,6. Essentially, we are assuming that all the other modes
are stable. Integration over all the stable modes only renor-
malizes the parameters since, very near criticality, they will
only contribute with irrelevant operators. Note that the quan-
tities sr2 ,x2d and sr6 ,x6d, in the expansion of the density
fluctuation in Eq. s3.3d, are the nematic and hexatic order
parameters introduced in Eq. s2.1d on general grounds.

Therefore, in order to write the model just in terms of our
order parameters, we replace Eqs. s3.3d and s3.4d into action
s3.1d finding, after summing up the contribution of different
patches, that the effective action in the homogeneous limit
has the same form given in Eq. s2.4d, Sint,F, with the iden-
tifications l2=1+F2, l6=1+F6, m=2g, and b=g /3. With
these values, the analysis of the phase diagram corresponds
to that displayed in Fig. 2, since m.g and b,bc.

The values l2=1+F2,0 and l6=1+F6,0 correspond to
Pomeranchuk instabilities in the nematic and hexatic chan-
nels, respectively. They lead to deformations of the Fermi
surface, since kF=k0+dnS or, in terms of our model,

kFsuSd = k0 + r2 coss2uSd − r6 coss6uSd , s3.5d

where we have used the mean-field solution for the angles,
x6=x2+ s2n+1dp /6, with n=0,1 ,2, and considered x2=0,
without losing generality. The form of the Fermi surface for
each phase is displayed in Fig. 2.

In the hexatic phase, we find

r2 = 0, r6 = Îu1 + F6u/g . s3.6d

On the other hand, in the nematic phase, we find

r2 = Îu1 + F2u/g, r6 ,
1

3g1/2
u1 + F2u3/2

u1 + F6u + 2u1 + F2u
.

s3.7d

Therefore, all along the line of nematic criticality in Fig. 2,
where 1+F2,0 but 1+F6.0, the initially circular Fermi
surface is deformed into an ellipse. Higher-order harmonics
tend to zero with Os1+F2d3/2. However, very close to the
bicritical point, where 1+F6,0, the hexatic harmonic in Eq.
s3.7d becomes important and r6,1 /6r2. At this point, we
are very near the first-order phase transition, where the
change from nematic to hexatic is discontinuous. The energy
difference between the two local minima can be estimated as
DF,s3u1+F2u−4u1+F6ud /g.

IV. COLLECTIVE MODES

The phase diagram of the model is completely determined
by symmetry. However, the dynamics of each phase is dic-
tated by quantum mechanics and it is not possible to deduce
it by only using symmetry considerations.

In order to study fluctuations around mean field, we will
consider the complete action of the system including the dy-
namical part,

S = Sd + Sint, s4.1d

where Sint is given by Eq. s3.1d. We will choose Sd as the
usual dynamical term of the Landau theory of Fermi liquids
in the collisionless regime,25

Sd =
1

2o
S
E d2xdtdnSS ]t

vWS · ¹W
DdnS, s4.2d

where vWS is the Fermi velocity in the patch S of the coarse-
grained Fermi surface. While this is a nonlocal action, some-
times it is useful to write a local version, introducing chiral
bosons fSsxd defined by
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dnSsxd = Ns0dvWS · ¹W fSsxd . s4.3d

With this choice, the dynamical part of the action acquires
the local form,

Sd =
Ns0d

2 o
S
E d2xdt]tfSdnS. s4.4d

This is the usual expression in the context of higher dimen-
sional bosonization,9,14,29,30 where the relevant degrees of
freedom are fS. In order to study collective modes, both the
local and nonlocal versions of the action are equally conve-
nient. However, the second local form in Eq. s4.4d is more
appropriate for the calculation of one-particle properties.

We parametrized the fluctuations in the following form:

dnSsqd = dnS
cl + wSsqd , s4.5d

where dnS
cl is the classical mean-field solution in each stable

phase, evaluated in Sec. III, and wSsqd is a small density
fluctuation around this solution.

In the isotropic phase, the nonquadratic terms can be ig-
nored and, following the techniques developed in Ref. 9, we
find the following diagonal effective action for collective ex-
citations,

S =
1

2 o
j=1,2;h=6

E d2qdv

s2pd3 j j
hMj

hj j
h, s4.6d

Sj1
6

j2
6 D = A6ssdSw2 6 w2

p

w6 6 w6
p D , s4.7d

where w, is the Fourier transform of wS and A6ssd is the
dynamical matrix that diagonalizes the effective action. As
usual, we use the notation s=v /vFq.

The explicit expressions for Mj and Assd depend on the
regime we want to study. Along the two second-order critical
lines, except near the bicritical point, we find A6ssd= I
+Ossd. This means that, at leading order in s, the nematic
and the hexatic modes are decoupled in this regime. The
kernel Mj

6 reads

Mj
+ = − 1 − Fj + 2is − s− 1d j 1 − sF6 − F2d

F6 − F2
s2, s4.8d

Mj
− = − 1 − Fj + 2js2. s4.9d

From the last term in Eq. s4.8d, we see that the stable mode
affects the critical mode only at next to leading order in s.
This confirms our assumption that the stable modes can be
integrated out, without modifying the asymptotic properties
of the critical theory.

At the critical hexatic line we have 1+F6,kq2, where k
is the range of the potential considered in the hexatic chan-
nel. Then, the collective modes in this case are v, ikvFq3

and v,ÎkvFq2, characterizing the critical hexatic phase,
and the other two stable nematic modes are the usual linear
ones in a Fermi liquid, v, is1+F2dvFq and v,Î1+F2vFq.
This result is expected as it parallels the well-known result
for nematic fluctuations.9

However, if the two order parameters become critical, the
structure of the effective action changes substantially. Very
near the bicritical point, where F2,F6, we find

Mj
+ = − kq2 + f1 + s− 1d jg2is + s− 1d j4s2, s4.10d

Mj
− = − kq2 + 4f2 + s− 1d jÎ2gs2. s4.11d

At this point we still have a cubic dissipative mode while the
other three modes are stable quadratic ones. Then, the critical
theory very near the bicritical point is also characterized by a
dynamical exponent z=3. However, in this case it is impos-
sible to distinguish between nematic and hexatic fluctuations
since the matrix Assd strongly couples these modes.

In the symmetry broken phases, the order parameter
snematic or hexaticd picks up an orientation and the collec-
tive modes will necessarily be anisotropic. We expect that
the Goldstone modes, related to angular fluctuations, will
dominate the low energy dynamics. Near criticality we ob-
tain for each broken phase

S, =
1

2
E d2qdv

s2pd3 h2u1 + F,s0du

+ 2is cos2f,sf − x,dgj1sq,vdj1s− q,− vd

+ f2is sin2 ,sf − x,d − k,q2gj2sq,vdj2s− q,− vdj ,

s4.12d

where ,=2,6 and the angle f is defined as qW /q
= scos f , sin fd.

The last term of this action indicates that the theory re-
tains its critical character deep inside the anisotropic phases
due to the z=3 Goldstone modes j2. These modes exist for
almost all momenta, except for the special directions f−x,

=np /,, with n=0, .. ,2,−1, where we have stable linear
propagation. The two symmetry broken phases are separated
by a discontinuity since x2−x6= s2n+1dp /6, with n
=0,1 ,2.

V. SUMMARY AND CONCLUSIONS

In this paper we have characterized the isotropic/nematic/
hexatic quantum phase transition in the vicinity of Pomeran-
chuk instabilities of a Fermi liquid. We have shown that the
static effective action or free energy is completely deter-
mined by symmetry. The phase diagram, shown in Fig. 2,
contains two second-order lines, corresponding to the
isotropic/nematic and isotropic/hexatic phase transitions.
Both continuous transitions meet together at a bicritical point
where a first-order nematic/hexatic transition emerges. It is
interesting to note that the phases of the complex nematic
and hexatic order parameters are not independent. Instead,
they are coupled in a rotationally invariant way. The associ-
ated principal axes cannot be aligned; in fact, the possible
values for x2−x6 are p /6, p /2, or 5 /6p.

Since the presence of other two-body interactions, repre-
sented by stable Landau parameters, renormalizes the theory,
the phase diagram in Fig. 1 cannot be discarded. However,
assuming that higher harmonics in the interactions are neg-
ligible, the phase diagram in Fig. 2 is more plausible.
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Quantum fluctuations have been computed in a region
where F2 and F6 are very near the Pomeranchuk instability.
The important point is that on the whole critical region, even
at the bicritical point where fluctuations in both channels
cannot be decoupled, the theory is governed by a dynamical
exponent z=3. This result validates our mean-field treatment,
since the effective dimensionality is above the upper critical
dimension. In fact, a z=3 critical theory seems to be the fate
of any spontaneously broken rotational symmetry in two di-
mensions, independently of the residual symmetry displayed
by the ordered phase.

On the broken-symmetry side of the transition the theory
continues to be critical due to dissipative cubic Goldstone
modes. These modes are proportional to the “range” k of the
nonlocal Landau parameters. Therefore, even though the or-
dered phases exist for local interactions, they have zero stiff-
ness, making them pathological. In this sense, although the
nonlocality of the two-body coupling is irrelevant in the
renormalization-group sense, it must be taken into account to
correctly compute fluctuations. Near the bicritical point, both
ordered phases are separated by a discontinuous transition.

Thus, very near this region, the dynamics is related with
metastability. It is also important to underline that the pres-
ence of dissipative cubic modes profoundly modifies the
asymptotic behavior of fermions, when compared to the
usual one for Fermi liquids.9 We believe that this general
analysis about the competition between Pomeranchuk insta-
bilities will help us to improve our understanding of the very
complex phase diagram of real Hall liquids as well as other
strongly correlated fermionic systems.
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