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We extend the study of Bogomol’nyi-Prasad-Sommerfield (BPS) equations in N � 1=2 super Yang-
Mills theory to the case of models with gauge symmetry breaking. We first consider an Abelian gauge-
Higgs supersymmetric Lagrangian in d � 4 dimensional Euclidean space obtained by deforming N � 1
superspace. The supermultiplets include chiral and vector superfields and its bosonic content coincides
with that of the Abelian-Higgs model where vortex solutions to the BPS equation are known to exist in the
undeformed case. We also consider the d � 3 dimensional reduction of a non-Abelian d � 4 deformed
model and study its deformed BPS equations, showing the existence of new monopole solutions which
depend on the deformation parameter.
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I. INTRODUCTION

Nonanticommutative (NAC) theories recently attracted
much attention because of their relation with superstring
effective actions in backgrounds with constant graviphoton
field strength [1–4]. They can be constructed, within the
superfield formulation of supersymmetric (SUSY) theo-
ries, by introducing different deformations in the odd
superspace variables algebra [5–10]. As in ordinary non-
commutative space, one can introduce a Moyal star prod-
uct to multiply superfields entering in the construction of
NAC Lagrangians. Depending on whether one chooses the
supercovariant derivatives D� [7] or the supersymmetric
generators Q� [3] to define such star product, one obtains a
supersymmetric (but chirality nonpreserving) theory or a
partially supersymmetric (but chirality preserving) one.
Following this last approach, Seiberg [3] studied N � 1
superspace and constructed a super Yang-Mills Lagrangian
in d � 4 Euclidean space which differs from the unde-
formed one in a polynomial in the deformation parameter
with terms containing fermion bilinear products. The re-
sulting deformation reduces the supersymmetry of the
action from N � 1 to N � 1=2.

In order to study nonperturbative aspects of Seiberg’s
N � 1=2 super Yang-Mills theory, instanton solutions
were constructed in [11–14]. As stressed in [3], if one
restricts the analysis to the purely bosonic sector (putting
fermions to zero) self-duality and anti-self-duality equa-
tions are not modified. One can study however how the
bosonic equations get modified when fermions are turned
on. One possibility is to arrange the action functional into
perfect squares. Now, since the deformed action is in
general complex, the first order equations resulting from
the vanishing of the squares should be understood as
corresponding to an enhancement of the symmetry instead
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of leading to a minimum of the action. Interestingly
enough, one finds that only the anti-self-duality equations
are modified in the deformed super Yang-Mills theory [11–
13]. Following a similar approach, some soliton solutions
in d � 2 NAC theories were discussed [15–18].

As it is well known, vortex and monopole Bogomol’nyi-
Prasad-Sommerfield (BPS) equations can be obtained by
studying the supersymmetric extension of Abelian and
non-Abelian gauge theories coupled to Higgs scalars
[19–23]. It is the purpose of the present work to extend
this analysis to the case of NAC theories. We start in
section II by discussing deformed superspace and then
consider a gauge-Higgs supersymmetric Lagrangian in
d � 4 dimensional Euclidean space obtained by deforming
N � 1 superspace. The supermultiplets include chiral
and vector superfields (containing a complex scalar and a
U(1) gauge field, respectively) so that the bosonic content
coincides with that of the Abelian-Higgs model. We show
in section III that although new terms arise due to the
deformation, the resulting equations of motion and super-
symmetry transformations show that no consistent first
order Bogomol’nyi equations arise except when fermions
are turned off (thus eliminating the deformation effects).
That is, in contrast with what happens in the instanton case,
one cannot find deformed vortex configurations solutions.
In order to make a similar analysis for monopoles we
discuss in section IV the d � 3 dimensional reduction of
a non-Abelian d � 4 deformed model. In this case one gets
deformed BPS equations and new monopole solutions
which depend on the deformation parameter. We present
a discussion of our results in section V. We give in an
Appendix some conventions adopted in our calculations.

II. DEFORMED SUPERSPACE

We shall consider the deformation of four-dimensional
Euclidean N � 1 superspace parametrized by superspace
bosonic coordinates x� and chiral and antichiral fermionic
coordinates ��; �� _� as introduced in [3]
-1  2005 The American Physical Society
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f��; ��g � C��; f �� _�; �� _�g � 0; f��; �� _�g � 0:

(1)

Here C�� are constant elements of a symmetric matrix.
Defining chiral and antichiral coordinates according to

y� � x� � i��� ��; (2)

�y � � y� ÿ 2i��� ��; (3)

one imposes [3]

�y�; y�� � �y�; ��� � �y�; �� _�� � 0 (4)

and obtains as a consequence of (1)–(4)

� �y�; �y�� � 4 �� ��C��; (5)

where C�� � C��������� is antisymmetric and anti-self-
dual (see the Appendix for conventions on gamma matrices
and spinors).

The nonanticommutative field theory in such a deformed
superspace can be defined in terms of superfields that are
multiplied according to the following Moyal product [3]

��y; �; ��� �	�y; �; ��� � ��y; �; ��� exp
�
ÿ
C��

2

@
@��

@

@��

�

�	�y; �; ���: (6)

Supercharges and covariant derivatives in chiral coordi-
nates take the form

Q� �
@
@��

; �Q _� � ÿ
@

@ �� _� � 2i����� _�
@
@y�

; (7)

D� �
@
@��

� 2i��� _�
�� _� @
@y�

; �D _� � ÿ
@

@ �� _� : (8)

The DÿD algebra is not modified by the deformation (1)
as happens for the QÿD and �QÿD algebra. Concerning
the supercharge algebra, it is modified according to

f �Q _�;Q�g � 2i��� _�
@
@y�

; (9)

fQ�;Q�g � 0; (10)

f �Q _�; �Q _�g � ÿ4C����� _��
�
� _�

@2

@y�@y�
: (11)

Then, only the subalgebra generated by Q� is still pre-
served and this defines the chiral N � 1=2 supersymme-
try algebra [3].

A chiral superfield � satisfying �D _�� � 0 can be, as
usual, written in the form

��y; �� � ��y� �
���
2

p
� �y� � ��F�y�: (12)

As a consequence of (5) an ordering must be chosen for the
antichiral field ��� �y; ���, a natural one is given by expressing
025015
it in terms of the chiral variable y�, it then takes the form

���yÿ 2i�� ��; ��� � ���y� �
���
2

p
�� � �y� ÿ 2i��� ��@� ���y�

� �� ��� �F�y� � i
���
2

p
���@� � �y�

� ��@�@� ���: (13)

Now, let us consider a vector superfield V containing the
gauge field for a group G. We take ta as basis of the Lie
algebra satisfying �ta; tb� � ifabctc and tr�tatb� � 1

2�
ab. A

gauge transformation acts as

exp�ÿ2gV� ! exp�ÿ2gV0�

� exp�ig ��� � exp�ÿ2gV� � exp�ÿig��; (14)

where � and �� are chiral and antichiral fields in the Lie
algebra of G. In all the expressions above exponentials are
defined through their �-product expansion,

exp�i
� � 1� i
�
i2

2

 �
� . . . (15)

For the chiral and antichiral superfield strengths, the stan-
dard expressions hold,

W� �
1

8g
�D � �D � exp�2gV� �D� � exp�ÿ2gV�;

�W _� � ÿ
1

8g
D �D � exp�ÿ2gV� � �D _� � exp�2gV�;

(16)

transforming under gauge rotations according to

W� ! exp�ig�� �W� � exp�ÿig��;

�W _� ! exp�ig ��� � �W _� � exp�ÿig ���:
(17)

Infinitesimally we have

�W � ig��;W��; � �W � ig� ��; �W��: (18)

Since the commutator involves matrix and Moyal products,
as in standard noncommutative gauge theories one should
consider groups closing their Lie algebra generators under
anticommutation.

We want to write the vector superfield in the Wess-
Zumino gauge. As in ordinary superspace this is achieved
by exploiting the gauge freedom (14) to set some of the
components of V to zero. In the generalization to non-
anticommutative theory the vector superfield V in the
Wess-Zumino gauge takes the form [3]

V�y; �: ��� � ÿ��� ��A��y� ÿ i �� �� ������y�

ÿ
g
2
"��C

�
��
 _
f
�� _
�y�; A��y�g� � i�� �� ���y�

�
1

2
�� �� ���D�y� ÿ i@�A��y��: (19)

This leads to
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V2
� � ÿ

1

2
�� ��

�
��A�A� �C��A�A�

ÿ i��C
����

� _�
�A�; ��

_�� �
1

4
jCj2 �� ��

�
;

V3
� � 0;

(20)

where jCj2 � C��C��. One can still perform gauge trans-
formations preserving Wess-Zumino gauge (19) through

� � ’�y�;

�� � ’�y� ÿ 2i��� ��@�’�y� � �� �� �� @�@�’�y�

ÿ ig �� ��C��f@�’�y�; A��y�g:

(21)

In components this gauge transformation reads

�A� � D�’ � @�’ÿ ig�A�;’�;

��� � ÿig���; ’�; � �� _� � ÿig� �� _�; ’�;

�D � ÿig�D;’�:

(22)

Chiral superfields charged under the gauge group trans-
form according to

� ! exp�ig�� ��; �� ! �� � exp�ÿig ���: (23)

As in the case of the vector superfield in Eq. (19), a
C-dependent term is needed in the parametrization of
antichiral matter superfields in order for the field compo-
nents to have the ordinary gauge transformation [10]

��� �y; ��� � ��� �y� �
���
2

p
�� � � �y� � �� ��f �F� �y�

� 2igC��@�� ��� �y�A�� �y��

� g2C�� ��� �y�A�� �y�A�� �y�g: (24)

Then, written in components, infinitesimal gauge trans-
formations read

�� � ig’�; � �� � ÿig ��’; � � ig’ ;

� � � ÿig � ’; �F � ig’F; � �F � ÿig �F’:
(25)
III. SUPERSYMMETRIC MAXWELL-HIGGS
MODEL IN d � 4 AND DEFORMED VORTICES

The d � 4 deformed supersymmetric Maxwell-Higgs
model is constructed with the multiplets discussed in the
previous section as

L �
Z
d2�d2 ��� �� � exp�ÿ2gV� ��� 2gv20V�

�
1

4

�Z
d2�W �W �

Z
d2 �� �W � �W

�
; (26)

where all superfields are multiplied using the Moyal prod-
uct (6). A Fayet-Iliopoulos term has been included in order
to achieve spontaneous gauge symmetry breaking. In com-
ponents, the Lagrangian reads
025015
L � Lb �Lf; (27)

where

Lb � ÿ
1

4
F��F�� ÿD��D��ÿ gD� ���ÿ v20� �

1

2
D2

� �FFÿ igC�� ��F��F;

Lf � ÿi �� ���@��ÿ i � ���D� ÿ i
���
2

p
g� ��� ÿ � ����

� igC��F�� �� ���
���
2

p
gC����� _�D�� �� _� �

ÿ
g2

4
jCj2 �� �� ��F: (28)

Here

D� � @� ÿ igA�; F�� � @�A� ÿ @�A�: (29)

The transformation laws associated with the N � 1=2
surviving supersymmetry read

�� �
���
2

p
� ; � �� � 0; � � �

���
2

p
��F;

� � _� � ÿi
���
2

p
D������� _�; �F � 0;

� �F � ÿi
���
2

p
D� ����� 2ig ����ÿ 2gC���@�� ����� ���

� ig� ����� ���A��;

�A� � ÿi �� ����! �F�� � ÿi�@� �� ��� ÿ @� �� �����;

��� � i��D� ��������F�� ÿ igC��
�� ���;

� ��� � 0; �D � ÿ���@� ��:

(30)

The second order equations of motion associated to the
Lagrangian (28) are

@�F
�� � ig� ��D��ÿ�D��� � g � ��� 

� 2igC��@�� �� ��ÿ ��F�

ÿ ig2
���
2

p
C����� _�

�� �� _� �; (31)

D�D�� � g�D� ig
���
2

p
� � igC��F��F

�
���
2

p
gC����� _�D�� �� _� �� � g2

jCj2

4
�� ��F;

(32)

D� D�� � g ��Dÿ ig
���
2

p
�� � ; (33)

F � 0; �F � ig ��C��F�� � g2
jCj2

4
�� �� ��; (34)

D � g� ���ÿ v20�; (35)

���@� ���� � ÿ
���
2

p
g �� �; (36)
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� ���@��� _� �
���
2

p
g� � _� � 2gC��F�� �� _�

� i
���
2

p
gD�� �C

����� _� � ig2
jCj2

2
F �� �� _�;

(37)

� ���D� � _� �
���
2

p
g� �� _�; (38)

���D� �� � ÿ
���
2

p
g ���� ÿ i

���
2

p
gD�� �� _� ��� _��C��:

(39)

In connection with gauge symmetry breaking it is interest-
ing to look for constant solutions to Eqs. (31)–(39) to see
whether the usual Higgs vacuum (� � v0, A� � @��) is
modified by the deformation. In particular, one could think
that the presence of new C-dependent terms could lead to
gauge symmetry breaking even when v20 � 0. This possi-
bility is suggested by the supersymmetry variation of �
which exhibits a term proportional to C �� �� , which could
play the role that v20 does in the normal case. Now, for
constant fields, the only equation involving the deforma-
tion parameter C is (31)

� ��� � ig
���
2

p
C����� _�

�� �� _� �: (40)

In order to have a nontrivial C contribution we need ��,  ,
and �� to be nonvanishing constants. However this is not
possible in view of Eq. (36). We then conclude that there is
no nontrivial symmetry breaking mechanism apart from
that originated by the standard Fayet-Iliopoulos term.

In the d � 4 super Yang-Mills theory case, instanton
configurations were constructed by solving a deformed
version of the first order self-duality equations [11–13].
The deformation was originated by the presence of fermi-
onic zero modes. One could expect that in the present case,
deformed Nielsen-Olesen vortex configurations could be
obtained by solving some deformed first order BPS equa-
tions. To this end, let us restrict fields, from here on, to the
x1; x2 plane and make A3 � A4 � 0. Moreover, we shall
consider for simplicity that the only nonvanishing C��

components are C12 � ÿC34.
In the undeformed case, BPS equations can be obtained

from the vanishing of the supersymmetry transformations
for fermions, once the auxiliary fields are put on shell.
Nontrivial solutions to these equations are invariant under
1=2 of the original supersymmetries. Let us then analyze
the N � 1=2 surviving supersymmetry variations (30).
There are two possibilities for making the supersymmetry
variations of the fermionic and the auxiliary fields vanish:
either �1 � 0 and the following first order equations hold
(‘‘anti-self-dual case’’)

F12 � g� ���ÿ v20� ÿ iC12
�� ��; (41)

D1�� iD2� � 0; (42)
025015
���
2

p
� �D1 ÿ i �D2� � _1 �

���2 ÿC12
�� _1�D1�ÿ iD2�� � 0;

(43)

�@1 ÿ i@2� ��
_2 � 0; F � 0; (44)

or �2 � 0 and the first order equations take the form (‘‘self-
dual case’’)

F12 � ÿg� ���ÿ v20� ÿ iC12
�� ��; (45)

D1�ÿ iD2� � 0; (46)

���
2

p
� �D1 � i �D2� � _2 �

���1 �C12
�� _2�D1�� iD2�� � 0;

(47)

�@1 � i@2� ��
_1 � 0; F � 0: (48)

At this point, an important difference with respect to the
Yang-Mills deformed case should be stressed. In the latter,
for anti-self-dual configurations, fermions are invariant
under the whole N � 1=2 surviving symmetry while for
self-dual configurations they are not. In the present case,
according to (41)–(48) both for self-dual and anti-self-dual
configurations fermions would be invariant under 1=2 of
the N � 1=2 supersymmetry which survived the
deformation.

Let us discuss, for definiteness, the self-dual case
(Eqs. (41)–(44), the anti-self-dual one goes the same).
Compatibility of Eq. (44) for �� _2 with equation of motion
(36) implies that  1 � 0. But this in turn implies, because
of Eq. (38), that �� _2 � 0, so that finally �� �� � 0: any effect
from deformation is finally washed out.

In brief, on the one hand one necessarily has to keep
�� �� Þ 0 in order to discover new features in the deformed
model. On the other hand, the deformed first order BPS
equations obtained from the vanishing of supersymmetry
transformations are not compatible with the equations of
motion, except if some fermionic fields vanish turning the
deformed BPS equations into the undeformed (ordinary)
ones.

The previous results can be also understood by noting
that in fact the deformed Lagrangian cannot be arranged as
a sum of perfect squares whose vanishing lead to deformed
first order Eqs. (41)–(44), as one can do in the undeformed
case. Indeed, one cannot reproduce Lagrangian (28) from,
among others, a square term of the form

�F12 ÿDÿ iC12
�� ���2; (49)

since a term of the form iDC12
�� �� is lacking in Eq. (28).

This again should be contrasted with the case of deformed
Yang-Mills theory, where Lagrangian can be written as
squares of C-deformed self-duality equations.

One can consider the possibility of finding C-dependent
solutions by directly analyzing the equations of motion
(restricted to the x1; x2 plane and with A3 � A4 � 0).
-4
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However, the set of coupled nonlinear equations lead to
very complicated constraints. For example, Maxwell
Eqs. (31) for � � 3, 4 require

� ��� � ig
���
2

p
C����� _�

�� �� _� �; for � � 3; 4 (50)

and for nonvanishing  � this leads to the constraints

� _1 � �
���
2

p
igC12 �� �� _1; � _2 � ÿ

���
2

p
igC12 �� �� _2: (51)

This in turn implies � �� � 0. We were not able to establish
the compatibility of this result with the equation of motion
for � and although a nontrivial C-dependent vortex solu-
tion cannot be a priori excluded, it seems extremely diffi-
cult to fulfill all the resulting constraints.

IV. SUPERSYMMETRIC U(2) YANG-MILLS-HIGGS
MODEL IN d � 3 AND DEFORMED MONOPOLES

In this section we shall consider a deformed d � 3
supersymmetric U(2) gauge theory coupled to scalars in
order to analyze possible modifications, induced by the
deformation, on the BPS (first order) monopole equations.
To this end, we start from a deformed supersymmetric d �
4 Yang-Mills theory and proceed to a dimensional reduc-
tion in which the A4 component of the gauge field is
identified with a Higgs field. The d � 4 Lagrangian in
term of superfields reads

L �
1

2
tr
�Z

d2�W �W �
Z
d2 �� �W � �W

�
: (52)

To write the Lagragian in components, we use Dirac spin-
ors and a generic ÿ matrices representation,

L � tr
�
ÿ

1

2
F��F

�� ÿ i�Cÿ�D��

� 2igC��F���
CPÿ�� g2jCj2��CPÿ��2 �D2

�
;

(53)

where

F�� � @�A� ÿ @�A� ÿ ig�A�; A��;

D�� � @��ÿ ig�A�;��:
(54)

Here we write A� � Aa�t
a with ta the hermitic generators

normalized according to trtatb � 1
2�

ab. For the present
U(2) case ta � �a=2 (a � 1, 2, 3) and t4 � I=2.

The equations of motion derived from Lagrangian (53)
are

D�F
�� � 2igC��D���

CPÿ�� �
g
2
f�C

� ; �ÿ
����g;

ÿ�D�� � gC��fF
�� ÿ igC���CPÿ�; Pÿ�g;

D � 0:

(55)

In the dimensional reduction, a vector field in d � 4
becomes a vector field and a scalar field in d � 3
025015
A� ! Ai; �; (56)

where � � �ata (a � 1, 2, 3, 4) will play the role of a
Higgs field in the adjoint in d � 3. Concerning fermions,
the d � 4 Dirac spinor � reduces to two d � 3 Dirac
spinors �1 and �2,

� �
�1

�2

� �
! �1;�2: (57)

For later convenience, we redefine d � 3 fermions in the
form

� �
1���
2

p ��1 � i�2�; � �
1���
2

p ��1 ÿ i�2�: (58)

The dimensionally reduced d � 3 Lagrangian then reads

L � tr
�
ÿ

1

2
FijF

ij ÿDi�Di�ÿ 2i�C
iDi�

� 2g�C��;�� �D2 � 2igCij�Fij � "ijkDk���C�

� 2g2CijCij��C��2
�
: (59)

Here the Majorana conjugates should be computed by
using C3. The equations of motion for the bosonic fields
read

Di�F
ij � igCij�C�� � ig�Dj�� ig"jklCkl�

C�;��

ÿ
g
2
�C
i�; (60)

DiDi� � ig"ijkCjkDi��
C�� �

g
2
��C; ��: (61)

Concerning fermions,

i
iDi�ÿ g��;�� � 0; (62)

i
iDi�� g��;�� � igCijf�;Fij ÿ "ijkDk�

ÿ 2igCij�C�g: (63)

The d � 3 infinitesimal transformations associated with
the supersymmetry read

�� � ÿ
i�
�
1

2
"ijk�F

jk ÿ 2igCjk�C�� �Di�
�
� iD�;

(64)

�� � 0; (65)

�D � ÿ�C�
iDi�� ig��;���; (66)

�Fij � ÿi�C�
iDj�ÿ 
jDi��; (67)

�Di� � ÿ�C�iDi�
C � ��;�C�
i�: (68)

Let us write variations (64) and (66) in the form
-5
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��� � i��L
��; �D � �C�L

�; (69)

with L�� and L� appropriately defined. We have factored
out g so that a rescaling of all fields Ai; �;D; �; �!
gAi; g�; gD; g�; g�, renders the new L�� and L�
g-independent. Lagrangian (59) can be rewritten in the
form

L �
1

g2
tr�ÿL��L

�
� � �C

�L
�� ÿ

1

g2
"ijktrDi�Fjk: (70)

Then, in the g2 ! 0 limit, dynamics are governed by
configurations which make the supersymmetry variations
associated to L�� and L� vanish. That is, configurations
satisfying the following first order equations,

2Di� � "ijk�Fjk ÿ 2iCjk�C��; (71)

D � 0: (72)

Concerning the vanishing for the auxiliary field variation


iDi�� i��;�� � 0; (73)

it just coincides with the equation of motion for�, Eq. (62).
Arranging Lagrangian (59) into perfect squares one can

see that whenever first order Eqs. (72) and (73) are satis-
fied, the action coincides with the topological (magnetic)
charge. Indeed, starting from (59) one can rewrite the
corresponding action in the form

S � ÿ
1

g2
tr
Z
d3x

��
1

2
"ijk�F

jk ÿ 2iCjk�C�� ÿDi�
�
2

ÿD2 � 2i�C�
iDi�� i��;���
�
ÿ

1

g2
QM; (74)

where QM is a surface term related to the topological
charge

QM � tr
Z
dSi"ijkFjk�: (75)

Note that although we have managed to arrange the action
in the form (74), we cannot ensure that configurations
satisfying Eqs. (72) and (73) lead to a bound for the action
given by the topological charge. This is because the perfect
square in the action is not positive definite since Cij is in
general complex and � in Euclidean space is a Dirac
spinor. One can easily see however that any field configu-
ration satisfying (72) and (73) and � � 0 verifies the
equations of motion (60)–(63). Equation (71) can then be
seen as the deformed extension of the anti-self-dual BPS
equation for the Yang-Mills-Higgs system, the analogous
to the deformed Bogomol’nyi Eqs. (42) and (43) for the
Abelian-Higgs model.

Let us study solutions to Eqs. (72) and (73). Evidently,
the configuration
025015
�a�x� � �PSa�x� �
xa

r2
��r coth��r� ÿ 1� �

xa

r
f�r�;

a � 1; 2; 3;

Aai �x� � APSai �x� � "aij
xj
r2

�
1ÿ

�r
sinh��r�

�

� "aij
xj
r
�1ÿ K�;

a � 1; 2; 3; �4�x� � 0; A4
i �x� � 0; � � 0;

(76)

where �PS and APSi are the well-honored Prasad-
Sommerfield [24] monopole SU(2) solutions with � a
constant with mass dimensions solves the first order sys-
tem. The effects of deformation should arise only if the
fermion field � Þ 0. As done in [11–13] for the instanton
case, we shall look for such solutions recursively, starting
from (76) and writing

Aai �x� � APSai �x� � A�1�a
i �x� � . . . ;

A4
i �x� � A�0�4

i �x� � . . . ;

�a�x� � �PSa�x� ���1�a�x� . . . ;

�4�x� � ��0�4�x� � . . . ;

� � ��0� � . . .

(77)

Function ��0� can be obtained by solving Eq. (73) in the
background of a Prasad-Sommerfield monopole. The an-
swer is

��0� � Di�PS
i�; (78)

with � a constant spinor. One has now to insert this solution
in Eq. (71) in order to compute the first order corrections to
the gauge and scalar fields. As in the instanton case the
bilinear �� is antisymmetric in the U(2) indices and then
the C�� perturbation in (30) only affects the U(1) sub-
group. Then, SU(2) components of the gauge and scalar
fields corrections vanish, A�1�a

i �x� � 0, ��1�a�x� � 0, a �
1; 2; 3. Concerning the U(1) sector, one has to solve, for the
first order correction, the equation

"ijk@i��0�4 � F�0�4
jk � ÿiCjk���0�C��0��fabg"ab � CjkJ�x�;

(79)

with fabg indicating antisymmetrization in SU(2) indices.
Taking the derivative in both sides one gets for the gauge
field (taken in the Lorentz gauge)

r2A�0�4
k � Cjk@jJ: (80)

Writing the gauge field in terms of a potential �
-6
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A�0�4
k �x� � Cjk@j��x�; (81)

the problem reduces to

C jk@j�r2�ÿ J� � 0; (82)

with

J � ÿi���0�C��0��fabg"ab � ÿiDi�aPSDi�aPS�C�: (83)

After some calculation one finds that the source J takes the
form

J � ÿi
��
df
dr

�
2
�

1

r2
f2K2

�
�C�: (84)

With f and K as given in (76) one finally has

J � ÿ

�
1

��r�4
�

2

sinh2��r�

�
1ÿ 2

coth��r�
�r

�
3

2sinh2��r�

��
i�C�: (85)

A solution of Eq. (82) can be obtained by solving the
Poisson equation

r2� � J: (86)

Then, inserting the solution for A�0�4
k in Eq. (79) one finds

the solution for ��0�4.
Since the only correction to the Prasad-Sommerfield

solution was the new U(1) components A�0�4
i and ��0�4,

the zero mode equation for � is not modified and hence the
next correction ��1� � 0. Finally all higher order correc-
tions both for bosonic and fermionic fields vanish.
V. SUMMARY AND DISCUSSION

The connection between self-dual or BPS equations and
N � 1 and N � 2 supersymmetry is by now well under-
stood. In this context, studying N � 1=2 supersymmetric
025015
models allows to gain some control on relevant aspects of a
kind of interpolation towards the N � 0 model. An analy-
sis of instantons solutions in N � 1=2 super Yang-Mills
theory was started in [3] and advances on this issue were
reported in [11–13]. In this paper we have extended the
analysis to the case of solitons and instantons in deformed
supersymmetric theories with gauge symmetry breaking.
As in the pure super Yang-Mills case, the effect of defor-
mation manifests at the level of the gauge-field–Higgs
Lagrangians through the occurrence of a finite number of
polynomial terms containing fermion bilinears, both for
the Abelian and non-Abelian models. This modifies the
surviving supersymmetry transformation law for the gau-
gino and, consequently, the first order ‘‘BPS’’ equations
obtained when one imposes such transformations to
vanish.

In the undeformed case, the solution to the first order
BPS equations correspond to a bound for the action as can
be easily seen by writing the (real) action or energy as a
sum of perfect squares plus a topological term—the
bound. One can still try to write the deformed action in
that way but, being the action in general complex, it has no
sense to do this looking for a bound. This has been done for
N � 1=2 super Yang-Mills where it was confirmed that
configurations satisfying the first order equations arising
from the vanishing of SUSY transformations reduce the
action to a topological charge [3,11–13]. Concerning the
deformed d � 3 Yang-Mills-Higgs theory, we have shown
here that the same can be done. In contrast, this cannot be
achieved for the N � 1=2 supersymmetric Maxwell-
Higgs action.

Solutions to the first order BPS equations can in princi-
ple be associated with self-dual and anti-self-dual configu-
rations which will be in general differently affected by the
deformation. It has been shown in the instanton case [11–
13] that anti-self-dual configurations are invariant under
the whole N � 1=2 surviving symmetry while self-dual
configurations are not. We have shown that the same
happens in the monopole case.

In summary, we have shown that no deformed vortex
solutions can be found from the first order system except
those where all fermions are equal to zero, which reduce to
the ordinary Nielsen-Olesen vortices. In the N � 1=2
supersymmetric d � 3 Yang-Mills-Higgs case, for which
the deformed (complex) action can be written as a sum of
squares plus a topological charge, solutions to the first
order equations arising from the vanishing of the gaugino
supersymmetry variation can be found and they correspond
to antimonopole configurations deformed by the nonanti-
commutativity. We have analyzed these solutions using an
iterative process with the deformation parameter C�� play-
ing the perturbation parameter. Because of the Grassmann
nature of the perturbing fermion field, this iterative proce-
dure stops and in this sense an exact deformed monopole
solution can be constructed.
-7
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Let us end by mentioning that a connection between the
kind of deformation we have discussed and the spectral
degeneracy of conventional N � 1 SUSY gluodynamics
has been recently discussed in [25]. Remarkably, the analy-
sis in this work suggests that N � 1=2 supersymmetry
remains valid for coordinate-dependent C��. An analysis
of such kind of deformations in supersymmetric gauge-
field–Higgs models, extending the one presented here,
would then be of interest. We hope to report on this issue
in future work.
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APPENDIX

1. The chiral representation

In sections II and III we closely follow Wess-Bagger
conventions. An important point about d � 4 Euclidean
space is that no H.c. relation exists between �� and �� _�.

ÿ� �

� 0 ��

��� 0

�
; �� � �i ~�;ÿ1�;

��� � �i ~�; 1�; tr�� ��� � ÿ2���;
(A1)

ÿ5 � ÿ1 � � �ÿ4 �

�
1 0
0 ÿ1

�
; �ÿ5�

2 � 1; (A2)

C � ÿ3ÿ1 �

�ÿ��� 0

0 ÿ� _� _�

�
; C2 � ÿ1;

CT � ÿC; Cÿm � �Cÿm�T;
(A3)

where ��� � � _� _� � ÿ��� � ÿ� _� _� � i�2, the �’s have
indices �m� _�; ��

m _��. The minimal spinor in d � 4
Euclidean space is Dirac (four independent complex com-
ponents) and in the chiral representation is written in terms
of two independent Weyl bi-spinors  and � as we also
define

� �

�
��
�� _�

�
; (A4)

�C � �TC � ��� �� _��; (A5)

P� �
1

2
�1� ÿ5�: (A6)
025015
The conventions for contracting bi-spinors are

 � �  ��� � ��� ���; (A7)

�� �� � �� _� �� _� � � _� _� �� _� �� _�: (A8)

The deformation of superspace can be rewritten as

f��; ��g � C�� �
1

2
�����

��C��; (A9)

here��� �
1
4 ��� ��� ÿ �� ���� are anti-self-dual as is C��.

Recalling that �� is the chiral component of the four
component Dirac spinor � we can rewrite (1) as

fP��;�CP�g �
1

4
P�ÿ��C��; (A10)

where ÿ�� �
1
2 �ÿ�;ÿ��. The relations (1) can be stated as

f�;�Cg �
1

4
P�ÿ��C��: (A11)
2. Representation for the d � 4 ! d � 3 dimensional
reduction

In section IV, in order to implement the dimensional
reduction from d � 4 to d � 3 space-time dimensions we
use a Gamma matrices representation where

ÿi � �i�i 
 �3� �

�

i 0
0 ÿ
i

�
; for i � 1; 2; 3;

(A12)

ÿ4 � �iI 
 �1� �

� 0 iI

iI 0

�
;

ÿ5 � �I 
ÿ�2� �

� 0 iI

ÿiI 0

�
;

(A13)

C � �i�2 
 �3� �

�C3 0

0 ÿC3

�
;

P� �
1

2

� I �iI

�iI I

�
:

(A14)

Here 
i can be identified with d � 3 gamma matrices
which can be chosen as the Pauli matrices, 
i � i�i,
thus leading to

C 3 � 
2: (A15)
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