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We study the phase diagram of a holographic model realizing a Uð2Þ global symmetry on the boundary
and show that at low temperature a phase with both scalar s and vector p condensates exists. This is
the sþ p-wave phase where the global Uð2Þ symmetry and also the spatial rotational symmetry are
spontaneously broken. By studying the free energy we show that this phase is preferred when it exists. We
also consider unbalanced configurations where a second chemical potential is turned on. They present a
rich phase diagram characterized by the competition and coexistence of the s and p order parameters.
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I. INTRODUCTION

An interesting problem in the arena of unconventional
superfluids and superconductors is that of the competition
and coexistence of different order parameters [1]. A para-
digmatic example in the realm of superfluids is that of 3He.
At low temperature 3He presents two distinct superfluid
phases denoted as A and B phases [2]. 3He–B is the low
temperature (and low pressure) phase and it corresponds to a
p-wave superfluid, where the order parameter transforms as
a vector under spatial rotations. 3He–A is the higher temper-
ature (and pressure) superfluid phase. It is a chiral p-wave
superfluid whose order parameter is a complex vector, and
time-reversal and parity symmetry are spontaneously bro-
ken. In the domain of unconventional superconductors it has
been shown in [3] that for doped three-dimensional narrow
gap semiconductors such as CuxBi2Se3 and Sn1−xInxTe
there is a competition between s- andp-wave superconduct-
ing states. Dialing the coupling constants of the two different
channels (corresponding to the s and p pairings) leads to a
phase diagram where both a p- and an s-wave phase exist.
Moreover, at the interface of both phases a new pþ is state
appears. The order parameter for this phase is the combi-
nation of a vector and a pseudoscalar, and breaks both
time-reversal and parity symmetry, making this state an
interesting example of a topological superconductor.1

The AdS/CFT correspondence has succeeded in con-
structing a holographic version of superconductivity [5,6]
(for comprehensive reviews see [7,8]). Furthermore, holo-
graphic models of s- [9], p- [10], and d-wave [11] super-
conductors, which have scalar, vector, and spin-two order
parameters respectively, have been developed in the last
years. Coexistence and competition of several order param-
eters has also been addressed holographically in [12–19].2
In this paper, building upon a model constructed in [20],

we develop a holographic dual of a superconductor with
both s-wave and p-wave condensates. Subsequently, we
study the phase diagram of unbalanced mixtures (where
two chemical potentials are turned on) finding a competi-
tion of s-, p-, and sþ p-wave superconducting phases.
In [20] a holographic dual of a two-component super-

fluid [21] was constructed, consisting on a scalar doublet
charged under a Uð2Þ gauge field living in a planar
Schwarzschild black hole (BH) geometry. Switching on
a chemical potential along the overall Uð1Þ ⊂ Uð2Þ, the
system becomes unstable towards the condensation of the
scalar doublet. The appearance of the scalar condensate
spontaneously breaks the Uð2Þ symmetry down to Uð1Þ,
signaling a phase transition to an s-wave superfluid phase.
In this phase two different charge densities are present in
the system, corresponding to the two Uð1Þs inside the
Uð2Þ, hence realizing a holographic two-component
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1This is actually an example of an axionic state of matter. This

pþ is phase belongs to the class D in the classification [4] of 3D
topological superconductors. It possesses gapped Majorana

fermions as edge states which give rise to an anomalous surface
thermal Hall effect. It would be very interesting to realize
holographically this axionic superconducting state (see [13] for
a holographic time-reversal symmetry breaking pþ ip super-
conductor).

2In [17], which appeared when this work was being completed,
a holographic sþ p-wave phase was also found.
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superfluid. It was also found that the s-wave superfluid
phase is unstable at low temperatures and argued that this
instability signaled the appearance of a nontrivial p-wave
order parameter. In the present paper we confirm that
prediction and explicitly construct the solutions in which
condensation of a vector mode breaks the remaining Uð1Þ
and gives rise to a new phase with two condensates: the
sþ p-wave holographic superconductor. The study of
these new solutions allows us to determine the phase
diagram of the two-component superfluid.
If one works in the grand canonical ensemble, where

the chemical potential of the boundary theory is held fixed,
the temperature of the system is given by T ∝ 1=μ, where μ
is a dimensionless chemical potential related to that of
the boundary theory by rescalings. The final picture is the
following: at small enough chemical potential μ (high
temperature) the system is in the normal phase where no
condensate is present. For μ greater than a critical value μs
the scalar field acquires an expectation value and the system
enters the s-wave superfluid phase. Going to even larger
chemical potential a new phase transition happens: at
μsp > μs a vector condensate appears and for μ > μsp the
system is in an sþ p-wave phase with both scalar and
vector nonvanishing order parameters.
Finally, we shall study new configurations of the system

where the two chemical potentials corresponding to the two
Uð1Þs ⊂ Uð2Þ are switched on. This setup, where the Uð2Þ
is explicitly broken to Uð1Þ × Uð1Þ, realizes an unbalanced
mixture characterized by the presence of two species of
charges with different chemical potentials. Examples of
such systems are unbalanced Fermi mixtures [22], and
QCD at finite baryon and isospin chemical potential [23].
Moreover, unbalanced superconductors are interesting
systems where anisotropic and inhomogeneous phases
are expected to appear [24,25]. Holographic realizations
of unbalanced systems where only one kind of order
parameter can be realized have been constructed in
[26,27]. Here we construct new solutions of the system
in [20] corresponding to unbalanced mixtures that allow
for competition of different order parameters. We deter-
mine its phase diagram as a function of the two chemical
potentials and find that s-wave, p-wave, and sþ p-wave
phases exist.

II. THE HOLOGRAPHIC TWO-COMPONENT
SUPERFLUID

Let us consider the holographic model of a multi-
component superfluid consisting of a scalar doublet
charged under a Uð2Þ gauge field living in a (3þ 1)-
dimensional Schwarzschild-AdS black brane geometry
constructed in [20].3 The action for such a system reads

S ¼
Z

d4x
ffiffiffiffiffiffi−gp �

− 1

4
Fμν
c Fc

μν −m2Ψ†Ψ − ðDμΨÞ†DμΨ

�
;

(1)

with

Ψ ¼
ffiffiffi
2

p �
λ

ψ

�
; Dμ ¼ ∂μ − iAμ; Aμ ¼ Ac

μTc; (2)

T0 ¼
1

2
I; Ti ¼

1

2
σi: (3)

The system lives in the Schwarzschild-AdS background

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðdx2 þ dy2Þ;

fðrÞ ¼ r2
�
1 − 1

r3

�
; (4)

where we have set the radius of AdS and of the horizon to
L ¼ rh ¼ 1, by using the scaling symmetries of the system.
We work in the decoupling limit, in which the backreaction
of the matter fields on the metric is negligible.
We consider the following (consistent) ansatz for the

fields in our setup [20]:

Að0Þ
0 ¼ΦðrÞ; Að3Þ

0 ¼ΘðrÞ; Að1Þ
1 ¼wðrÞ; ψ ¼ ψðrÞ;

(5)

with all functions being real valued. All other fields in (1)
are set to zero, in particular we set λ ¼ 0 without loss of
generality. The resulting equations of motion read

ψ 00 þ
�
f0

f
þ 2

r

�
ψ 0 þ

�ðΦ − ΘÞ2
4f2

−m2

f
− w2

4r2f

�
ψ ¼ 0; (6)

Φ00 þ 2

r
Φ0 − ψ2

f
ðΦ − ΘÞ ¼ 0; (7)

Θ00 þ 2

r
Θ0 þ ψ2

f
ðΦ − ΘÞ − w2

r2f
Θ ¼ 0; (8)

w00 þ f0

f
w0 þ Θ2

f2
w − ψ2

f
w ¼ 0: (9)

In what follows we choose the scalar to have m2 ¼ −2 and
the corresponding dual operator to have mass dimension 2.
The UVasymptotic behavior of the fields corresponding

to the solution of Eqs. (6)–(9) in the limit r → ∞ is
given by

Φ ¼ μ − ρ=rþOðr−2Þ; (10)
3A similar model was introduced in [28] in order to describe

holographic multiband superconductors.
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Θ ¼ μ3 − ρ3=rþOðr−2Þ; (11)

w ¼ wð0Þ þ wð1Þ=rþOðr−2Þ; (12)

ψ ¼ ψ ð1Þ=rþ ψ ð2Þ=r2 þOðr−3Þ; (13)

where, on the dual side, μ and ρ are respectively the
chemical potential and charge density corresponding to the
overall Uð1Þ ⊂ Uð2Þ generated by T0, whereas μ3 and ρ3
are the chemical potential and charge density correspond-
ing to theUð1Þ ⊂ SUð2Þ generated by T3. ψ ð1Þ is the source
of a scalar operator of dimension 2, while ψ ð2Þ is its
expectation value. Finally wð0Þ and wð1Þ are the source and
vacuum expectation value of the current operator Jð1Þx

[recall that Að1Þ
μ is dual to the current Jð1Þμ ]. Notice that

in a background where wðrÞ condenses the SUð2Þ ⊂ Uð2Þ
is spontaneously broken, and moreover spatial rotational
symmetry is spontaneously broken too.

III. THE Sþ P-WAVE HOLOGRAPHIC
SUPERCONDUCTOR

We are looking for solutions of Eqs. (6)–(9) where ψ , w,
or both acquire nontrivial profiles. We want them to realize
spontaneous symmetry breaking so we impose that their
leading UV contributions (dual to the sources of the corre-
sponding operators) vanish. We will switch on a chemical
potential μ along the overall Uð1Þ, while requiring that the
other chemical potential μ3 remains null. Therefore our UV
boundary conditions are

ψ ð1Þ ¼ 0; wð0Þ ¼ 0; μ3 ¼ 0: (14)

In the IR regularity requires At to vanish at the BH horizon.
Notice that after using the scaling symmetries of the

system to fix the black hole parameters in (4), the only scale
in the problem is given by the chemical potential μ. In the
grand canonical ensemble, in which the physical chemical
potential is held fixed, the temperature is proportional to the
rescaled chemical potential as T ∝ 1=μ. Therefore, varying
μ is equivalent to changing the temperature of the system.
For that reason, the results in this paper are presented in
terms of μ.
We have looked for numerical solutions with nonzero ψ

and w, shooting from the IR towards the UV where we
impose the boundary conditions (14). We have found the
following solutions:
Normal phase: for all values of μ there exists an analytic
solution where ψ ¼ w ¼ Θ ¼ 0 and Φ ¼ μð1 − 1=rÞ. This
solution describes the normal state of the system.
s-wave phase: for μ ≥ μs ≈ 8.127 we find solutions with
nonzero ψ . As seen in [20] for these solutions the equations
decouple into two sectors: one corresponding to the
Abelian holographic superconductor [6] and the other to

the unbroken Uð1Þ symmetry. Although μ3 is zero as
required in (14), both charge densities ρ and ρ3 are
nonvanishing and therefore a two-component s-wave
superfluid is realized. Indeed as one can see in Eq. (8) a
nontrivial scalar ψ acts as a source for the field ΘðrÞ, and
therefore the only pure s-wave solutions satisfying the
boundary conditions (14) are those with ρ3 ≠ 0. Hence
two different charge densities (ρ and ρ3) corresponding to
the two different Uð1Þs ⊂ Uð2Þ are turned on for these
solutions and it is in this sense that this phase was denoted
a two-component holographic superfluid in [20].4

sþ p-wave phase: for μ ≥ μsp ≈ 20:56 there are solutions
satisfying (14) with nonzero ψ and w. In these solutions
the Uð2Þ symmetry is completely broken, and moreover
since wð1Þ ∼ hJð1Þx i spatial rotational symmetry is broken
too. Again μ3 ¼ 0 while ρ and ρ3 are nonvanishing, thus
realizing an sþ p-wave phase of a two-component super-
fluid. Usually p-wave superconductivity is triggered by a
μ3 chemical potential [10]. Here instead the p component
of the sþ p superfluid is supported by the spontaneously
induced charge density ρ3. For that reason no solutions with
only p condensate are present in this system.5

In Fig. 1 we plot the condensates hO2i ∼ ψ ð2Þ and
hJð1Þx i ∼ wð1Þ as a function of the chemical potential.
Notice that the solution where both condensates coexist
extends down to as low 1=μ (or equivalently low temper-
atures) as where we can trust the decoupling limit and thus
neglect backreaction.
To determine the phase diagram of our system we

compute the free energy of the different solutions and
establish which is preferred when more than one exist. The
free energy density is given by the on-shell action, and for
our ansatz it reads

F ¼ −T
V
SE ¼ −1

2
ðμρþ μ3ρ3Þ

þ
Z

dr
2f

�
−fw2ψ2 þ r2ðΦ−ΘÞ2ψ2 þ f

r2
w2Θ2

�
: (15)

The free energy for the different solutions is shown in
Fig. 2. At small chemical potential only the normal phase
solution exists. At μ ¼ μs ≈ 8.127 there is a second order

4From Eqs. (6)–(8), one can see that the scalar condensate is
only charged under a linear combination of Φ and Θ, whereas in
the absence of a vector condensate, the orthogonal combination
completely decouples corresponding to the unbroken Uð1Þ gauge
field.

5It is clear from Eq. (9) that the p-wave condensate only
couples directly to the Uð1Þ ⊂ SUð2Þ, i.e. to ΘðrÞ. Actually, this
equation reduces to that of the standard p-wave holographic
superconductor [10] when the scalar is switched off. As in [10],
only a nonzero Θ in the bulk can source the vector condensate
since the coupling to the scalar ψ increases the effective mass ofw
and therefore hinders condensation. In contrast to the standard p-
wave scenario we are fixing μ3 ¼ 0, but solutions with nonzero Θ
are still possible in presence of the s-wave condensate (realized
by a nonzero ψ) as explained above.
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phase transition to the s-wave solution. If one keeps
increasing μ, at μsp ≈ 20:56 there is a second order phase
transition from the s-wave phase to the sþ p-wave phase.
The system stays in the sþ p-wave phase for μ > μsp.

IV. UNBALANCED SUPERCONDUCTORS

In this section we relax the condition μ3 ¼ 0 and study
the phase diagram of the system as a function of μ and
μ3=μ. Notice that turning on a second chemical potential
means to explicitly break Uð2Þ → Uð1Þ ×Uð1Þ. The sys-
tem can now be interpreted as a holographic dual to an
unbalanced mixture [26,27].
Now that the Uð2Þ is explicitly broken, we cannot

generically impose that λ ¼ 0 by using gauge transforma-
tions. Therefore, in principle both components of the scalar

doublet may condense. In [28] it was studied which option
is thermodynamically favored. Following their analysis,
choosing the condensate to be on the lower component
forces us to set μ3=μ < 0 for the solutions to be stable.
The UV boundary conditions now read

ψ ð1Þ ¼ 0; wð0Þ ¼ 0: (16)

As before we use numerical integration to solve the
system (6)–(9). We are presented with a scenario where
four different solutions exist:
Normal phase: an analytic solution where ψ ¼ w ¼ 0, Φ ¼
μð1 − 1=rÞ; and Θ ¼ μ3ð1 − 1=rÞ exists for any value of μ
and μ3, and it describes the normal state of the system.
s-wave phase: for μ − μ3 ≥ 8.127 we find solutions with
nonzero ψ resembling those in the balanced case.
p-wave phase: for jμ3j=μ ≥ 3.65=μ solutions with ψ ¼ 0,
but w ≠ 0 satisfying (16) exist. The scalar condensate
hO2i is null while hJð1Þx i ≠ 0. These solutions break the
Uð1Þ × Uð1Þ down to Uð1Þ and also break the SOð2Þ
corresponding to spatial rotations. Notice that wðrÞ is not
charged under the overall Uð1Þ and therefore this solution
is insensitive to the value of μ. This would change if the
backreaction of the matter fields on the geometry was taken
into account as in [26,27].
sþ p-wave phase: for small values of μ3=μ we find the
extension of the sþ p-wave solution found in the previous
section for μ3 ¼ 0. However, the larger jμ3j=μ the larger the
μ at which the phase appears. We have also found solutions
with two condensates in an intermediate region in which μ3
is large and μ is close to the critical value μs. But they
are always energetically unfavored with respect to the pure
s-wave solutions (see Fig. 3).
By computing the free energy (15) of the different

solutions we determine the phase diagram of the system
as a function of 1=μ and μ3=μ which we plotted in Fig. 3.
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FIG. 1 (color online). Condensates ψ ð2Þ (solid) and wð1Þ
(dashed) as a function of 1=μ in the s-wave (blue) and sþ p-
wave (red) phases. The p condensate appears at μsp such that
μs=μsp ¼ 0.395 as found in [20]. The inset zooms in on the
plot of ψ ð2Þ to show the difference in the scalar condensate
between the s (blue) and thesþ p (red) solutions.

0.04 0.06 0.08 0.10 0.12
0.6

0.5

0.4

0.3

0.2

0.1

0.0

1�

F

3

Free Energy

FIG. 2 (color online). Free energy of the different solutions
versus 1=μ: normal phase in black, s-wave phase in blue, and
sþ p-wave phase in red.
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FIG. 3 (color online). Phase diagram of the unbalanced system
as a function of 1=μ and μ3=μ. Second order phase transitions are
denoted by blue lines, whereas the red line corresponds to a first
order phase transition.
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For small values of μ3=μ the situation is very similar to
what we found in the previous section for μ3 ¼ 0. As
already mentioned, as jμ3j=μ gets larger, the transition to
the sþ p-wave phase happens at a higher value of μ. It
might be the case that the phase eventually disappears at a
finite value of that ratio, but this would happen beyond the
region of applicability of the decoupling limit, and thus
backreaction should be taken into account.6 For jμ3j=μ
large enough, the p-wave phase is preferred at intermediate
values of μ. Therefore, as μ is increased above a critical
value μp the system goes from the normal to the p-wave
phase through a second order phase transition. If μ is
increased even further a first order phase transition takes the
system from the p-wave to the s-wave phase. This p- to
s-wave first order phase transition is illustrated by Fig. 4
where we plot the free energy of both phases (and that
of the normal phase) as a function of μ at a fixed value of
μ3=μ ¼ −1. The tricritical point where the normal, s-wave
and p-wave phases meet happens at 1=μ ≈ 0.223 and
jμ3j=μ ≈ 0.815. The p-wave solution is never energetically
preferred for jμ3j=μ < 0.815.
A cautionary comment about the phase diagram of Fig. 3

is in order. In the regions of the parameter space where
jμ3j=μ ≫ 1 or 1=μ ≪ 1 the probe limit is not valid any-
more, and therefore the phase diagram might be modified
once backreaction is taken into account.7 Indeed, the nature

of the different phase transitions, as well as the critical
values of the chemical potentials could be altered in those
regions [31,32]. However, in (2þ 1) dimensions both the
s-wave and p-wave superconducting phase transitions
separately are known to remain second order even for
large backreaction [26,27]. Therefore, we expect the main
features of the phase diagram like the existence of distinct
s- and p-wave phases meeting at a tricritical point will not
be very sensitive to backreaction. The order of the phase
transition between the s- and p-wave phases could still be
modified by backreaction.

V. CONCLUSIONS

In this paper we report on the construction of a holo-
graphic sþ p-wave superconducting state. This phase,
where both s-wave and p-wave condensates exist, is the
preferred state at low temperatures of the holographic two-
component superfluid first presented in [20]. This model
realizes a global Uð2Þ symmetry on the boundary theory
and presents superconducting states with nonvanishing
charge density corresponding to the two different Uð1Þs
inside the Uð2Þ.
Our main results are summarized by Figs. 1 and 3.

Figure 1 shows that an sþ p-wave state appears at low
temperatures. A free energy analysis determined that the
system enters this state through a second order phase
transition, and stays in it for as low a temperature as we
can go. On the other hand, Fig. 3 presents the phase
diagram for the unbalanced system: chemical potentials
for the two Uð1Þs ⊂ Uð2Þ are turned on, and hence Uð2Þ is
explicitly broken to Uð1Þ ×Uð1Þ. In this phase diagram
three different superconducting phases are present. These
are the standard s-wave phase where a scalar condensate
breaks the Uð1Þ ×Uð1Þ down to Uð1Þ, a p-wave phase
where hJð1Þx i ≠ 0, Uð1Þ ×Uð1Þ is broken to (a different)
Uð1Þ, and also spatial rotational symmetry is broken, and
an sþ p-wave phase where the Uð1Þ ×Uð1Þ is completely
broken by the s- and p-wave condensates, and again spatial
rotational symmetry is broken. Remarkably, while the
system goes from the normal phase to the s-wave and
p-wave phases through second order phase transitions,
the phase transition between the s- and p-wave phases is
always a first order one. The existence of this first order
phase transition between superconducting phases in the
unbalanced system is an interesting prediction of our
holographic model. These conclusions could be sensitive
to the inclusion of backreaction since, as already men-
tioned, in principle the order of the phase transitions could
change when the parameters are large and the decoupling
limit breaks down. Yet in the proximity of the tricritical
point, where the p- and s-wave phases meet, the matter
fields and its derivatives are small enough for the probe
limit to be trusted. Hence the existence of this point and the
first order phase transition between the p- and s-wave
phases in its proximity will survive once backreaction is
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FIG. 4 (color online). Free energy as a function of 1=μ for
μ3=μ ¼ −1. Black corresponds to the normal phase, blue to the
s-wave phase, and green to the p-wave phase.

6Notice that if the sþ p-wave phase survived down to
1=μ ¼ 0 for μ3=μ lower than a critical value (as the phase
diagram 3 seems to imply) we would be in the presence of a
quantum critical point at which the system goes from the sþ p-
to the s-wave phase. This resembles what happens in [3] for the
pþ is superconductor.

7Remember that the decoupling limit corresponds to taking the
gauge coupling (and charge of the scalar field) gYM to be very
large, so the effect of the matter fields on the metric is negligible.
Hence it is valid as far as μi ≪ gYM and the condensates are
small.
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considered, at least for large enough gauge coupling.
Moreover, a preliminary study of backreacted solutions
in that region supports this conclusion and shows it
holds for small values of the gauge coupling too [29]. In
any case, in order to ensure the stability of the different
phases it is important to study the quasinormal mode
spectrum of the model. As pointed out in [30], it might
be possible that instabilities towards inhomogeneous
phases appear.
In [33] a quantum field theory model featuring a

gauged Uð2Þ symmetry, and with a symmetry breaking
scheme similar to ours is studied. There the authors find
roton excitations along the direction of the vector
condensate. It would be interesting to study the quasi-
normal mode spectra of the sþ p-wave phase and see if
something similar happens in our case. We leave this for
a future investigation.
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