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The propagation of a laser beam through turbulent media is modeled as a

fractional Brownian motion (fBm). Time series corresponding to the center

position of the laser spot (coordinates x and y) after traveling across air in

turbulent motion, with different strength, are analyzed by the wavelet theory.

Two quantifiers are calculated, the Hurst exponent, H , and the mean Nor-

malized Total Wavelet Entropy, S̃WT . It is verified that both quantifiers give

complementary information about the turbulence state.

1. Introduction

Wavelets-based tools have been shown to be well-suited to fractal processes and their

analysis. This is mainly due to the fact that the wavelet transform incorporates in

its definition two basic features, time and scale, which are of primary importance for

fractal processes. Another remarks concerns the structure of the wavelet transform

which, by construction, builds a signal by successive refinements, starting from a

coarse approximation and adding finer and finer details at each step. Such a procedure

is of course reminiscent of basic fractal constructions, thus suggesting we should make

use of wavelets to synthesize a fractal process.1,2, 3

Since the earlier leading work of Mandelbrot4, 5 there is a lot of evidence that

several facets of fully developed turbulent flows are fractals. Most of the applications of

fractals to turbulence have been devoted to the study of subsets of the region occupied

by turbulent flow where a given property is satisfied. For example, the turbulent/non-

turbulent interface, some constant property surfaces (such as the iso-velocity and

iso-concentration surfaces) and the structure of spatial distribution of dissipation
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rates have been characterized as fractals or multifractals and the dimension has been

measured.6, 7, 8 Then, it is natural to apply wavelet tools for analyzing atmospheric

turbulence.9, 10, 12, 11

The fractional Brownian motion (fBm) was introduced by Mandelbrot and Van

Ness13 as an example of a process which contains an infinite domain of dependence

with the intention of explaining the results reported by Hurst in 1951.14 fBm as a

model for turbulence is not new.12, 11, 15 In particular, the fBm can be introduced as

an alternative model for the turbulent index of refraction, and it can be shown that

these processes allow to reconstruct most of the index properties.15

This work reports on the basic characteristics of the centroid position of a laser

spot after the light has traveled through turbulent media. It is analyzed as a stochastic

process, within a mathematically defined theoretical model: the fractional Brownian

motion.

That is, given a component of the centroid position f as a time t function, the

geometrical nature of the graph (t, f(t)) is studied. Afterwards, the wavelet theory

is used to characterize this centroid. Two quantifiers are obtained: the Hurst expo-

nent, H , and the mean Normalized Total Wavelet Entropy, S̃WT. Their behaviors are

compared; the analysis shows they describe different properties of the turbulence.

2. Fractional Brownian motion

The fractional Brownian motion of exponent H (Hurst exponent), with 0 < H < 1,

is a zero-mean Gaussian process BH(x) with x ∈ R such that:

a. BH(0) = 0.
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b. The difference BH(x+∆x)−BH(x) has finite dimensional normal distribution.

This means that their increments are stationary Gaussian processes whose variance

is

E
[
(BH(x+∆x)− BH(x))

2
]
= σ2 |∆x|2H , (1)

where σ is a parameter—E[ · ] is, of course, the average. The nonstationary character

of the fBm is evidenced by its covariance function given by

E [BH(x)BH(y)] =
σ2

2

{
|x|2H + |y|2H − |x− y|2H

}
. (2)

The covariance of future increments with past ones is:

ρH (∆x) = E [(BH(x)−BH(x−∆x)) · (BH(x+∆x)− BH(x))]

= σ2(22H−1 − 1) |∆x|2H . (3)

Note that ρH is independet of x and the parameter H determine the correlation of

the increments.

For H = 1/2 the correlation of past and future increments vanishes for all x, as is

required for an independent random process. However, forH 6= 1/2 one has ρH(∆x) 6=

0. For H > 1/2 this quantity is positive and the process is called persistent.17 In this

case, an increasing trend in the past implies on the average an increasing trend in

the future and, conversely, a decreasing trend in the past implies on the average a

continued decrease in the future. For H < 1/2 the process is called antipersistent.

Now, an increasing trend in the past implies on the average a decreasing trend in the

future, while a decreasing trend in the past makes on the average an increasing trend

in the future—see Fig. 1.

4



K. Helland and Van Atta18 were the first to study the Hurst exponent in grid

generated turbulence by applying a rescaled-range analysis—an usual measure of long-

term persistence in geophysical time series—to turbulence velocity records measured

within a wind tunel. They showed that there are some deviations from H = 1/2—

referred as the Hurst phenomenon.

As a nonstationary process, the fBm does not have a spectrum defined in the

usual sense; however, it is possible to define an empirical power spectrum of the form:

SBH
(f) =

σ2

|f |2H+1
. (4)

This equation is not a valid power spectrum in the theory of stationary processes since

it is a nonintegrable function, but it could be considered as a generalized spectrum.

Through this interpretation of Eq. (4) a self-similarity relation can be shown for the

fBm. That is for BH(x) with H and σ parameters, one has that aHBH(x/a− b) have

the same finite dimensional distributions for all a > 0 and b. The fractal dimension

of sample functions of these processes is D = 2−H .

3. Time-Frequency Analysis

3.1. Wavelet transform

First introduced by Dennis Gabor,19 wavelet analysis is a method which relies on the

introduction of an appropriate basis and a characterization of the signal by the dis-

tribution of amplitude in this basis. If the basis is required to be a proper orthogonal

basis, any arbitrary function can be uniquely decomposed and the decomposition can

be inverted.20, 21, 22, 23 Wavelet analysis is a suitable tool for detecting and character-
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izing specific phenomena in time and frequency planes.

The wavelet is a simple and quickly vanishing (compactly supported) oscillating

function. Unlike sine and cosine of Fourier analysis, which are precisely localized in

frequency but extend infinitely in time, wavelets are relatively localized in both time

and frequency. Furthemore, wavelets are band-limited; they are composed of not one

but a relatively limited range of several frequencies.

A wavelet family ψa,b is the set of elementary functions generated by dilations

and translations of a unique admissible mother wavelet ψ(t):

ψa,b(t) = |a|−1/2 ψ

(
t− b

a

)
, (5)

where a, b ∈ R, a 6= 0 are the scale and translation parameters respectively, and t is the

time. As a increases, the wavelet becomes narrower. Thus, one have a unique analytic

pattern and its replications at different scales and with variable time localization.

The continuous wavelet transform (CWT) of a signal S(t) ∈ L2(R) (the space

of real square summable functions) is defined as the correlation between the function

S(t) with the family wavelet ψa,b for each a and b:

(WψS) (a, b) = |a|−1/2

∫
∞

−∞

S(t)ψ∗

(
t− b

a

)
dt = 〈S, ψa,b〉. (6)

For special election of the mother wavelet function ψ(t) and for the discrete set of

parameters, aj = 2−j and bj,k = 2−jk, with j, k ∈ Z (the set of integers) the family

ψj,k(t) = 2j/2ψ(2jt− k) j, k ∈ Z, (7)

constitutes an orthonormal basis of the Hilbert space L2(R) consisting of finite-energy

signals.
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The correlated decimated discrete wavelet transform (DWT) provides a nonre-

dundant representation of the signal, and the values 〈S, ψa,b〉 constitute the coeffi-

cients in a wavelet series. These wavelet coefficients provide relevant information in

a simple way and a direct estimation of local energies at the different scales. More-

over, the information can be organized in a hierarchical scheme of nested subspaces

called multiresolution analysis in L2(R). In the present work, we employ orthogonal

cubic spline functions as mother wavelets. Among several alternatives, cubic spline

functions are symmetric and combine in a suitable proportion smoothness with nu-

merical advantages. They have become a recommendable tool for representing natural

signals24,25—figure 2 shows the cubic spline wavelet function used in this work.

In what follows, the signal is assumed to be given by the sampled values S =

{x(n), n = 1, · · · ,M}, corresponding to an uniform time grid with sampling time Ts.

For simplicity, the sampling rate is taken as Ts = 1. If the decomposition is carried

out over all resolutions levels the wavelet expansion is:

S(t) =
−1∑

j=−N

∑

k

Cj(k)ψj,k(t) =
−1∑

j=−N

rj(t) , (8)

where N = log2M and the wavelet coefficients Cj(k) can be interpreted as the local

residual errors between successive signal approximations at scales j and j + 1, and

rj(t) is the residual signal at scale j. It contains the information of the signal S(t)

corresponding to the frequencies 2j−1ωs ≤ |ω| ≤ 2jωs with ωs the sampling frequency.

3.2. Relative Wavelet Energy

Since the family {ψj,k(t)} is an orthonormal basis for L2(R), the concept of energy is

linked with the usual notions derived from Fourier’s theory. The wavelet coefficients
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are given by Cj(k) = 〈S, ψj,k〉 and the corresponding asociated energy will be its

square. The energy at each resolution j = −1, · · · ,−N , will be

Ej =
1

Nj

∑

k

C2
j (k), (9)

where Nj represents the number of wavelet coefficients at resolution j. The total

energy can be obtained in the fashion

Etot =
∑

j<0

Ej. (10)

Finally, we define the normalized pj values, which represent the Relative Wavelet

Energy (RWE) by

pj = Ej/Etot, (11)

for the resolution levels j = −1,−2, · · · ,−N . The pj yield, at different scales, the

probability distribution for the energy. Clearly,
∑

j pj = 1 and the distribution {pj}

can be considered as a time-scale density that constitutes a suitable tool for detecting

and characterizing specific phenomena in both the time and the frequency planes.

3.3. Wavelet entropy

The Shannon entropy26 gives a useful criterion for analyzing and comparing probabil-

ity distribution. It provides a measure of the information contained in any distribu-

tion. We define the Normalized Total Wavelet Entropy (NTWS)27, 28, 29 as

SWT = −
∑

j<0

pj · ln pj/S
max, (12)

where

Smax = lnN. (13)
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The NTWS appears to be a measure of the degree of order-disorder of the signal.

It provides useful information about the underlying dynamical process associated with

the signal.29 Indeed, a very ordered process can be represented by a periodic mono-

frequency signal (signal with a narrow band spectrum). A wavelet representation

of such a signal will be resolved at one unique wavelet resolution level, i. e., all

RWE will be (almost) zero except at the wavelet resolution level which includes the

representative signal frequency. For this special level the RWE will be (in our chosen

energy units) almost equal to one. As a consequence, the NTWS will acquire a very

small, vanishing value. A signal generated by a totally random process or chaotic one

can be taken as representative of a very disordered behavior. This kind of signal will

have a wavelet representation with significant contributions coming from all frequency

bands. Moreover, one could expect that all contributions will be of the same order.

Consequently, the RWE will be almost equal at all resolutions levels, and the NTWS

will acquire its maximum possible value.

Figure 3 presents two different relative wavelet energy (probability) distribution

corresponding to five wavelet resolution levels (j = −5, . . . ,−1). It is clear from the

figure that distribution A presents broad band spectrum. In contrast, distribution B

shows a clear dominance of the resolution level j = −2. According to the description

given above, for the NTWS the following relations can be expected: NTWS(A) >

NTWS(B). This is observed in the numerical values given at the figure.
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3.4. Wavelet quantifiers time evolution

In order to follow the temporal evolution of the quantifiers defined above, RWE and

NTWS, the analyzed signal is divided into i non-overlapping temporal windows with

length L (i = 1, · · · , NT , with NT =M/L). Afterwards, appropriate signal-values for

these quantifiers are assigned to the middle point of each time window. In the case

of a diadic wavelet decomposition, the number of wavelet coefficients at resolution

level j is two times smaller than at the previous, j + 1, one. The minimum length of

the temporal window L will therefore include at least one wavelet coefficient at each

level.

The wavelet energy at resolution level j for the time window i is given by

E
(i)
j =

1

Nj

i·L∑

k=(i−1)·L+1

C2
j (k) with i = 1, · · · , NT , (14)

where Nj represents the number of wavelet coefficients at resolution level j corre-

sponding to the time window i; while the total energy in this time window will be

E
(i)
tot =

∑

j<0

E
(i)
j . (15)

The time evolution of RWE and NTWS will be given by:

p
(i)
j = E

(i)
j /E

(i)
tot, (16)

SWT (i) = −
∑

j<0

p
(i)
j · ln p

(i)
j /S

max. (17)

In order to obtain a quantifier for the whole time period under analysis28 the
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temporal average is evaluated. The temporal average of NTWS is given by

〈SWT〉 =
1

NT

NT∑

i=1

S
(i)
WT , (18)

and for the wavelet energy at resolution level j

〈Ej〉 =
1

NT

NT∑

i=1

E
(i)
j ; (19)

then the total wavelet energy temporal average is defined as

〈Etot〉 =
∑

j<0

〈Ej〉. (20)

In consequence, a mean probability distribution {qj} representative for the whole time

interval (the complete signal) can be defined as

qj = 〈Ej〉/〈Etot〉, (21)

with
∑

j qj = 1 and the corresponding mean NTWS as

S̃WT = −
∑

j<0

qj · ln qj/S
max. (22)

4. Fractional Brownian motion and Wavelet Transform

A relevant property of the wavelet based multiresolution analysis is the stationary

character of the wavelet coeficient series corresponding to each level j of resolution.30

Another important property is that the reconstruction of the original time series from

the stationary series of wavelet coefficients reproduces the original signal with small

error.

In relation with fractional Brownian motion it can be shown that:

a. fBm is nonstationary but the wavelet coefficients are stationary at each scale;31,32
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b. fBm exhibits positive long-range correlation in the range 1/2 < H < 1 but

wavelet coefficients have a correlation which can be arbitrarily reduced;

c. the self-similarity of fBm is directly reflected in its wavelet coefficients, whose

variance varies as a power law as a function of scale j31, 32

log2
{
E
[
C2
j (k) |BH

]}
∝ −(2H + 1)j. (23)

All the above properties evidence that wavelet analysis is naturally well-suited to

fBm. Each of them provides in fact a key ingredient for a problem of major importance

when analyzing fBm: the estimation of the Hurst exponent or of the related spectral

exponent α = 2H + 1.3, 30 Starting from the above mentioned observations that, in

the wavelet transform, variance progression follows a power law across scales

V [j] = E
[
C2
j (k) |BH

]
∼ 2−αj, (24)

one can simply make use of the empirical variance estimators at scale j (based on

Nj = 2−jM coefficients for a sample of total length M)

V̂ [j] =
1

Nj

Nj∑

k=1

C2
j (k) |BH

= Ej |BH
, (25)

This is made possible because the fBm, when decomposed via the wavelet transform,

becomes stationary at each scale.

In this way an estimator of the parameter H can be obtained by: a) estimating

the variance of the wavelet coefficients with Eq. (25); b) plotting log2{V̂ [j]} versus j

and fitting a minimum square line. The slope of the line give the estimator of H .

Wavelet-based estimators dedicated to fBm can be viewed as versatile general-

izations of previous techniques. An important feature of fBm is that its increments
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are stationary and such that the structure function is proportional to |∆x|2H—see

Eq. (1)—thus suggesting that this variance should be estimated in order to find H .

Although feasible, this approach is faced with a difficulty due to long-range depen-

dence. Classical (empirical) variance estimators are obviously poor estimators in such

a context and specific estimators have to be designed.33,34

5. Experimental Setup and Data Adquisition

Time series corresponding to the fluctuations in the position of a laser beam’s spot

(wandering) over a screen, after propagation through laboratory generated convective

turbulence, were recorded with a position sensitive detector located as screen at the

end of the path. Twenty records of 5000 spot beam coordinates measurements every

five minutes were obtained. Temperature along the laser beam path, for each record,

were also measured and stored.

The experimental measures were performed in the laboratory by producing con-

vective turbulence over a path of lenght L = 1.5m with two electric heaters in a

row and covering the path. We use a 10mW continuous wave He-Ne laser (Melles

Griot Model 05-LHP-991), wavelenght laser beam λ = 632.8nm (red), with point-

ing stability, after 15 minutes of warmup, less than 30µm and a beam divergence of

1.24± 5%mrad.

Each electric heater was 50cm long and 800W of power. The height of the laser

beam’s propagation path was 1m above the electrical heaters and a box of expanded

polyurethane was used as a thermal protection for the equipment. Three thermome-

ters were allocated on the top of the box, 10cm above the laser beam. They were used
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to determine the temperature in three positions along the propagation path, see Fig.

4. The geometrical experimental arrangement was similar to that used by Consortini

et al.35 and, Consortini and O’Donnell.36

The position sensor has a relative accuracy of the order of 2.5µm so that very

small position fluctuation can be measured. It was interfaced to a computer which

allowed to measure at a rate of about 800 samples per second (M = 5000 laser spot

coordinates in approximately 7s). Thus, with these coordinates stored on a hard disk

the Hurst exponent and the mean NTWS were computed off line.

Three different intensity levels of convective turbulence were generated by chang-

ing the amount of heat dissipated for each electrical heater:

a. Normal turbulence, the electrical heaters were off;

b. Soft turbulence, each electrical heaters dissipated half of its available power;

c. Hard turbulence, each electrical heaters dissipated at the maximum available

power.

Figure 5 shows the temperature for the three turbulence levels over the twenty

records. Note that there are temperature gradients over the twenty records for the

three turbulence levels and that the temperature (T1, T2 and T3, see Fig. 4) is

not homogeneously distributed. So, an uniform flux of warm air and uniformity of

turbulence along the path was not present.
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6. Results and discussion

We transformed the twenty time records corresponding to the laser beam x and y-

coodinates (M = 5000), under the three turbulence conditions, to the time-frequency

domain by means of orthogonal discrete wavelet transform (ODWT)20, 21, 22, 23 obtain-

ing in this way the corresponding wavelet coefficients Cj(k) series. In the present work,

we consider eight wavelet resolution levels and cubic spline mother wavelet.27, 28, 29

Note that the wavelet coefficients were non-overlapping for each scale.

The wavelet coefficients were squared to obtain the associted wavelet energy and

the estimator of wavelet coefficient variance V̂ [j]. To evaluate the Hurst exponent

the procedure described at the end of Sec. 4 is used. Figure 6 presents log2{V̂ [j]}

versus the resolution level j, for the (x, y)-coordinates and for the three turbulence

conditions. The vertical lines represent the scaling region used for the square fitting.

The values of the coefficient H obtained were averaged over the twenty records at

each turbulence condition for the (x, y)-coordinates respectively.

On the other hand, each signal under analysis was divided in time windows of

length L = 256 and for each one the probability wavelet energy distribution was

evaluated. With these values the mean wavelet energy distribution and the mean

NTWS, S̃WT , were obtained. This quantifier is taken as representative of the order-

disorder of the whole signal. As before, the obtained values S̃WT were averaged over

the twenty records at each turbulence condition for the (x, y)-coordinates respectively.

A comparison between average Hurst exponent and mean NTWS is given in Fig.

7. It is known the entropy is a measure of the order of a given system. In this case,
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the mean NTWS shows the same behavior for both coordinates. As the turbulence

increases the mean NTWS does the same. But, the Hurst exponent discriminates

between coordinates: for the x-axis no noticeable change is observed, and for the

y-axis the Hurst exponent decreases (increasing the roughness, see Fig. 1) with the

increasing turbulence.

Thus, it is observed that the Hurst exponent is sensitive to the mean flow of the

warm air. It distinguishes the anisotropy characteristic of the convective turbulence.

Because the entropy measures the order obviously it does not detect the mean flow.

In any case, the value of the obtained quantities indicates that memory as well

as self-similarity and scale invariance are significant property of these time series.

In relation with the Hurst exponent a useful generalization consists in allowing the

singularity exponent to become time-dependent H(t), thus generating a new process

BH(t)(x) such that

E
[
(BH(t)(t(x+∆x)− BH(t)(t(x))

2
]
= σ2 |∆x|2H(t) . (26)

In such a situation the increment process is no longer stationary. Then, it is impos-

sible to globally apply the technique mentioned above for estimating H(t). Provided

that variations of H(t) are smooth enough, the time series can be divided in time

windows where this requirement is satisfied and for each one the similar techniques

based on time-scale energy distributions can be applied locally.37 In any case, we must

emphasize that for each one an scaling region must be defined. The time evolution

of NTWS could be easily implemented.28, 29 Moreover, the NTWS is capable of de-

tecting changes in a nonstationary signal due to the localization characteristic of the
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wavelet transform, the computational time is significantly shorter since the algorithm

involves the use of wavelet transform in a multiresolution framework and, the NTWS

is parameter-free and scaling region is not necessary for its evaluation.

In the next future the intention of our project is to make experiments varying

the intensity of turbulence by adjusting the voltage applied to the heating element

using a voltage controller, in order to study the quantifiers temporal evolution and

characterize in a quantitative way the dynamics of the process. In another hand, the

same study will be doing in outdoor experiments at different moments of the day to

characterize the ground atmospheric turbulence.
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30. A. Peréz, C. E. D’Attellis, M. Rapacioli, G. A. Hirchoren and V. Flores, “Analyz-

ing blood cell concentration as a stochastic process,” IEEE Ingineering in Med.

and biology, November/December, 170–175 (2001).

31. P. Flandrin, “On the spectrum of fractional Brownian motions,” IEEE Trans. Inf.

Theory IT-35, 1, 197–199 (1989).

32. P. Flandrin, “Wavelet analysis and synthesis of fractional Brownian motion,”

IEEE Trans. Inf. Theory, IT-38, 2, 910–917 (1992).

33. J. Beran, Statistics for long-memory processes (Chapman and Hall, New York,

1994), pp. 81–120.

34. M. Taqqu, V. Teverovsky and W. Willinger, “Estimators for long-range depen-

dence: an empirical study,” Fractals 3, 4, 785–798 (1995).

35. A. Consortini, Sun Yi Yi, Li Zhi Ping and G. Conforti, “A mixed method for

measuring the inner scale of atmospheric turbulence,” J. Modern Optics 37, 10,

1555-1560 (1990).

36. A. Consortini and K. O’Donnell, “Beam wandering of thin parallel beams through

atmospheric turbulence,” Waves in Random Media 3, S11-S28 (1991).

20
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Fig. 1. Sample paths of fractional Brownian motions with H = 0.3 (antipersis-

tent), H = 0.5 (standard brownian motion), and H = 0.7 (persistent). These

graphs were obtained by using the software FRACLAB.16
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Fig. 2. Cubic spline wavelet.
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Fig. 3. Relative wavelet energy (probability) distributions correspond-

ing to five wavelet resolution levels (j = −5, . . . ,−1). Distribu-

tion A, {pj} = {0.05, 0.10, 0.30, 0.35, 0.20}; distribution B, {pj} =

{0.03, 0.10, 0.12, 0.70, 0.05}. The NTWS values for this distribution are

NTWS(A) = 0.888 and NTWS(B) = 0.614.

Fig. 4. Experimental setup.
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Fig. 5. Temperatures in positions 1, 2 and 3 for hard (a), soft (b) and normal

(c) turbulence.
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Fig. 6. Evaluation of Hurst exponent for laser beam x-coordinate (left column)

and y-coordinate, for hard (top), soft (center) and normal (bottom) turbulence.

The vertical lines represent the scaling region used in the evaluation of H .
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Fig. 7. Averages for Hurst exponents and mean NTWS (with their respective

standard deviation errors) for the x and y coordinates in the case of normal,

soft, and hard turbulence.
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