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Entanglement of two harmonic modes coupled by angular momentum

L. Rebón and R. Rossignoli
Departamento de Fı́sica-Instituto de Fı́sica de La Plata, Universidad Nacional de La Plata,

C.C. 67, 1900 La Plata, Argentina
(Received 18 September 2011; published 18 November 2011)

We examine the entanglement induced by an angular momentum coupling between two harmonic systems.
The Hamiltonian corresponds to that of a charged particle in a uniform magnetic field in an anisotropic quadratic
potential or, equivalently, to that of a particle in a rotating quadratic potential. We analyze both the vacuum and
thermal entanglement, thereby obtaining analytic expressions for the entanglement entropy and negativity through
the Gaussian state formalism. It is shown that vacuum entanglement diverges at the edges of the dynamically stable
sectors, increasing with the angular momentum and saturating for strong fields, whereas at finite temperature
entanglement is nonzero just within a finite field or frequency window and no longer diverges. Moreover, the
limit temperature for entanglement is finite in the whole stable domain. The thermal behavior of the Gaussian
quantum discord and its difference from the negativity is also discussed.
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I. INTRODUCTION

The investigation of quantum entanglement and quantum
correlations in distinct physical systems is of great interest
for both quantum information and many-body physics [1–4].
While the evaluation of entanglement in systems with a high-
dimensional Hilbert space is generally a difficult problem,
boson systems described by quadratic Hamiltonians in the
basic boson operators offer the invaluable advantage of
admitting an exact evaluation of entanglement measures in
both the ground and thermal states through the Gaussian state
formalism [5–12]. The latter allows the entanglement entropy
[13] and negativity [14,15] of any bipartition of a Gaussian
state to be expressed in terms of the symplectic eigenvalues
of covariance matrices of the basic operators. Moreover, the
positive partial transpose separability criterion [16,17] is both
necessary and sufficient for two-mode mixed Gaussian states
[5] [as well as (1,n − 1) bipartitions of n-mode Gaussian
states [7]], turning the negativity into a rigorous entanglement
indicator for these systems. There is presently a great interest
in continuous-variable-based quantum information [18] where
Gaussian states constitute the basic element.

In addition, an approximate yet analytic evaluation of the
quantum discord [19,20] in two-mode Gaussian states was
recently achieved [21,22] by restricting the local measurement
that determines this quantity to a Gaussian measurement [18].
Quantum discord is a measure of quantum correlations that
coincides with the entanglement entropy in pure states but
differs essentially from entanglement in mixed states, where
it can be nonzero even if the state is separable, i.e., with
no entanglement. The current interest in quantum discord
was triggered by its presence [23] in certain mixed-state-
based quantum computation schemes that provide exponential
speedup over classical ones [24] yet exhibit no entanglement
[25]. Important properties of states with nonzero discord were
recently unveiled [26–28].

The aim of this work is to examine, using the Gaussian
state formalism, the entanglement and quantum correlations
between two harmonic modes generated by an angular
momentum coupling. Such a system arises, for instance,

when considering a charged particle in a uniform magnetic
field in an anisotropic quadratic potential or a particle in a
rotating anisotropic harmonic trap [29–32]. The model has
been employed in several areas, including the description of
deformed rotating nuclei [31,32], anisotropic quantum dots
in a magnetic field [33], and fast rotating Bose-Einstein
condensates [34–37] in the lowest Landau level approximation
[38–40]. Containing just quadratic couplings in the associated
boson operators, the different terms in the Hamiltonian may
also be simulated in principle by standard optical means
[18,41]. For a general quadratic potential, the model exhibits
a complex dynamical phase diagram [42], presenting distinct
types of stable and unstable domains and admitting the possi-
bility of stabilizing an initially unstable system by increasing
the field or frequency [42]. The model provides an interesting
and physically relevant scenario for analyzing the behavior of
mode entanglement in different regimes and near the onset of
different types of instabilities, with the advantage of allowing
an exact analytic evaluation of entanglement and quantum
correlation measures at both zero and finite temperatures. In
addition, the present results indicate that mode entanglement
can be easily controlled in this system by modifying the
field or frequency, thus suggesting a potential for quantum
information applications. The dynamics of entanglement in
other two-mode systems was examined in Refs. [43–45].

In Sec. II we describe the model and derive the analytic
expressions for the vacuum entanglement entropy and the
thermal negativity. The basic features of quantum discord are
also discussed. The detailed behavior of entanglement with
the relevant control parameters is then analyzed in Sec. III,
where we show that while vacuum entanglement diverges
at the edges of stable sectors, being correlated with the
angular momentum, at finite temperature entanglement is finite
and nonzero just within a finite-field window and below a
finite limit temperature. A comparison between the thermal
behavior of the negativity and that of the Gaussian quantum
discord is also made, which indicates a quite different thermal
response of these two quantities, with the discord vanishing
only asymptotically for T → ∞. We summarize in Sec. IV.
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II. FORMALISM

A. Model Hamiltonian

We consider a system described by the Hamiltonian

H = 1
2

¡
P 2

x +k0
xQ

2
x

¢+ 1
2

¡
P 2

y +k0
yQ

2
y

¢ − ω(QxPy − QyPx),

(1)

which represents two harmonic modes coupled by an angular
momentum term. Here Qμ and Pμ stand for dimensionless
coordinates and momenta ([Qμ,Pν] = iδμν and [Qμ,Qν] =
[Pμ,Pν] = 0). Equation (1) arises, for instance, in the descrip-
tion of a particle of charge e and mass m in a general quadratic
potential subject to a uniform magnetic field, parallel to a
principal axis of the potential. Denoting this axis as z, such a
Hamiltonian reads

H = (P − eA/c)2
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+ 1
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(2)
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+ Hz, (3)

where A = 1
2 H × Q is the vector potential, Ä = e|H|

mc
is

the cyclotron frequency, Lz = QxPy − QyPx , Hz = 1
2 (P

2
z

m
+

KzQ2
z), and K 0

μ = Kμ + mÄ2/4. Equation (3) is also identical
to the intrinsic Hamiltonian of a particle of mass m in a
quadratic potential of constants K 0

μ rotating around the z axis
with frequency Ä/2 [31,32].

The replacements Pμ = Pμ

√
h̄mÄ0 and Qμ =

Qμ/
√

mÄ0/h̄ in Eq. (3), with Ä0 a reference frequency, leads
to H = h̄Ä0H + Hz, with H given by Eq. (1) and

k0
μ = kμ + ω2, kμ = Kμ

mÄ2
0

, ω = Ä

2Ä0
. (4)

We note that in terms of the boson operators bμ = (Qμ +
iPμ)/

√
2, the scaled angular momentum Lz = Lz/h̄ in Eq. (1)

is

Lz = QxPy − QyPx = −i(b†xby − b†ybx), (5)

which can then be simulated by standard linear optics, although
for such bosons the first two terms in Eq. (1) become

P
μ=x,y g+

μ (b†μbμ + 1
2 ) + g−

μ (b2
μ + b†μ

2
), with g±

μ = k0
μ±1
2 , and

require nonlinear means. If K 0
x > 0, we can set k0

x = 1,
i.e., g−

x = 0, by adequately choosing Ä0 in Eq. (4), but g−
y

remains nonzero in the relevant anisotropic case k0
y 6= k0

x ,
where [H,Lz] 6= 0. The change to normal x and y bosons, such
that H = P

μ=x,y

p
k0
μ(b̃†μb̃μ + 1

2 ) − ωLz, will lead instead to

an additional term proportional to (1 − p
k0
x/k

0
y)(b̃x b̃y − b̃

†
x b̃

†
y)

in Lz.

B. Diagonalization and stability

If the parameter

1 =
q

(k0
x − k0

y)2/4 + 2ω2(k0
x + k0

y) (6)

is nonzero, the canonical transformation

P 0
μ = Pμ + γQ−μ, Q0

μ = Qμ − ηP−μ

1 + ηγ
, (7)

where γ = 21−k0
x+k0

y

4ω
, η = 2γ

k0
x+k0

y
, and the labels (x,y) are now

identified with (+,−), allows Eq. (1) to be written as [42]

H =
X
μ=±

1

2

¡
αμP 02

μ + βμQ02
μ

¢
, (8)

where α± = 1 − ω
1

(γ ∓ ω) and β± = 1
ω

(γ ± ω). If 1 = 0
and ω 6= 0, a separable representation of the form of Eq.
(8) in terms of canonical variables ([Q0

μ,P 0
ν] = δμν and

[P 0
μ,P 0

ν] = [Q0
μ,Q0

ν] = 0) is not feasible. Such a possibility
can arise in the repulsive case kμ 6 0, when the 4 × 4 matrix
representing the quadratic form in Eq. (1) is not diagonalizable
with the symplectic metric and leads to nontrivial Jordan
forms [42].

For general real values of k0
μ in Eq. (1), the coefficients αμ

and βμ in Eq. (8) can be positive, zero, negative, and even
complex [42]. We will consider here those cases for which Eq.
(8) can be further written as

H =
X
μ=±

λμ

µ
b0†

μb0
μ + 1

2

¶
, (9)
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FIG. 1. (Color online) Left: Sectors with a discrete spectrum at fixed kμ (particle in a magnetic field plus quadratic potential) in the
anisotropy-frequency plane (ky/|kx |,ω/ω0), where ω0 = √|kx |. The positive-definite sector A corresponds to an attractive potential kμ > 0 for
μ = x,y, whereas the nonpositive sector B corresponds to a repulsive potential kμ < 0 for μ = x,y with |ω| > ωc [Eq. (11)]. Right: Same
sectors at fixed k0

μ > 0 (particle in a rotating quadratic potential) in the (k0
y/k0

x,ω/ω0
0) plane, where ω0

0 = p
k0

x and we have set k0
x > 0. Here

A is the positive-definite sector [Eq. (12)], B1 is the nonpositive sector with k0
y > 0 [Eq. (13)], and B2 is the nonpositive sector with k0

y < 0
[Eqs. (14) and (15)]. Quantities plotted in all figures are dimensionless.
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|λ±| =
p

α±β± =
µ

k0
x + k0

y

2
+ ω2 ± 1

¶1/2

, (10)

with λμ real and b0
μ = p

βμ/2λμQ0
μ + i

p
αμ/2λμP 0

μ standard
bosons ([b0

μ,b0†
ν ] = δμν and [b0

μ,b0
ν] = [b0†

μ,b0†
ν ] = 0) such that

H exhibits a discrete spectrum. In these cases the matrix
representing Eq. (1) is diagonalizable with the symplectic
metric, with real symplectic eigenvalues [42].

At fixed kμ in Eq. (4) (charged particle in a magnetic field),
Eq. (9) is valid in the following domains [42] (Fig. 1):

(A) kx > 0 and ky > 0, where α± > 0, β± > 0, and λ± > 0.
It is the standard case of an attractive quadratic potential, where
H is positive definite and hence fully stable.

(B) kx < 0, ky < 0, and

|ω| > ωc =
√−kx + p−ky

2
, (11)

where α+ > 0 and β+ > 0 but α− < 0 and β− < 0, implying
λ+ > 0 but λ− < 0 in Eq. (9). It is the case of a repulsive
quadratic potential, where H becomes equivalent to a standard
plus an inverted oscillator if |ω| > ωc: It has no minimum
energy, but is dynamically stable, as the motion remains
bounded [42]. The dynamics around a quadratic potential
maximum can then be stabilized by a sufficiently strong field.

(C) kx = ky = 0 and ω 6= 0. It is the Landau case, where
1 = 2ω2, α+ = 1, and β+ = 4ω2, whereas α− = β− = 0,
leading to λ+ = 2|ω| and λ− = 0. Equation (9) becomes a
standard plus a vanishing oscillator. Here the final choice of
b0

− and b
0†
− is not fixed, as λ− = 0. We will set b0

− = √
ωQ0

− +
iP 0

−/
√

4ω, according to the kμ → 0 limit of the isotropic case
kx = ky = k, where λ± = √

k0 ± ω, 1 = 2ω
√

k0, γ = √
k0 =

1/η, αμ = 1
2λμ/

√
k0, βμ = 2λμ

√
k0, and k0 = k + ω2.

At fixed k0
μ in Eq. (1) (rotating potential), the previous

sectors are seen quite differently. Sector (A) corresponds to
k0
x > 0, k0

y > 0, and

|ω| < ω0
c1 = min

£p
k0
x,

q
k0
y

¤
, (12)

indicating a maximum allowable frequency in an attractive
rotating quadratic potential (right panel in Fig. 1). Sector (B)
corresponds to

|ω| > ω0
c2 = max

£p
k0
x,

q
k0
y

¤
(13)

if k0
x > 0 and k0

y > 0. Thus, as the frequency |ω| is increased
above ω0

c1 a finite instability interval ω0
c1 < |ω| < ω0

c2 arises
in the anisotropic case k0

x 6= k0
y , although dynamical stability

is again recovered for |ω| > ω0
c2. In addition, sector (B)

also corresponds here to k0
x > 0 and k0

y < 0 (or vice versa)
provided [42]

|ω| >
p

k0
x, − k0

x 6 k0
y < 0, (14)

p
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c3 = k0
x − k0

yp
8(k0

x + k0
y)

, − 3k0
x < k0

y < −k0
x.

(15)

Hence a quadratic potential repulsive in one of the axes can be
stabilized by increasing the frequency above

p
k0
x if −3k0

x <

k0
y < 0, although stability holds just within a finite interval if

−3k0
x < k0

y < −k0
x . Finally, the Landau case (C) corresponds

to k0
x = k0

y = ω2.

C. Covariance matrix

Both the vacuum |00i of the primed bosons b0
μ in Eq. (9)

and the thermal state

ρ = Z−1 exp[−βH ], (16)

well defined in the stable region (A) [with β = 1/T >

0 and Z = Tr exp(−βH ) = P
μ=±{2 sinh(βλμ/2)}−1], are

Gaussian states [5,7–12]. Any expectation value and in
particular the entanglement between the x and y modes in these
states will then be completely determined by the elements of
the basic covariance matrix of the operators Qμ and Pμ, which
we define as [12] (note that here hQμi = hPμi = 0)

DR = hRRt i − MR =
µ

Q L

Lt P

¶
− 1

2
MR, (17)

MR = RRt − (RRt )t = i

µ
0 1

−1 0

¶
, (18)

where R = (Qx,Qy,Px,Py)t and hence Qμν = hQμQνi,
Pμν = hPμ Pνi, and Lμν = hQμPν + PνQμi/2.

Equation (17) is unitarily related to the non-negative
bosonic contraction matrix [12,31]

D = hZZ†i − M =
µ

F G

Ḡ 1 + F̄

¶
, (19)

M = ZZ† − [(Z†)tZt ]t =
µ

1 0
0 −1

¶
, (20)

where Z = (bx,by,b
†
x,b

†
y)t , Fμν = hb†νbμi, Gμν = hbμbνi, and

bμ = (Qμ + iPμ)/
√

2. Since R = UZ, with U = ( 1 1
−i i )/

√
2,

we have DR = UDU† and MR = UMU†.
In both the vacuum and the thermal state [Eq. (16)] we have

hb0
μb0

νi = 0, hb0†
μb0

νi = f 0
μδμν, (21)

where f 0
μ = 0 in the vacuum state and

f 0
μ = − 1

β

∂ ln Z

∂λμ

− 1

2
= 1

eβλμ − 1
(22)

in the thermal state. By inverting Eq. (7), we then obtain
hQxQyi = hPxPyi = Lμμ = 0 for μ = x,y and

­
Q2

μ

® = ­
Q02

μ

® + η2

(1 + γ η)2

­
P 02

−μ

®
, (23)

­
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μ
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(1 + γ η)2

­
P 02

μ

® + γ 2
­
Q02

−μ

®
, (24)

hQμP−μi = −γ
­
Q02

μ

® + η

(1 + γ η)2

­
P 02

−μ

®
, (25)

where ­
Q02

μ

® = ¡
f 0

μ + 1
2

¢λμ

βμ

,
­
P 02

μ

® = ¡
f 0

μ + 1
2

¢λμ

αμ

. (26)

These averages provide all the elements of Eq. (17).
The symplectic eigenvalues of DR and D are coinci-
dent and given precisely by f 0

μ and −1 − f 0
μ [Eqs. (21)

and (22)], with physical states corresponding to f 0
μ > 0.
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They are just the standard eigenvalues of the matrix
DM = (F −G

Ḡ −1−F̄
) or, equivalently, DRMR = UDMU† =

i(−L Q

−P Lt ) − I/2.

D. Vacuum entanglement

The entanglement of the vacuum |00i is a measure of its
deviation from a product state |0xi ⊗ |0yi. It can be quantified
through the entanglement entropy [13], which is just the von
Neumann entropy of the reduced state ρμ = Tr−μ ρ of any
of the modes (μ = x,y) since for a pure state (ρ = |00ih00|)
they are isospectral. The state ρμ is a Gaussian mixed
state completely determined by the reduced 2 × 2 covariance
matrix

DR
μ =

Ã ­
Q2

μ

®
Lμμ

Lμμ

­
P 2

μ

®
!

− 1
2M

R, (27)

whose symplectic eigenvalues are fμ = det1/2[DR
μ +

1
2MR] − 1

2 and −1 − fμ. Here Lμμ = 0 and hence

fμ =
q­

Q2
μ

®­
P 2

μ

® − 1
2 , (28)

which is just the deviation of the mode uncertainty from its
minimum value. The entropy of ρμ is therefore that of a boson
system with average occupation fμ:

S(ρμ) = −Tr ρμ log ρμ = h(fμ), (29)

h(f ) = −f log f + (1 + f ) log(1 + f ), (30)

which is just a positive concave increasing function of fμ.
The vacuum is then entangled if and only if fμ > 0, with S ≈
−fμ(ln fμ − 1) for fμ → 0 and S ≈ ln fμ + 1 for fμ → ∞
[for base e logarithm in Eq. (30)].

In the vacuum case (f 0
μ = 0) Eqs. (23)–(28) lead to

fμ = 1

2

·
ω̄

ω̄g

Ã
ω̄2

g + ω2

ω̄2 + ω2

!1/2

− 1

¸
, (31)

which is independent of μ, where

ω̄ = ωx + ωy

2
, ω̄g = √

ωxωy (32)

denote the arithmetic and geometric averages of the origi-
nal oscillator frequencies ωμ = p

kμ. Entanglement is thus
completely determined by the ratios ω/ω̄ and ω̄g/ω̄ (with
ω̄g/ω̄ 6 1) or, equivalently, ω/ωx and ωy/ωx . It is then
nonzero for all ω > 0 if ωx 6= ωy , i.e., ω̄ 6= ω̄g (anisotropic
case). In sector A, the ωμ are positive, whereas in B they are
both imaginary, implying

fμ = 1

2

· |ω̄|
|ω̄g|

µ
ω2 − |ω̄g|2
ω2 − |ω̄|2

¶1/2

− 1

¸
, kμ < 0. (33)

E. Thermal entanglement

For a mixed bipartite state, such as the thermal state [Eq.
(16)] at T > 0, entanglement is a measure of its deviation
from a separable state [46], i.e., from a convex combination
of product states ρs = P

α qαρα
x ⊗ ρα

y , where qα > 0 andP
α qα = 1. Such states can be created by local operations

and classical communication. For a two-mode Gaussian mixed
state, entanglement can be quantified by the negativity [15],
which is minus the sum of the negative eigenvalues of the
partial transpose ρty of the total density matrix ρ, measuring
then the degree of violation of the positive partial transpose
criterion [16,17] by the entangled state. For a two-mode
Gaussian state, a positive negativity is a necessary and
sufficient condition for entanglement [5].

A partial transposition with respect to y implies the
replacement Py → −Py in the full covariance matrix [Eq.
(17)] [5,7–9], leading to a matrix D̃R . The negativity can then
be evaluated in terms of the negative symplectic eigenvalues
of this matrix, which will have eigenvalues f̃μ and −1 − f̃μ,
with f̃μ > −1/2 [12]. Replacing Lxy by −Lxy in Eq. (17), we
obtain here

f̃± = (α̃ ±
p

α̃2 − β2)1/2 − 1
2

=
q

1
2 (α̃ + β) ±

q
1
2 (α̃ − β) − 1

2 , (34)

where α̃ and β can be expressed in terms of the local
symplectic eigenvalues fμ [Eq. (28)] and the global symplectic
eigenvalues f 0

μ [Eq. (22)]:
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®¢ + hQxPyihQyPxi

=
X

μ

·µ
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2
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2

µ
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¶2¸
, (35)
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y
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Q2

y
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x
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Y
μ

µ
f 0
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2

¶
. (36)

[Note that if α̃ is replaced by α = 1
2 (hQ2

xihP 2
x i + hQ2

yihP 2
y i) −

hQxPyihQyPxi, Eq. (34) becomes f 0
±.] While fμ de-

pends on μ for T > 0, Eq. (35) depends just on the
sum

X
μ

µ
fμ + 1

2

¶2

= ω̄2
¡
ω2 + ω̄2

g

¢
2ω̄2

g(ω2 + ω̄2)

Ã
1 + 2

X
μ
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!

+
¡
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g

¢
(ω2 + 2ω̄2) + 2ω̄4

2(ω2 + ω̄2)
¡
ω2 + ω̄2 − ω̄2

g

¢ X
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£¡
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¢
(2ω̄2 − ω̄2
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¤

ω̄2
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¡
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μ

f 0
μ.

The negativity can then be expressed as [12]

N = 1

2
(Tr|ρty | − 1) = 1

2

"Y
μ

1

1 + f̃μ − |f̃μ| − 1

#

= max

· −f̃−
1 + 2f̃−

,0

¸
(37)

since only f̃− can be negative. The entanglement condition
f̃− < 0 leads to α̃ > 1

8 + 2β2 orX
μ

fμ(1 + fμ) >
X

μ

f 0
μ(1 + f 0

μ) + 2
Y
μ

f 0
μ(1 + f 0

μ),

(38)
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which imposes a temperature-dependent lower bound on the
average local occupation.

In the vacuum case f 0
μ = 0, Eq. (38) implies just fμ > 0,

while Eqs. (34)–(37) reduce to

f̃− = fμ − p
fμ(fμ + 1), N = fμ + p

fμ(fμ + 1),

(39)

with fμ given by Eq. (31), in agreement with the general
results for pure Gaussian states [12]. Both −f̃− and N are
again concave increasing functions of fμ at T = 0 and can be
taken as alternative vacuum entanglement measures.

F. Quantum discord

Quantum discord [19] is essentially a measure of the
deviation of a bipartite mixed quantum state from a classically
correlated state, i.e., a state diagonal in a standard or condi-
tional product basis. For a general bipartite system A + B, the
quantum discord DB can be defined as the minimum difference
between the conditional von Neumann entropy of A after an
unread local measurement MB in B and the original quantum
conditional entropy S(A|B) = S(A,B) − S(B) [19]:

DB = min
MB

X
j

pjS(ρA/j ) − [S(ρAB) − S(ρB )], (40)

where, for a measurement MB based on local projectors
Pj (

P
j Pj = IB), pj = TrρABIA ⊗ Pj is the probability of

outcome j and ρA/j is the reduced state of A after such
an outcome. Equation (40) can be also expressed as the
minimum difference between the original mutual information
I (A : B) = S(A) − S(A|B), which measures all correlations
between A and B, and that after the unread local measurement,
S(A) − P

j pjS(ρA/j ), which contains the classical part of the
quantum correlations [19,20].

For a pure state (ρ2
AB = ρAB) both S(ρAB) and S(ρA/j )

vanish and DB reduces to the entanglement entropy S(ρB) =
S(ρA), with DA = DB [19]. For a mixed state, however,
DB is not an entanglement measure, being in fact nonzero
for most separable states [47] and vanishing just for those
separable states of the form ρc = P

j pjρA/j ⊗ Pj (classically
correlated with respect to B), which remain unaltered after the
local measurement MB . In general, DB 6= DA for mixed states.
Hence, for a bipartite system with a nondegenerate ground state
in a thermal equilibrium state, such as the system under study,
differences between quantum discord and entanglement and
between DA and DB will arise only at finite temperature.

The exact evaluation of DB involves a difficult mini-
mization over all local measurements MB . Nonetheless, for
a two-mode Gaussian state, a minimization restricted to
Gaussian measurements was recently shown to be analytically
feasible [21,22,48]. For such measurements in the present
system, Eq. (40) becomes, choosing B = y and using Eqs. (22)
and (29)–(30),

Dy = min
My

h(f
My

x ) − [h(f 0
+) + h(f 0

−) − h(fy)], (41)

where f
My

x denotes the symplectic eigenvalue of the covariance
matrix DMy

x associated with ρx/j , which depends on the
2 × 2 covariance matrix DMy

determining the local Gaussian

measurement My [21,22]. The final result was provided in
Ref. [22] and can be fully expressed in terms of the local
invariants A = 4(fx + 1

2 )2, B = 4(fy + 1
2 )2, C = 2

P
μ(f 0

μ +
1
2 )2 − (fμ + 1

2 )2, and D = Q
μ 4(f 0

μ + 1
2 )2, which determine

the quantity Emin of Ref. [22], with minMy
f

My

x = 1
2

√
Emin −

1
2 . It can be shown that if Dy > 1 the two-mode Gaussian state
is entangled [21,22]. Moreover, the only two-mode Gaussian
states with Dy = 0 are product states [22]. The expression for
Dx (local measurement in x) is obviously similar (x ↔ y in
previous formulas).

III. RESULTS

A. Vacuum entanglement

Let us now analyze the main features of Eq. (31). We first
consider fixed kμ in Eq. (4) (charged particle in a magnetic
field). In the isotropic case ωx = ωy , ω̄ = ω̄g , and fμ = 0
∀ω. There is no entanglement since Lz commutes in this case
with H and leaves the isotropic product vacuum invariant. For
|ωx − ωy | ¿ ω̄, Eq. (31) leads to

fμ ≈ ω2

16ω̄2(ω̄2 + ω2)
(ωx − ωy)2 + O((ωx − ωy)4), (42)

indicating a quadratic vanishing of fμ in this limit. Entangle-
ment also vanishes for ω → 0 (no coupling), where

fμ ≈ 1

4

Ã
1

ω̄2
g

− 1

ω̄2

!
ω2 + O(ω4). (43)

In contrast, for ω → ∞, a remarkable feature is that fμ

approaches a finite limit, which depends just on the anisotropy
ωy/ωx : For ω À |ω̄| Eq. (31) leads to

fμ ≈ 1

2

·
ω̄

ω̄g

− 1

¸
+ O(ω−2). (44)

In sector A, fμ, and hence S(ρμ), is an increasing function
of ω (Fig. 2). Mode entanglement is then enhanced just by
increasing the field, although it will saturate for strong fields.
This saturation is a consequence of the balance between the
oscillator part and the coupling ωLz in Eq. (1), as k0

μ =
kμ + ω2 also becomes large, thus reducing hQ2

μi: For ω → ∞,
hQ2

μi ≈ ω̄
2ωμ

ω−1 → 0 while hP 2
μi ≈ ω̄

2ω−μ
ω → ∞, leading to

the finite limit [Eq. (44)].
In contrast, fμ, and hence entanglement, will diverge at the

edges of the dynamically stable region. For instance, if ωy →
0, ω̄ → ωx/2 whereas ω̄g → 0, implying fμ ∝ 1/

√
ωy :

fμ ≈ 1

2

"µ
ω̄

2ωy

¶1/2
ω√

ω̄2 + ω2
− 1

#
(45)

and hence S(ρμ) ≈ 1
2 log(ωx/ωy) plus constant terms. This

divergence stems from that of hQ2
yi (or hP 2

x i) in this limit,
with hP 2

y i and hQ2
xi remaining constant [Eqs. (23)–(26)].

In the repulsive sector B, fμ diverges for ω → |ω̄| = ωc

[Eq. (11)], where both hQ2
μi and hP 2

μi diverge:

fμ ≈ 1

2

"µ |ω̄|
ω − |ω̄|

¶1/2 µ |ω̄|2 − |ω̄g|2
2|ω̄g|2

¶1/2

− 1

#
. (46)
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FIG. 2. (Color online) Entanglement entropy S = S(ρμ)
[Eq. (29)] between the two modes as a function of ω in the vacuum
of the Hamiltonian [Eq. (1)] at fixed kμ = ω2

μ for ratios ωy/ωx =
0.1, . . . ,0.5 and ω0 = |ωx |. The top panel corresponds to sector A

(attractive potential kμ > 0) and the bottom panel corresponds to
sector B (repulsive potential kμ < 0 and |ω| > ωc), where S diverges
for ω → ωc [Eq. (11)]. In both cases S approaches the same finite
limit for ω → ∞.

It is then seen that here fμ, and hence S(ρμ), decreases as ω

increases from ωc (Fig. 2, bottom panel), i.e., as the system
becomes dynamically stabilized by the field, reaching, for
ω → ∞, the same previous limit [Eq. (44)]. At fixed |ky/kx |,
the vacuum entanglement is then strictly larger in the unstable
sector B (kμ < 0).

At fixed k0
μ (rotating potential) the behavior with frequency

is quite different (Fig. 3). We should now replace

ωμ =
q

ω0
μ

2 − ω2, ω0
μ =

q
k0
μ (47)

in Eqs. (31) and (32). For ω0
x = ω0

y there is of course no
entanglement. For |ω0

x − ω0
y | ¿ ωx , we have

fμ ≈ ω2

16
¡
ω2 − ω02

x

¢2 (ω0
x − ω0

y)2 + O((ω0
x − ω0

y)4). (48)

Entanglement also vanishes for ω → 0, where Eq. (43) still
holds (ω0

μ = ωμ at ω = 0).
Conversely, as ω increases, fμ increases rapidly and, in

contrast with the previous case, diverges for ω → ω0
c1 [Eq.

(12)], where, assuming ω0
c1 = ω0

y < ω0
x ,

fμ ≈ 1

2

·µ
ω03

y (ω02
x − ω02

y )

2(ω0
y − ω)

¡
3ω02

y + ω02
x

¢2

¶1/4

− 1

¸
, (49)

implying S(ρμ) ≈ 1
4 ln[ω0

y/(ω0
y − ω)] plus constant terms. In

this limit hQ2
yi and hP 2

x i diverge while hQ2
xi and hP 2

y i stay

constant, as ωy =
√

ω02
y − ω2 → 0. As ω increases further,

0 0.5 1.0 1.5 2.0
Ω Ω0'

0
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Ωy' Ωx
' 0.1

0.90.9

0.1

0 0.5 1.0 1.5 2.0 2.5
Ω Ω0'

0
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1.0

1.5
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Ωy'
2 Ωx

2' 1

-1.1

-0.9

FIG. 3. (Color online) Entanglement entropy between the two
modes as a function of ω in the vacuum of the Hamiltonian [Eq. (1)]
at fixed k0

μ = ω02
μ for ratios ω0

y/ω
0
x = 0.1,0.3, . . . ,0.9 (top) and

(ω0
y/ω

0
x)2 = −1.3, − 1.2, . . . , − 0.7 (bottom), with ω0

0 = ω0
x . The

top panel corresponds to k0
μ > 0, with the positive-definite sector A

on the left, where S diverges for ω → ω0
c1 = ω0

y , and the nonpositive
sector B1 on the right (ω > ω0

c2 = ω0
x), where S diverges at ω0

x and
vanishes for ω → ∞. The bottom panel corresponds to k0

x > 0 and
k0

y < 0 (sector B2), where S diverges for ω → ω0
x and also ω → ω0

c3

[Eq. (15)] if (ω0
y/ω

0
x)2 < −1. In the critical case (ω0

y/ω
0
x)2 = −1

(k0
y = −k0

x), fμ and S saturate for large ω [Eq. (52)].

the system enters the instability window, although for ω > ω0
c2

[Eq. (13)], it recovers a discrete spectrum, entering sector B1.
For ω → ω0

c2, fμ diverges as in Eq. (49), with ω0
y ↔ ω0

x if
ω0

c2 = ω0
x .

In sector B1, fμ, and hence the entanglement, decreases
as ω increases, vanishing for ω → ∞, in contrast with the
behavior at fixed kμ in sector A. In this limit the vacuum
of H now becomes that associated with ωLz, which is an
isotropic product Gaussian state with Lz = 0 and hence zero
entanglement. Then hQ2

μi and hP 2
μi stay finite and their product

approaches minimum uncertainty, leading to

fμ ≈
¡
ω02

x − ω02
y

¢2

32ω2
¡
ω02

x + ω02
y

¢ + O(ω−4). (50)

In the unstable domain B2, the behavior with ω is the same
as in B1 when k0

x > 0 and −k0
x < k0

y < 0. However, for k0
x >

0 and −3k0
x < k0

y < −k0
x , we also have the upper instability

limit in Eq. (15) (ω0
c3). In this case fμ first decreases with

increasing ω, reaching a minimum, but then starts again to
increase, diverging for ω → ω0

c3 where now both hQ2
μi and

hP 2
μi diverge, leading to

fμ ≈ 1

2

"µ
ω0

c3

2(ω0
c3 − ω)

¶1/2

− 1

#
. (51)
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FIG. 4. (Color online) Entanglement entropy between the two
modes as a function of the scaled average angular momentum hLzi =
hLzi/h̄ [Eq. (5)] in the vacuum of Eq. (1) at fixed kμ = ω2

μ (solid and

dashed lines) and at fixed k0
μ = ω0

μ
2 (dash-dotted and dotted lines)

for selected ratios ωy/ωx and ω0
y/ω

0
x and variable ω. The solid and

dash-dotted lines (red) correspond to sector A (kμ > 0 or k0
μ > 0 and

|ω| < ω0
y), the dashed and dotted lines (blue) correspond to sectors

B (kμ < 0 and |ω| > ωc) and B1 (k0
μ > 0 and |ω| > ω0

x). S is an
increasing function of |hLzi| in all sectors.

We then obtain different O(ω − ωc)−1/4 and O(ωc − ω)−1/2

divergences of fμ at the stability borders ω0
x and ω0

c3,
respectively.

In the special critical case k0
y = −k0

x (ω0
y = iω0

x), where
ω0

c3 → ∞, Eq. (31) leads to

fμ = 1

2

⎡
⎣µ

1 + ω2q
ω4 − ω02

x

¶1/2

− 1

⎤
⎦ (52)

and hence to a finite asymptotic limit fμ = 1
2 (

√
2 − 1) for

ω → ∞, in contrast with Eq. (50), as also appreciated in
Fig. 3. In this limit hQ2

μi diverges whereas hP 2
μi vanishes, the

product approaching 1/2. Hence, as ω increases, fμ vanishes
if k0

y < −k0
x , saturates if k0

y = −k0
x , and diverges (at ω = ω0

c3)
if −3k0

x < k0
y < −k0

x .
The behavior of fμ, and hence S(ρμ), with ω is qualitatively

similar to that of the average angular momentum hLzi. At fixed
kμ, the latter also saturates for ω → ∞ [hLzi → (ω̄/ω̄g)2 − 1]
and diverges for ω → ωc [hLzi ∝ (ω − ωc)−1/2], whereas at
fixed k0

μ it diverges for ω → ω0
ci [hLzi ∝ (ω − ω0

ci)
−1/2 for

i = 1,2] and vanishes for ω → ∞. Entanglement is then an
increasing function of |hLzi| at fixed kμ or k0

μ, as seen in
Fig. 4, although it is not fully determined by |hLzi|, as the latter
is not invariant under local transformations (in contrast with
fμ). At fixed hLzi, higher ratios ky/kx < 1 originate a higher
entanglement (Fig. 4). For small ω, hLzi ∝ ω and hence fμ ∝
hLzi2 for small hLzi in sector A. However, at fixed k0

μ, hLzi also
vanishes for large ω, where hLzi ∝ ω−3. Hence, in sector B1

and according to Eq. (50), fμ ∝ hLzi2/3 for small hLzi, leading
to an infinite initial slope (dotted line in Fig. 4). At fixed hLzi
and k0

μ, entanglement is then stronger in the unstable sector B1

(ω > ω0
c2). An exceptional behavior occurs in the critical case

k0
y = −k0

x [Eq. (52)], where for ω → ∞, hLzi ∝ ω−2 vanishes
while fμ remains finite. In this special limit there is finite
entanglement with vanishing angular momentum. In contrast,
close to the divergences, fμ ∝ hLzi (ω → ωc) or hLzi1/2 (ω →
ω0

ci , i = 1,2), implying S(ρμ) ∝ ln hLzi for large hLzi.

0 2.5 5.0 7.5
Ω Ω0
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0.2

 T
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Ω

0

k y Ω0
2 0.99

k y Ω0
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0 0.25 0.5 0.75 1.0
Ω Ω0'

0

0.1

0.2

 T
E
Ω

0'

k'y Ω0
'2 0.95

FIG. 5. (Color online) Scaled limit temperatures for entanglement
TE at fixed kμ (top) and at fixed k0

μ (bottom), as a function of frequency
for different ratios ky/kx = 0.01,0.1, . . . ,0.9,0.99 (top) and k0

y/k0
x =

0.05,0.1, . . . ,0.95 (bottom), with ω0 = ωx = √
kx and ω0

0 = ω0
x =p

k0
x . At fixed kμ, TE vanishes for large ω [Eq. (55)] whereas at fixed

k0
μ, it approaches a finite value at the upper stability limit ω0

c1 = p
k0

y .

B. Thermal entanglement

Let us now examine the thermal entanglement in the stable
sector A. We first depict in Fig. 5 the limit temperature
for entanglement TE , determined from the condition f̃− = 0
[equality in Eq. (38)]. This temperature remains finite for all
values of kμ or k0

μ, including the edge of the sector (kμ → 0
or |ω| → p

k0
μ), where the vacuum fμ diverges. At the edge,

λ− → 0 and hence a finite T already gives rise to a spread over
all energy levels (f 0

− → ∞), which diminishes and eventually
eliminates the entanglement. A related fundamental effect is
that at finite T > 0, entanglement does not diverge at the edge,
but stays finite or vanishes, depending on the value of T .

More precisely, for ωy → 0 and fixed ωx > 0, λ+ →p
4ω2 + ω2

x whereas λ− ≈ ωyωx/λ+, implying f 0
− ≈ T/λ− ≈

T λ+/ωxωy . Hence, in this limit Eqs. (34)–(36) lead to

f̃− = 1

2

⎡
⎣Ã

T λ4
+(1 + 2f 0

+)2

ω2
x

£
2ω2λ+(1 + 2f 0+) + T ω2

x

¤
!1/2

− 1

⎤
⎦ , (53)

which remains finite and above −1/2 if T > 0. This implies
a finite negativity in this limit if T > 0, with N ∝ T −1/2 for
T → 0 according to Eq. (37). Therefore, at finite temperature
the vacuum divergences of the entanglement can only be
probed indirectly through the T −1/2 behavior of N near the
edge at sufficiently low T .
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In addition, Eq. (53) entails a finite limit temperature TE ,
obtained from the condition f̃− = 0 in Eq. (53):

TE = 2(1 + 2f 0
+)ω2ω2

xλ+
(1 + 2f 0+)2λ4+ − ω4

x

, (54)

which is a transcendental equation for TE (f 0
+ depends on TE).

The maximum limit temperature T M
E at fixed kx = ω2

x or T 0M
E

at fixed k0
x = ω02

x is in fact obtained in this limit (ωy = 0 or
ω0

y = ω): At fixed kx , T M
E ≈ 0.24ωx , attained at ω ≈ 0.38ωx ,

while at fixed k0
x , T 0M

E ≈ 0.23ω0
x , attained at ω ≈ 0.28ω0

x .
At fixed kμ, the limit temperature TE as a function of

ω exhibits first a maximum and then vanishes for ω → ∞
(top panel in Fig. 5), i.e., in the limit where the vacuum
entanglement saturates. The reason is that λ− also vanishes for
ω → ∞ (λ− ≈ ωxωy/2ω), implying TE ∝ ω−1 in this limit:

TE ≈ ωxωy

2ω ln ωx+ωy

ωx−ωy

. (55)

In fact, for ω → ∞ and fixed kμ (with ky < kx), Eqs. (34)–(36)
lead to

f̃− ≈ 1

2

"µ
(1 + 2f 0

−)ωy

ωx

¶1/2

− 1

#
, (56)

such that f̃− = 0 for 1 + 2f 0
− = ωx/ωy , which leads to

Eq. (55). In contrast, for ω → 0, T vanishes logarithmically
(TE ∝ −1/ ln ω) and the same occurs for ωy → ωx since
in these limits λ± remain both finite whereas the negativity
vanishes. At fixed T , we then obtain a finite-frequency window
for entanglement, which narrows for increasing temperature or
decreasing anisotropy, as seen in Fig. 5 and also Fig. 6, where
the negativity [Eq. (37)] is depicted. Entanglement ceases to be
correlated with hLzi as the temperature increases (hLzi ∝ ωT

for high T ).
At fixed k0

μ, the behavior of TE and N look quite different, as
now ω is bounded above by ω0

y (assuming ω0
y < ω0

x). For ω →
ω0

y , TE is then determined by Eq. (54), with ωx → p
ω02

x − ω2,
and remains finite. Actually, as verified in the bottom panel of
Fig. 5, TE acquires in this border its maximum value as ω

increases at fixed k0
μ if ω0

y < ω0
yc ≈ 0.28ω0

x , while if ω0
y >

ω0
yc the maximum is attained at an intermediate frequency.

Consequently, at fixed T < T 0M
E there is again entanglement

within a certain frequency window, which extends up to the
stability border ω = ω0

y if ω0
y < ω0

yc or T < TE at ω = ω0
y

(bottom panel in Fig. 6). The absolute maximum T 0M
E is

obtained at this border precisely at ω0
y = ω0

yc. For ω → 0 or
ω0

y → ω0
x , TE again decreases logarithmically.

C. Comparison with quantum discord

We finally compare in Fig. 7 the thermal behavior of
the negativity with that of the Gaussian quantum discord
Dy [Eq. (41)] and also Dx . For reference we have also
plotted the entropy of one of the modes (x), no longer a
measure of entanglement, just to indicate its coincidence with
both Dy and Dx for T → 0. While at T = 0 the negativity
is just an increasing function of the entanglement entropy
[Eqs. (29)–(39)], and hence of the quantum discord, the
behavior for T > 0 is quite different. Although exhibiting a

0 2 4 6 8
Ω Ω0

0

0.1

0.2

N

 T Ω0 0.03

 T Ω0 0.001

0 0.2 0.4 0.6
Ω Ω0'

0

0.2

0.4

0.6

N

 T Ω0' 0.001

FIG. 6. (Color online) Negativity as a function of frequency at
increasing temperatures T/ω0 = 0.001,0.03,0.06, . . . ,0.15, at fixed
kμ (top), for ky/kx = 0.2, and at fixed k0

μ (bottom), for k0
y/k0

x = 0.5.
At T > 0, N is finite and nonzero just within a finite-frequency
window.

similar initial decreasing trend [essentially due to the initial
increase of the total entropy S(ρAB) in Eq. (40)], the Gaussian
discord then starts to increase [due to the increase in the first
term of Eq. (40)], vanishing only asymptotically for T → ∞.
Such a revival of the discord with increasing T was also
observed in spin systems [49,50] and reflects the presence of
quantum correlations in the excited eigenstates, which at these
temperatures lead to a separable yet not classically correlated
(in the sense of Sec. II F) thermal state. Since Dμ > 1 implies
entanglement [21,22], one can ensure here that Dμ < 1 after
the vanishing of the negativity (T > TE), although this may not
prevent Dμ from reaching a higher value than at T = 0 at some

0 0.2 0.4 0.6 0.8 1.0 1.2

T Ω0

0

0.1

0.2

0.3

0.4

D x

D y
Sx

N

FIG. 7. (Color online) Negativity N , single-mode entropy Sx =
S(ρx), and the quantum discords Dy and Dx as a function of
temperature for ω = ω0 = √

kx and ky = 0.2kx .
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intermediate temperature, as seen in Fig. 7. For T → ∞ we
actually obtain, from Eq. (41) and the expression of Ref. [22],
that Dμ ∝ T −1:

Dy ≈ ω2

2T
p

ω2 + ω2
x

, (57)

with a similar expression for Dx after replacing ωx by ωy .
Hence, for high T , Dμ becomes independent of ωμ, with Dx >

Dy asymptotically if ωy < ωx , as verified in Fig. 7. We also
note that the discord remains finite for T > 0 in the whole
sector A.

IV. CONCLUSION

We have analyzed the entanglement induced by an angular
momentum coupling of two harmonic modes. Full analytic
expressions for the vacuum entanglement entropy and the
thermal negativity were derived. The model exhibits a rich
phase structure and admits distinct physical realizations (a
particle in a magnetic field in an anisotropic harmonic trap or
a particle in a rotating harmonic trap), which lead to different

entanglement behaviors with the relevant control parameter.
For instance, in sector A (stable vacuum), entanglement
saturates for strong fields in the first case, but diverges at a finite
frequency in the second case. Vacuum entanglement diverges
at the onset of instabilities, being correlated with the average
angular momentum and reaching higher values in unstable
domains dynamically stabilized by the field or rotation. In
contrast, thermal entanglement is finite and nonzero just
below a finite limit temperature within a reduced-frequency
window, diverging only for T → 0 at the instability borders.
We have also shown that after a short initial common trend, the
thermal behavior of the Gaussian quantum discord becomes
substantially different from that of entanglement, vanishing
only asymptotically. It would be interesting to verify that a
similar thermal behavior is also exhibited by other related
measures of quantum correlations [48,51].
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