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We discuss the application of the static path plus random-phase approximation sSPA+RPAd and the ensuing
mean field+RPA treatment to the evaluation of entanglement in composite quantum systems at finite tempera-
ture. These methods involve just local diagonalizations and the determination of the generalized collective
vibrational frequencies. As an illustration, we evaluate the pairwise entanglement in a fully connected XXZ
chain of n spins at finite temperature in a transverse magnetic field b. It is shown that already the mean
field+RPA provides an accurate analytic description of the concurrence below the mean field critical region
subu,bcd, exact for large n, whereas the full SPA+RPA is able to improve results for finite systems in the
critical region. It is proven as well, that for T.0 weak entanglement also arises when the ground state is
separable subu.bcd, with the limit temperature for pairwise entanglement exhibiting quite distinct regimes for
ubu,bc and ubu.bc.
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I. INTRODUCTION

It is now well-recognized that quantum entanglement
plays an essential role in both quantum information science
f1g, where it is considered a resource, as well as in many-
body and condensed matter physics, where it provides a new
perspective for understanding quantum correlations and criti-
cal phenomena f2–5g. Entanglement denotes those correla-
tions with no classical analog that can be exhibited by com-
posite quantum systems, which constitute, for instance, the
key ingredient in quantum teleportation f6g. A pure state of a
composite system is entangled if it is not a product state,
while a mixed state of such a system is entangled when it
cannot be written as a convex combination of product states
f7g.

Thermal entanglement f2,8–12g denotes that of mixed
states of the form rsTd~expf−bHg, where H is the system
Hamiltonian and b=1/kT the inverse temperature. A com-
plete characterization of thermal entanglement in many com-
ponent systems is difficult, since, to begin with, there is no
simple necessary and sufficient computable criterion for de-
termining if a general mixed state is entangled f13g. Besides,
these systems exhibit entanglement at different levels, i.e.,
between any pair or set of subsystems, starting from that
between elementary constituents i , j and ending in that of
global partitions f14g swhich for T.0 can no longer be mea-
sured through the entropy of a subsystemd. Finally, a basic
difficulty is the accurate evaluation of rsTd and the ensuing
reduced densities rij. Standard methods like the mean field
approximation sMFAd, which may provide a correct basic
description of thermodynamic observables in some systems,
are not suitable for the evaluation of entanglement since they
are based on separable snonentangledd trial densities. In
small finite systems fluctuations of the order parameters be-
come important f15g and the MFA is to be replaced at least
with some average over different mean field densities, but
such an approach will still fail to describe entanglement as it
is essentially based on a convex combination of product den-
sities.

The principal goal of this work is to show the applicabil-
ity of the static path plus random-phase approximation

sSPA+RPAd f16–19g to the determination of thermal en-
tanglement. The approach is derived from the path integral
representation of the partition function obtained with the
Hubbard-Stratonovich transformation f20g and has been ap-
plied to the description of basic observables in diverse fer-
mionic models of nuclear and condensed matter physics
f16–19,21,22g. It takes into account both the large amplitude
static fluctuations sSPAd of the mean field order parameters,
essential in critical regions of finite systems, together with
small amplitude quantum fluctuations sRPAd, which may ac-
count for most quantum effects if T is not too low and will be
responsible for entanglement. It also provides a fully consis-
tent MFA+RPA approach f19g, obtained through the
saddle point approximation to the full treatment. Here we
will formulate the method for a system of n distinguishable
constituents, where it involves in principle just local
diagonalizations.

We will employ the formalism to evaluate the thermal
pairwise entanglement in a fully connected XXZ chain of n
qubits or spins in the presence of a uniform transverse mag-
netic field b. Spin chains constitute an attractive scalable
qubit representation for exploring and implementing quan-
tum information processes f23–25g and can be realized in
diverse physical systems, including those based on quantum
dots electron-spins f26g and Josephson junction arrays f27g,
where the effective model includes coupling between any
two spins. Fully connected symmetric spin models ssimplexd
have also intrinsic interest, providing a solvable scenario for
examining entanglement in systems undergoing phase transi-
tions. In particular, entanglement properties of the fully con-
nected XX and XY model at T=0 were thoroughly analyzed
in f28–30g. We will show that the XXZ model exhibits an
interesting nontrivial behavior at finite temperature, whose
main features can be correctly described by the SPA+RPA
for moderate finite n and even by the MFA+RPA below the
critical region, the latter providing an analytic description
which becomes exact for large n. The formalism is described
in Sec. II while application to the model is discussed in Sec.
III. Finally, conclusions are drawn in Sec. IV.
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II. FORMALISM

We will consider a composite system described by a
Hamiltonian of the form

H = H0 −
1

2o
n

vnsQnd2, s1d

where H0, Qn are linear combinations of local operators, i.e.,
H0=oiHi

0, Qn=oiQi
n, with Hi

0, Qi
n acting just on subsystem i

sQi
n; I1 ^ ¯ ^ Qi

n
^ ¯ ^ In, with fQi

n ,Qj
ng=0 if iÞ jd. In a

spin chain Qn could stand, for instance, for total spin opera-
tors or general linear combinations oiaisi

n of the individual
spins si

n. Any quadratic interaction between subsystems,

V = −
1

2 o
i,j,n,n8

Oi
nvnn8

ij Oj
n8, s2d

where Oi
n denotes local operators, can be written in the diag-

onal form s1d snonuniqued, after completing squares or di-
agonalizing the matrix vin,jn8;vnn8

ij , with Qn suitable linear
combinations of the Oi

n. We may assume vn.0 in Eq. s1d
without loss of generality if anti-Hermitian operators Qn are
allowed fvnsQnd2→−vnsiQnd2g. In what follows we will con-
sider a finite Hilbert space dimension.

The Hubbard-Stratonovich transformation allows then to
express the partition function Z=Tr expf−bHg as the path
integral f20g

Z =E DfxgTr T̂ expH− E
0

b

dtFo
n

xn
2std
2vn

+ hfxstdgGJ ,

s3d

hsxd = o
i

hisxd, hisxd = Hi
0 − o

n

xnQi
n, s4d

where T̂ denotes time ordering and the normalization
eDfxgexpf−e0

bdtonxn
2std /2vng=1 is assumed. The integrand

in Eq. s3d is essentially the trace of the imaginary time evo-
lution operator Ufxg associated with the path xstd and the
linearized Hamiltonian hfxstdg, and is here a product opera-
tor ^ iUifxg, not necessarily positive. Equation s3d can be
evaluated by means of a Fourier expansion

xnstd = xn + o
nÞ0

xn
neivnt, vn = 2pn/b , s5d

where xn;xn
0 are the static coefficients, representing the time

average kxnstdlf0,bg, with Dfxg~pndxnpnÞ0dxn
n.

In the SPA+RPA f16–19g fto be denoted for brevity as
CSPA scorrelated SPAdg, the integrals over the static coeffi-
cients xn are fully preserved, while those over xn

n, nÞ0, are
evaluated in the saddle point approximation for each value of
the xn. The aim is to take into account large amplitude static
fluctuations, which are particularly relevant in the transi-
tional regions of finite systems, together with small ampli-
tude quantum fluctuations, which should in principle account
for most quantum effects if the temperature is not too low.
The final result can be expressed as f19g

ZCSPA = E
−`

`

e−bonxn
2/2vnZsxdCRPAsxddsxd , s6d

where dsxd=pnÎb / s2pvnddxn and

Zsxd = Tr expf− bhsxdg = p
i

tr expf− bhisxdg , s7d

CRPAsxd = p
n=1

`

detfdnn8 + vnRnn8sx,ivndg−1, s8d

Rnn8sx,vd = o
i,kÞk8

kkiuQi
nuki8lkki8uQi

n8ukilspki
− pki8

d

«ki
− «ki8

+ v
, s9d

with tr the local trace, ukil the running local eigenstates
fhisxdukil=«ki

ukilg, and pki
=e−b«ki / tr e−bhisxd. Equations

s6d–s9d involve just local diagonalizations. Equation s8d is
the RPA correction, fundamental in the present context,
which can be further expressed as f17,18g

CRPAsxd = p
a.0

p
n=1

`
la

2 + vn
2

va
2 + vn

2 = p
a.0

va sinhsbla/2d
la sinhsbva/2d

, s10d

where a;ski ,ki8d runs over all pairs kiÞki8 sa.0 indicating
ki.ki8d, la;«ki

−«ki8
and va are the running RPA energies,

determined as the roots of the equation

detfdnn8 + vnRnn8sx,vdg = 0. s11d

They come in pairs of opposite sign and can also be obtained
as the eigenvalues of the matrix

Aaa8sxd = ladaa8 + pao
n

vnQ−a
n Qa8

n , s12d

where pa; pki
− pki8

, Qa
n ;kkiuQi

nuki8l. Equation s6d can be ap-
plied provided CRPAsxd.0, which implies va

2 +v1
2.0∀a ,x.

Since the lowest RPA energies va may become imaginary or
complex for x away from the stable mean field solution ssee
belowd, the previous condition sets up a breakdown tempera-
ture T*, normally low, such that Eq. s6d is applicable for T
.T*. Setting CRPAsxd=1 in Eq. s6d leads to the plain SPA
f15g, which, although significantly improving the MFA in
critical regions, is unable to describe entanglement, as it av-
erages correspond essentially to those of a convex combina-
tion of separable densities ffor hsxd Hermitiang.

MFA+RPA. Away from critical regions, we may also ap-
ply the saddle point approximation to the static variables xn.
This leads to the MFA+RPA sto be denoted as CMFAd,
given by f19g

ZCMFA = e−bonxn
2/2vnZsxdC0sxdCRPAsxd , s13d

where x is the value which minimizes the “separable” free
energy Fsxd=onxn

2 /2vn−T ln Zsxd and is determined by the
self-consistent “Hartree” equations

xn = vnkQnlx, s14d

with kQnlx=oi,kpki
kkiuQi

nukil. C0sxd accounts for the small am-
plitude static fluctuations and is given by
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C0sxd = DetFvn

]2Fsxd
]xn]xn8

G−1/2

= DetFdnn8 + vnSRnn8sx,0d − o
i,k

kkiuQi
nukil

]pki

]xn8
DG−1/2

,

s15d

with ]pki
/]xn8=bpki

oki8
kki8uQi

n8uki8lsdkk8− pki8
d.

Away from critical points Eq. s13d can be employed right
up to T→0. Note, however, that if the solution of Eq. s14d
exhibits a continuous degeneracy fdue to a continuous sym-
metry violation by hsxdg the previous approach should be
applied just to the intrinsic variables ssee Sec. IIId. In this
case the lowest RPA energy vanishes at the mean field solu-
tion f18,19g but Eq. s13d is still applicable, as CRPAsxd, Eq.
s8d, remains finite for va→0. Omitting CRPAsxd and C0sxd in
Eq. s13d leads to the plain MFA, which corresponds to a
separable sproductd density.

We may then employ Eqs. s6d or s13d to calculate the

two-site averages kOi
nOj

n8l= s2/bd] ln Z /]vnn8
ij required to

evaluate the reduced density rij and hence a certain mono-
tone or measure of the entanglement between subsystems i
and j. If not present in the original interaction, we may in
principle add the necessary terms in V and set at the end
vnn8

ij =0.

III. APPLICATION

A. Fully connected XXZ model

We will consider n qubits or spins coupled through a full
range XXZ type interaction in the presence of a transverse
magnetic field b. The Hamiltonian reads

H = bo
i=1

n

si
z − Vo

iÞj

n

fsi
xsj

x + si
ysj

y + s1 − gdsi
zsj

zg s16ad

=bSz − VfSx
2 + Sy

2 + s1 − gdSz
2g + E0, s16bd

where si denotes the spin at site i sconsidered dimensionlessd,
S=oi=1

n si the total spin, g the anisotropy, and E0=nVs3
−gd /4. It is apparent that H commutes with Sz and S2=Sx

2

+Sy
2+Sz

2, its eigenvalues being

ESM = bM − VfSsS + 1d − gM2g + E0, s17d

where M =−S , . . . ,S and S=d , . . . ,n /2, with d=0 s 1
2

d for n
even soddd. The ensuing partition function is

Z = Tr expf− bHg = o
S=d

n/2

YsSd o
M=−S

S

e−bESM , s18d

where YsSd= s n
n/2−S

d− s n
n/2−S−1

d, with Ys n
2

d=1, is the multiplic-
ity of states with total spin S and Sz=M, such that
oS=d

n/2 YsSds2S+1d=2n. In what follows we will write

V = v/n , s19d

such that all intensive energies ESM /n remain finite for n
→` and finite v.

We will analyze here the attractive case v.0 sand gø1d,
where the ground state has maximum spin S=n /2∀b ,g. If
gø0, the ground state will be fully aligned suMu=n /2d ∀b
Þ0 and no ground state entanglement will arise, whereas if
g.0, the ground state will exhibit as b increases n transi-
tions M→M −1 at

bM = gvs1 − 2Md/n , s20d

where ESM =ES,M−1, becoming fully aligned for

ubu . bc ; gvs1 − 1/nd . s21d

Thus bc is the limit field for entanglement at T=0, as all
ground states with S=n /2 and uMu,n /2 are entangled ssee
belowd.

B. Exact concurrence

We will examine here the entanglement of a pair of spins
si , jd, which is determined by the reduced two-qubit density
r2;rij =Trn−hi,jjrsTd. In the present system rsTd is com-
pletely symmetric and r2 will obviously be identical for all
pairs iÞ j. In the standard basis of si

z ,sj
z eigenstates, it will

have the form

r2 =1
p+ 0 0 0

0 p a 0

0 a p 0

0 0 0 p−

2 , s22d

where p++2p+ p−=1 and

p± = KS1

2
± si

zDS1

2
± sj

zDL =
kSz

2l − n/4

nsn − 1d
+

1

4
±

kSzl
n

,

a = ksi
+sj

−l =
kS2l − kSz

2l − n/2

nsn − 1d
,

with kOl;Tr rO the thermal average and si
±=si

x± isi
y. Hence

r2 is here completely determined by the three collective av-
erages kSzl, kSz

2l, and kS2l, which can be directly derived
from Eq. s18d as swe set k=1d

kSzl = − T
] ln Z

]b
, kSz

2l = T2]2 ln Z

]b2 + kSzl2,

kS2l = nT
] ln Z

]v
+ gkSz

2l +
ns3 − gd

4
. s23d

We may equivalently use kSz
2l=−snT /vd] ln Z /]g+n /4.

As a measure of pairwise entanglement we will employ
the concurrence C f31g, which for a general two component
system can be defined as the minimum, over all representa-
tions rij =onqnuCnlkCnu, of onqnCsuCnld, with CsuCnld
=Î2f1−trsri

nd2g the square root of the linear entropy of any
of the subsystems f32g. The entanglement of formation f33g
is similarly defined but with CsuCnld replaced by the stan-
dard entropy −tr ri

n log2 ri
n.

For a two qubit system, C can be explicitly computed as
f31g C= f2l−tr R ,0g+, where fug+; 1

2 su+ uuud /2 and l is the
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largest eigenvalue of R= fÎr2r̃2
Îr2g1/2, with r̃2

=42si
ysj

yr2
*sj

ysi
y the spin flipped density. The entanglement of

formation becomes then just an increasing function of C
fgiven by E=−on=±qn log2 qn, with q±= s1±Î1−C2d /2g, with
E=C=0s1d for a separable smaximally entangledd pair.

In the present system we then obtain

C = 2fuau − Îp+p−g+ s24d

=
2

n
3UkS2l − kSz

2l −
n

2
U

n − 1
−
Î1kSz

2l +
nsn − 2d

4

n − 1
2

2

− kSzl24
+

s25d

so that r2 will be entangled if and only if uau.Îp+p−, a
condition which directly follows from Peres criterion f34g. In
Eq. s25d 2/n is the maximum value that can be attained by C
in symmetric systems f35g, reached here for S=n /2 and M
= ± sn /2−1d sin which case uSMl is a W-stated.

T=0 behavior. Let us first briefly discuss the concurrence
in the T→0 limit, where S2 and Sz approach sharp values
SsS+1d and M, with S=n /2. Equation s25d becomes then
almost constant except for uMu close to n /2−1, leading, up to
Ofsn−1d−2g, to

C <
1

n − 1
+

4m2

1 − 4m2

1

sn − 1d2 , s26d

for m=M /n!1/2. C increases stepwise from 1/ sn−1d for
M =0 to 2/n for uMu=n /2−1, vanishing for uMu=n /2 f28g.
The ensuing behavior of C for n=20 is depicted in Fig. 1.
The dips occur at the field values s20d where the levels cross,
in which case Eq. s25d leads to a strictly constant lower value
C=1/n due to the fluctuation kSz

2l− kSzl2=1/4 at these
points.

Thermal behavior. The concurrence s25d vanishes in sym-
metric states with fixed S and M if S,n /2, with the only
exception of the case uMu=S=n /2−1, where C=2/ fnsn
−1dg sand a,0d. Hence for ubu,bc we may expect a mo-
notonous decrease of C with increasing temperature, as the
essential contribution will come from the states with S
=n /2. The behavior for ubu,bc will be discussed in detail in
the next section.

Nevertheless, for T.0 a weak pairwise entanglement
also arises for ubu.bc, i.e., when the ground state is fully
separable, up to a limit temperature TL that becomes constant
for large b. The behavior is thus similar to that arising with
nearest neighbor XX coupling f36g sand in agreement with
the persistence of global entanglement for large fields in XXZ
models f14gd, although here TL will decrease as n−1 for large
n with the scaling s19d. To prove this result, we set b.0 and
note that for b−bc@T, we may just keep in Z states with
zero, one, and two spins up sM =−n /2+0,1 ,2d for evaluat-
ing C in the lowest nonzero order fOse−bbdg. This leads to

C <
2e−bsb−bcd

n
F1 − e−bv −Î 2nh

n − 1
e−bgv/nG

+
, s27d

h = 1 − sn − 1de−bv +
1

2
nsn − 3de−2bvs1−1/nd. s28d

The field dependence in this limit is thus reduced to an ex-
ponential decay, with the limit temperature b-independent
and determined by the root of the bracket in Eq. s27d salways
positive for T→0 if g.0d. For large n, C is positive just for
low T~n−1 and we may accurately neglect e−bv and set h
<1 in Eq. s27d sin which case it is just the result from the
S=n /2 multipletd. This yields

TL <
2gv

n lnf2n/sn − 1dg
<

2gv
n ln 2 + 1

, b @ bc. s29d

The maximum value reached by C in this region sattained
close to TLd is very small s~n−2e−nsln 2dsb−gvd/2d.

C. CSPA and CMFA results for the XX case

We start by describing the XX case fg=1 in Eq. s16dg. In
the representation s16bd, the CSPA, Eq. s6d, will lead to a
two-dimensional integral over variables sx ,yd
=rscos f , sin fd associated with the linearized Hamiltonian
hsx ,yd=bSz−xSx−ySy +E0. Since fH ,Szg=0, both Zsx ,yd and
CRPAsx ,yd will be independent of the orientation f, and the
final expression can be written as

0

0.5

1.0

1.5

2.0

nC

T�v=0.005

Exact
CMFA

0 0.5 1.0

b�v

0

0.5

1.0

1.5

2.0

nC

T�v=0.025

Exact
CMFA

FIG. 1. sColor onlined Concurrence C smultiplied by nd at low
temperatures as a function of the magnetic field b for n=20 spins
coupled through the Hamiltonian s16d for g=1. The curves depict
exact and CMFA results for T /v=0.005 stop paneld, where C
reaches its maximum value 2/n for b<bc, and T /v=1/2n=0.025
sbottom paneld, where the peak at b<bc is no longer prominent
fEq. s41dg. The T→0 behavior for any g.0 is identical except for
the rescaling v→gv.
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ZCSPA =
nb

2v
E

0

`

rdre−nbr2/4vZsldCRPAsl,vd , s30d

where l=Îb2+r2 is the energy gap determined by hsx ,yd
and

Zsld = e−bE0S2 cosh
bl

2
Dn

, s31d

CRPAsl,vd =
v sinhsbl/2d
l sinhsbv/2d

, s32d

v =ÎSl − v tanh
bl

2
DSl − v

b2

l2 tanh
bl

2
D . s33d

There is here a single collective RPA energy v. For tempera-
tures lower than the mean field critical temperature Tc ssee
belowd, Eq. s33d becomes imaginary for r in an interval just
below the stationary point swhere v=0d, leading to the CSPA
breakdown when v2,−4p2T2. This is first satisfied at b=0
and r<v /2, where v< iv /2, leading to a breakdown tem-
perature T*<v /4p sb=0d. T* decreases as b increases, van-
ishing for b.v.

CMFA. The mean field equations s14d reduce here to

r = v
r

l
tanh

bl

2
s34d

and determine the minimum of the “Hartree” potential
Fsrd=nr2 / s4vd−T ln Zsld. We then need to distinguish be-
tween two regimes.

sad For ubu,v and T,Tc, where

Tc = ubu/ln
1 + ubu/v
1 − ubu/v

subu , vd s35d

the minimum of Fsrd occurs at r.0. This solution of Eq.
s34d breaks the rotational symmetry around the z axes and is
hence continuously degenerate sf undeterminedd. In this
case Eq. s34d implies that l is the root of l=v tanhsbl /2d,
being hence b-independent, the constraint l. ubu leading to
the critical temperature s35d swhich is a decreasing function
of ubu, vanishing for ubu→v and approaching v /2 for b→0d.
The Gaussian approximation s13d in the “intrinsic” variable r
leads then to

ZCMFA = es−nb/4vdsl2−b2dZsldsinh
bl

2
Î 4pn

bvs1 − xd
, s36d

x =
1

2
bv/cosh2 bl

2
=

1

2
bvS1 −

l2

v2D , s37d

where the first two factors in Eq. s36d represent the MFA
result and the rest the RPA and SPA corrections. Note that v
vanishes at this solution, in agreement with the broken
continuous symmetry, but the RPA correction s32d remains
finite sand essentiald for v→0, with CRPAsl ,vd
→sinhsbl /2d / sbl /2d.

It is apparent from Eqs. s30d and s31d that in this region
the approximation s36d will become increasingly accurate as

n increases sthe r fluctuation decreasing as n−1d, approaching
the exact result for n→`.

sbd For ubu.v or T.Tc, the minimum occurs at r=0 fnor-
mal solution of Eq. s34dg. Direct application of Eq. s13d in
the original variables sx ,yd leads then to

ZCMFA = Zsbd
sinhsbb/2d
sinhsbv/2d

, s38d

where v=b−v tanhsbb /2d.
Evaluation of the concurrence. Let us first examine the

CMFA concurrence for ubu,v. Both kSzl and kSz
2l fEq. s23dg

will be determined just by the MFA contribution in Eq. s36d,
as the rest is b independent, and given by

kSzl = − n
b

2v
, kSz

2l = kSzl2 + n
T

2v
sT , Tcd . s39d

Hence in this regime kSzl is independent of T sit is the value
minimizing bkSzl+vkSzl2 /nd while the fluctuation kSz

2l
− kSzl2 increases linearly with T, reflecting a Gaussian distri-

bution psMd~e−bvsM − kSzld
2/n. In contrast, kS2l is affected by

all terms in Eq. s36d and is given by

kS2l = Snl

2v
D2

+
n

2
F1 − xf2 − s1 + xdT/vg

s1 − xd2 G , s40d

being b independent. The first term is the Hartree part. For
T→0, l /v→1 while x→0, so that Eq. s40d approaches the
right limit n

2
s n

2 +1d owing to the RPA correction.
The CMFA concurrence is then obtained replacing Eqs.

s39d and s40d in Eq. s25d. As seen in Figs. 1 and 2, CMFA
results turn out to be extremely accurate below the critical
region, being undistinguishable from the exact ones if T is
not too small. For T→0, CMFA actually leads to the exact
result but with M replaced by the continuous variable 1

2nb /v,
representing then the exact n→` limit. Accordingly, it does
not reproduce the stepwise behavior arising for T→0 and
finite n, but remains close to the exact curve, correctly pre-
dicting the peak at b<bc stop panel in Fig. 1d.

For low T!Tc, thermal effects in the CMFA will arise
just from the Sz fluctuation in Eq. s39d, as we may still set
x=0 in Eq. s40d. As seen in the lower panel of Fig. 1, CMFA
correctly predicts the low temperature

T̃ = v/s2nd , s41d

where the peak at b<bc disappears. In fact, at T= T̃ the
CMFA concurrence has a strictly constant value C=1/n for

b,bc, while for T. T̃ it starts to decrease with increasing

field. We also note that for Tø T̃ the CMFA result is appli-

cable just for bøb*=bc−vÎ1−T / T̃ /n, becoming complex
for b.b* and being maximum just at b=b*, where C

= s1+Î1−T / T̃d /n. For T. T̃ it can, however, be applied
right up to the limit field where C vanishes in the CMFA.

As seen in Fig. 2, as T increases beyond T̃, the CMFA
provides practically exact results for C even for n=20 if
ubu& 1

2v, since the concurrence in this region vanishes below
Tc. However, the CMFA accuracy decreases significantly if
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ubu is close to v. Moreover, for ub u .v the CMFA fEq. s38dg
is not able to reproduce the exponentially small entangle-
ment arising in this region. For large fields Eq. s38d leads to

an expression similar to Eq. s27d, i.e., C< 2
ne−bsb−vdf n

n−1 s1
−e−bvd−Î2nh8

n−1
g

+
, with h8→1 for T!v, but the bracket is

now always negative since it lacks the last exponential factor
present in Eq. s27d.

On the other hand, the full CSPA significantly improves
CMFA results in the wide transitional region around b<v
arising for small n, as seen in Fig. 2. We may also appreciate
the improvement over CMFA at field b=0.9v, where the
CMFA result is inaccurate for all T whereas the CSPA result
is practically exact above the breakdown temperature, and
also at b=1.1v, where the CMFA result vanishes while CSPA
does predict the reentry of entanglement for T.0, albeit
above a certain onset temperature. Nonetheless, the CSPA
result cannot reproduce the exponentially small entangle-
ment arising for very large fields either, since it vanishes
above a certain limit field larger than v.

Results for large n. As n increases, the width of the tran-
sitional region diminishes and the CMFA prediction for ub u
,v becomes increasingly accurate, being practically exact if
n*100, as seen in Fig. 3. An expansion of the CMFA con-
currence up to Osn−1d leads to

C <
1

n
F1 − xf2 − s1 + xdT/vg

s1 − xd2 − x
T

v
sn + 1d −

2T/v
1 − b2/v2G

+
,

s42d

where the first term contains the RPA correction and provides
the only positive contribution. For T!Tc, Eq. s34d leads to
l /v<1−2e−bl<1−2e−bv, in which case x<2bve−bv and
Eq. s42d reduces, up to order x, to

C <
1

n
F1 − 2ne−bv −

2T/v
1 − b2/v2G

+
. s43d

Equation s43d provides a simple yet accurate description of C
for n*100 if ub u ,v. It implies an initial quadratic decrease
with increasing field, and an initial n-independent linear de-
crease of nC with increasing T sFig. 3d for 2ne−bv!1, fol-
lowed by a pronounced n-dependent decrease arising from
the exponential term in Eq. s43d swhich represents the effect
from the S=n /2−1 multipletd. Note also that at fixed T, en-
tanglement will disappear for n*

1
2ebvs1−2T /vd sn*8810

in the top panel of Fig. 3d.
Equation s43d leads to a simple analytic expression for the

limit field for entanglement bLsTd,

0 0.5 1.0
b�v

0

0.5nC
T�v=0.1

0.15

0.2

0.225

Exact
CMFA
CSPA

0 0.1 0.2

T�v

0

0.5

1.0

1.5

2.0

nC

b�v=0.9

b�v=0.5

b�v=1.1

Exact
CMFA
CSPA

FIG. 2. sColor onlined Concurrence for n=20 spins and g=1, as
a function of the magnetic field at different temperatures stopd and
as a function of temperature at different fields sbottomd. Exact,
CMFA, and CSPA results are depicted, that of CMFA vanishing for
b /v=1.1 slower paneld, where entanglement arises for T.0.

0 0.5 1.0
b�v

0

0.5nC

n=20

100

5000

1000

Exact
CMFA
CSPA

0 0.1 0.2

T�v

0

0.5

1.0

nC n=20

100103104105

Exact

CMFA

FIG. 3. sColor onlined Top: Concurrence as a function of the
magnetic field at T /v=0.1 and different values of the number n of
spins, for g=1. Exact, CMFA, and CSPA results practically overlap
for n*100, the concurrence vanishing for n*8810. Bottom: Con-
currence as a function of temperature at fixed field b=0.5v and
increasing values of n. Exact and CMFA results are undistinguish-
able for n*100.
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bLsTd < vÎ1 −
2T/v

1 − 2ne−bv , s44d

which is accurate for large n and T.TL fEq. s29dg, as seen in
Fig. 4. The inverse of Eq. s44d is the limit temperature TLsbd,
which is always lower than Tc fEq. s35dg and exhibits two
regimes: For TLsbd!v s2ne−v/TLsbd!1d,

TLsbd < v − ubu , s45d

which applies for large n in a narrow field interval just before
ubu=v, whereas for large n,

TLsbd <
v

ln 2n
F1 −

2

sln 2nd2s1 − b2/v2dG subu , vd ,

s46d

indicating a logarithmic decrease with n, in contrast with the
n−1 decrease arising for ub u .v fEq. s29dg. For very large n,
this yields TLsbd<v / lns2nd, independent of b. We also note
in Fig. 4 that for n=20 and 100, the CSPA improves the
CMFA prediction of TLsbd in the critical region, up to the
field region where TLsbd becomes close to the asymptotic
value s29d, although it also leads to a lower onset tempera-
ture slower sparse dotted linesd.

D. CSPA and CMFA in the XXZ case

In the general case sg,1d the CSPA leads to

ZCSPA =
1

4
Î n3b3

pv3s1 − gdE0

`

rdrE
−`

`

dzes−nb/4vdfr2+z2/s1−gdg

3ZsldCRPAsl,vd s47d

where Zsld and CRPAsl ,vd are given by Eqs. s31d–s33d with
l=Îsb−zd2+r2 and

v =ÎSl − v tanh
bl

2
DFl − vS1 − g

r2

l2Dtanh
bl

2
G .

s48d

The mean field equations s14d become now

r = v
r

l
tanh

bl

2
, z = sg − 1dv

b − z

l
tanh

bl

2
. s49d

In the symmetry-breaking phase sr.0d, feasible for g.0,
the solution for l is then identical with that for g=1, i.e.,
l=v tanhsbl /2d, independent of b and g, in which case Eq.
s49d leads to b−z=b /g, independent of T and v. This implies
the rescaling b→b /g at the CMFA level. This phase is then
feasible for ubu,gv and T,Tc, where Tc is given by Eq.
s35d with b→b /g. The ensuing Gaussian approximation to
both z and r in Eq. s47d leads to the CMFA partition function

ZCMFAsg,b,v,Td = ebvsg−1d/4ZCMFAs1,b/Îg,v,Td/Îg ,

s50d

where ZCMFAs1,b ,v ,Td is the result s36d.
From Eq. s50d we obtain kSzl=− 1

2nb / sgvd, and kSz
2l

− kSzl2= 1
2nT / sgvd fv→gv in Eq. s39d and hence in Eq.

s41dg, whereas kS2l remains unchanged fEq. s40dg. The ensu-
ing results for C exhibit the same previous features, CMFA

0 0.5 1.0
b�v

0

0.1

T
L
�v

Γ = 1

0.75

0.5

0.25

Exact

CMFA

CSPA
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T�v

0

0.5

1.0

nC
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Γ=0.25 n=20
n=20

1000 1001000

Exact

CMFA

FIG. 5. sColor onlined Top: Limit temperature for entanglement
as a function of the magnetic field b for different values of the
anisotropy g in Eq. s16d and n=100. Exact, CSPA, and CMFA
approximate results are depicted. Bottom: Concurrence C as a func-
tion of temperature at zero field for n=20, 100, and 1000 and two
different anisotropies.
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104

105
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FIG. 4. sColor onlined Limit temperature for entanglement as a
function of the magnetic field for different values of n and g=1.
Exact, CMFA, and CSPA sfor n=20 and 100d results are depicted,
undistinguishable for n*100. TL decreases logarithmically with n
for b,v and as 1/n for b.v. The sparse dashed line indicates the
mean field critical temperature Tc.
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being accurate for ub u ,gv, and the CSPA improving the
latter in the transitional region ub u <gv. This can be seen in
Fig. 5, whose upper panel depicts the quenching of the exact
and approximate limit temperatures TLsbd for increasing g.

For large n and T!Tc, the CMFA leads now to

C <
1

n
F1 − 2ne−bv −

2T/sgvd
1 − b2/sgvd2G

+
, s51d

which generalizes Eq. s43d and provides an accurate descrip-
tion for n*100 if ub u ,gv. For g,1 it implies a more pro-
nounced initial linear decrease with increasing T, as seen in
the bottom panel of Fig. 5, which for low g may persist up to
the vanishing of C even for moderate sizes sn<100 in Fig.
5d. Equation s51d leads to a limit field

bLsTd < gvÎ1 −
2T/sgvd

1 − 2ne−bv , s52d

which describes the CMFA results of Fig. 5. It implies

TLsbd < gvf1 − b2/sgvd2g ,

for 2ne−v/TLsbd!1, a condition which may now apply ∀ubu
,gv for moderate n if g is sufficiently low, whereas for
sufficiently large n,

TLsbd <
v

lns2ndF1 −
2/g

sln 2nd2f1 − b2/sgvd2gG ,

decreasing logarithmically with n and becoming independent
of g and b sfor ubu,gvd for very large n.

IV. CONCLUSIONS

We have shown the feasibility of the CSPA approach for
the determination of the pairwise entanglement in composite
systems at finite temperature. The method is tractable, requir-

ing just local diagonalizations and the evaluation of the gen-
eralized RPA energies, and unveils the crucial role played by
the RPA correlations in the description of entanglement. It
also leads to a consistent mean field+RPA treatment
sCMFAd, which, as seen in the example considered, remains
applicable and accurate in the presence of vanishing RPA
energies, arising when continuous symmetries are broken at
the mean field level.

In the XXZ model considered, the CMFA provides an ac-
curate analytic evaluation of the concurrence below the criti-
cal region subu well below bcd even in relatively small sys-
tems, providing exact results for large n if ubu,bc. The full
CSPA allows one to extend the accuracy to the critical region
sb<bcd in finite systems, above a low breakdown tempera-
ture, predicting a reentry of entanglement for T.0 for fields
above but not too far from bc, not detected at the CMFA
level. Neither CMFA nor CSPA predict, however, the expo-
nentially small entanglement arising for large fields at low
nonzero temperatures.

The present results also reveal the rich thermal entangle-
ment properties of the fully connected XXZ model. We have
shown by means of the CMFA that the limit temperature for
pairwise entanglement decreases as v / sln 2nd for very large
n if ubu,bc, whereas for ubu.bc it decreases as gv /n, be-
coming independent of b for large fields. CMFA also shows
that the T=0 peak in the concurrence just before the transi-
tion to the aligned state at b=bc disappears at a low tempera-

ture T̃<gv / s2nd. The extension of the present approach to
more complex systems, including spin chains with general
anisotropic interactions, is currently under investigation.
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