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We study the properties of the light pseudoscalar mesons in a three-flavor chiral quark model with nonlocal
separable interactions. We concentrate on the evaluation of meson masses and decay constants, considering
both the cases of Gaussian and Lorentzian nonlocal regulators. The results are found to be in quite good
agreement with the empirical values, in particular in the case of the ratio f K / f p and the anomalous decay
p0→gg . In addition, the model leads to a reasonable description of the observed phenomenology in the h-h8
sector, even though it implies the existence of two significantly different state mixing angles.
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I. INTRODUCTION

The properties of the light pseudoscalar mesons ~i.e., the
pions, kaons, and etas! provide a suitable ground for the
study of the basic nonperturbative features of quantum chro-
modynamics ~QCD!. As is well known, the QCD Lagrangian
shows an approximate U(3)L ^ U(3)R chiral symmetry,
which is spontaneously broken down to U(3)V in the low-
momentum, nonperturbative regime. The fact that, instead of
nine, only eight pseudoscalar quasi Goldstone bosons are
observed in nature is usually explained in terms of the so-
called U(1)A anomaly. This anomaly is again related to non-
perturbative aspects of QCD, and it is believed to be mainly
responsible for the rather large h8 mass. Unfortunately, so
far it has not been possible to obtain detailed information
about the properties of the light pseudoscalar mesons directly
from QCD, and most of the present theoretical work on the
subject relies on low-energy effective theories. Among them
the Nambu–Jona-Lasinio ~NJL! model @1# and its three-
flavor extensions @2–5# are some of the most popular ones.
In the NJL model the quark fields interact via local effective
vertices which are subject to chiral symmetry. If such an
interaction is strong enough, chiral symmetry is spontane-
ously broken and pseudoscalar Goldstone bosons appear @6#.
As an improvement of the local NJL scheme, some covariant
nonlocal extensions have been studied in the last few years
@7#. Nonlocality arises naturally in the context of several
quite successful approaches to low-energy quark dynamics
such as, for example, the instanton liquid model @8# and the
Schwinger-Dyson resummation techniques @9#. It has been
also argued that nonlocal covariant extensions of the NJL
model have several advantages over the local scheme. In-
deed, nonlocal interactions regularize the model in such a
way that anomalies are preserved @10# and charges properly
quantized, the effective interaction is finite to all orders in
the loop expansion and there is no need to introduce extra
cutoffs, soft regulators such as Gaussian functions lead to
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small next-to-leading order corrections @11#, etc. In addition,
it has been shown @12,13# that a proper choice of nonlocal
regulator and model parameters can lead to some form of
quark confinement, in the sense that the effective quark
propagator has no poles at real energies.

Until now, most of the research work on nonlocal chiral
models has been restricted to the flavor SU(2) sector includ-
ing applications to the baryonic sector @14,15# and to the
study of phase transitions at finite temperature and densities
@16#. The aim of the present paper is to extend this type of
models so as to include strange degrees of freedom and to
analyze the predictions for the masses and decay constants
for the pions, kaons, and h-h8 system.

This article is organized as follows. In Sec. II we present
the general formalism and derive the expressions needed to
evaluate the different meson properties. The numerical re-
sults for some specific nonlocal regulators together with the
corresponding discussions are given in Sec. III, while in Sec.
IV we present our conclusions. Finally, we include an appen-
dix with some details concerning the evaluation of quark
loop integrals.

II. FORMALISM

A. Effective action

We start with the Euclidean quark effective action

SE5E d4xH c̄~x !@2igm]m1m̂c#c~x !2
G
2 @ ja

S~x ! ja
S~x !

1 ja
P~x ! ja

P~x !#2
H
4 Aabc@ ja

S~x ! jb
S~x ! j c

S~x !

23 ja
S~x ! jb

P~x ! j c
P~x !#J , ~1!

where c is a chiral U(3) vector that includes the light quark
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fields, c[(u d s)T, while m̂c5diag(mu ,md ,ms) is the cur-
rent quark mass matrix. We will work from now on in the
isospin symmetry limit, in which mu5md . The currents
ja

S ,P(x) are given by

ja
S~x !5E d4y d4z r~y2x !r~x2z !c̄~y !lac~z !, ~2!

ja
P~x !5E d4y d4z r~y2x !r~x2z !c̄~y !ig5lac~z !,

~3!

where the regulator r(x2y) is local in momentum space,
namely,

r~x2y !5E d4p

~2p!4 e2i(x2y)pr~p !, ~4!

and the matrices la , with a50, . . . ,8, are the usual eight
Gell-Mann 333 matrices—generators of SU(3)—plus l0
5A2/31333. Finally, the constants Aabc are defined by

Aabc5
1
3! e i jkemnl~la! im~lb! jn~lc!kl . ~5!

The corresponding partition function Z5*Dc̄Dc
3exp@2SE# can be bosonized in the usual way introducing
the scalar and pseudoscalar meson fields sa(x) and pa(x),
respectively, together with auxiliary fields Sa(x) and Pa(x).
Integrating out the quark fields we get

Z5E Dsa Dpa det AE DSa DPa expF E d4x~saSa

1paPa!GexpH E d4xFG
2 ~SaSa1PaPa!

1
H
4 Aabc~SaSbSc23SaPbPc!G J , ~6!

where the operator A reads, in momentum space,

A~p ,p8!5~2p”1m̂c!~2p!4d (4)~p2p8!1r~p !@sa~p2p8!

1ig5pa~p2p8!#lar~p8!. ~7!

To perform the integration over the fields Sa and Pa we
use the stationary phase approximation ~SPA!. This means to
replace the integral over Sa and Pa by the integrand evalu-
ated at its minimizing values S̃a„sb(x),pc(x)… and
P̃a„sb(x),pc(x)…. The latter are required to satisfy

sa1GS̃a1
3H
4 Aabc@ S̃bS̃c2 P̃bP̃c#50,

pa1GP̃a2
3H
2 AabcS̃bP̃c50. ~8!

Thus, within the SPA the bosonized effective action reads
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SE52ln det A2E d4xFsaS̃a1paP̃a1
G
2 ~ S̃aS̃a1 P̃aP̃a!

1
H
4 Aabc~ S̃aS̃bS̃c23 S̃aP̃bP̃c!G . ~9!

At this stage we assume that the sa fields can have non-
trivial translational invariant mean field values s̄a while the
pseudoscalar field cannot. Thus, we write

sa~x !5s̄a1dsa~x !,

pa~x !5dpa~x !. ~10!

Note that due to charge conservation only s̄a50,3,8 can be
different from zero. Moreover, s3 also vanishes in the iso-
spin limit. After replacing Eqs. ~10! in the bosonized effec-
tive action ~9! and expanding up to second order in the fluc-
tuations dsa(x) and dpa(x) we get

SE5SE
MFA1SE

quad1••• . ~11!

Here the mean field action reads

SE
MFA

V (4) 522NcE d4p

~2p!4 Tr ln@p213331S2~p !#

2
1
2 F(

i
S s̄ iS̄ i1

G
2 S̄ iS̄ iD1

H
2 S̄uS̄dS̄sG , ~12!

where for convenience we have changed to a new basis in
which Si , with i5u ,d ,s ~or equivalently i51,2,3), are
given by

Su5A2
3S01S31

1
A3

S8 , Sd5A2
3S02S31

1
A3

S8 ,

Ss5A2
3S01

2
A3

S8 ,

and similar definitions hold for s̄ i in terms of s̄0 , s̄3, and
s̄8. In Eq. ~12! we have also defined S(p)
5diag„Su(p),Sd(p),Ss(p)…, with S i(p)5mi1s̄ ir2(p),
whereas the mean field values S̄ i are given by S̄ i

5 S̃ i(s̄ j,0). Note that in the isospin limit s̄u5s̄d ; thus, we
have Su(p)5Sd(p).

In order to deal with the mesonic degrees of freedom, we
also introduce a more convenient basis defined by

f i j5
1
A2

~lafa! i j , ~13!

where f5s ,p , and the indices i , j run from 1 to 3. For the
pseudoscalar fields one has, in this way,
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dp i j5S p0

A2
1

h8

A6
1

h0

A3
p1 K1

p2
2

p0

A2
1

h8

A6
1

h0

A3
K0

2 2h8 h0
D . ~14!
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K K̄0 2
A6

1
A3 i j
The second piece of the effective action in Eq. ~11!—
quadratic in the meson fluctuations—can be written now as

SE
quad5

1
2E d4p

~2p!4 @Gi j ,kl
1 ~p !ds i j~p !dskl~2p !

1Gi j ,kl
2 ~p !dp i j~p !dpkl~2p !# , ~15!

where we have defined

Gi j ,kl
6 ~p !5Ci j

6~p !d ild jk1„~r6!21
…i j ,kl , ~16!

with

Ci j
6~p2!528NcE d4q

~2p!4

3
r2~q1!r2~q2!@~q1

•q2!7S i~q1!S j~q2!#

@~q1!21S i
2~q1!#@~q2!21S j

2~q2!#
,

q65q6p/2, ~17!

ri j ,kl
6 5Gd ild jk6

H
2 e ikne j lnS̄n . ~18!

B. Mean field approximation and chiral condensates

The mean field values s̄u and s̄s can be found by mini-
mizing the action SE

MFA . Taking into account Eqs. ~8!, a
straightforward exercise leads to the following set of coupled
‘‘gap equations’’:

s̄u1GS̄u1
H
2 S̄uS̄s50,

s̄s1GS̄s1
H
2 S̄u

250, ~19!

where

S̄ i528NcE d4p

~2p!4

S i~p !r2~p !

p21S i
2~p !

. ~20!

The chiral condensates are given by the vacuum expecta-
tion values ^ ūu&5^d̄d& and ^ s̄s&. They can be easily ob-
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tained by performing the variation of ZMFA5exp@2SE
MFA#

with respect to the corresponding current quark masses. For
q5u ,s one obtains

^q̄q&524NcE d4p

~2p!4

Sq~p !

p21Sq
2~p !

. ~21!

C. Meson masses and quark-meson coupling constants

From the quadratic effective action SE
quad it is possible to

derive the scalar and pseudoscalar meson masses as well as
the quark-meson couplings. In what follows we will consider
explicitly only the case of pseudoscalar mesons. The corre-
sponding expressions for the scalar sector are completely
equivalent, just replacing the upper indices ‘‘2’’ by ‘‘1 .’’ In
terms of physical fields, the contribution of the pseudoscalar
mesons to SE

quad can be written as

SE
quaduP5

1
2E d4p

~2p!4 $Gp~p2!@p0~p !p0~2p !

12p1~p !p2~2p !#1GK~p2!@2K0~p !K̄0~2p !

12K1~p !K2~2p !#1Gh~p2!h~p !h~2p !

1Gh8~p2!h8~p !h8~2p !%. ~22!

Here, the fields h and h8 are related to the U(3)V states h0
and h8 according to

h5cos uhh82sin uhh0 , ~23!

h85sin uh8h81cos uh8h0 , ~24!

where the mixing angles uh ,h8 are defined in such a way that
there is no h-h8 mixing at the level of the quadratic action.
The functions GP(p2) introduced in Eq. ~22! are given by

Gp~p2!5F S G1
H
2 S̄ sD 21

1Cuu
2 ~p2!G , ~25!

GK~p2!5F S G1
H
2 S̄uD 21

1Cus
2 ~p2!G , ~26!
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Gh~p2!5
G88

2 ~p2!1G00
2 ~p2!

2

2A@G08
2 ~p2!#21FG88

2 ~p2!2G00
2 ~p2!

2 G 2

, ~27!

Gh8~p2!5
G88

2 ~p2!1G00
2 ~p2!

2

1A@G08
2 ~p2!#21FG88

2 ~p2!2G00
2 ~p2!

2 G 2

, ~28!

where

G88
2 ~p2!5

1
3 F 6G24HS̄u22HS̄s

2G22GHS̄s2H2S̄u
2 1Cuu

2 ~p2!12Css
2~p2!G ,

G08
2 ~p2!5

A2
3 F H~ S̄ s2 S̄u!

2G22GHS̄s2H2S̄u
2 1Cuu

2 ~p2!2Css
2~p2!G ,

G00
2 ~p2!5

1
3 F 6G14HS̄u2HS̄s

2G22GHS̄s2H2S̄u
2 12Cuu

2 ~p2!1Css
2~p2!G .

~29!

The meson masses are obtained by solving the equations

GP~2mP
2 !50, ~30!

with P5p , K, h , and h8, while the h and h8 mixing
angles, which are in general different from each other, are
given by

tan 2uh ,h85
2G08

2 ~p2!

G00
2 ~p2!2G88

2 ~p2!
U

p252m
h ,h8
2

. ~31!

Now the meson fields have to be renormalized, so that the
residues of the corresponding propagators at the meson poles
are set equal to 1. This means that one should define renor-
malized fields f̃(p)5Zf

21/2f(p) such that, close to the
poles, the quadratic effective Lagrangian reads

L E
quaduf5

1
2 ~p21mf

2 !f̃~p !f̃~2p !. ~32!

In this way, the wave function renormalization constants ZP
are given by

ZP
215

dGP~p2!

dp2 U
p252mP

2

, ~33!

with P5p , K, h , and h8. Finally, the meson-quark coupling
constants GPq are given by the original residues of the me-
son propagators at the corresponding poles:

GPq5ZP
1/2 . ~34!
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D. Weak decay constants of pseudoscalar mesons

By definition, the pseudoscalar meson weak decay con-
stants are given by the matrix elements of the axial currents
Am

a (x) between the vacuum and renormalized one-meson
states at the meson pole:

^0uAm
a ~0 !uf̃b~p !&5i f abpm . ~35!

For a ,b51, . . . ,7, the constants f ab can be written as
dab f f , with f5p for a51,2,3 and f5K for a54 –7. In
contrast, as occurs with the mass matrix, the decay constants
become mixed in the a50,8 sector.

In order to obtain the expression for the axial current, one
has to gauge the effective action SE by introducing a set of
axial gauge fields A m

a . For a local theory, this gauging pro-
cedure can be done simply by performing the replacement

]m→]m1
i
2 g5laA m

a ~x !. ~36!

However, since in the present case we are dealing with non-
local fields, an extra replacement has to be performed in the
regulator r(x2y) @12,13,17#. One has

r~x2y !→P expF i
2Ex

y
dsmg5laA m

a ~s !Gr~x2y !, ~37!

where s represents an arbitrary path that connects x with y. In
the present work we will use the so-called ‘‘straight line
path,’’ which means

sm5xm1a~ym2xm!, ~38!

with 0<a<1. Once the gauged effective action is obtained,
it is straightforward to get the axial current as the derivative
of such action with respect to A m

a (x) evaluated at A m
a (x)

50. Then, performing the derivative of the resulting expres-
sions with respect to the renormalized meson fields, one can
finally identify the corresponding meson weak decay con-
stants. After a rather lengthy calculation, we find that the
pion and kaon decay constants are given by

f p54 f uu~2mp
2 !Zp

1/2 , ~39!

f K52@ f us~2mK
2 !1 f su~2mK

2 !#ZK
1/2 , ~40!

where

f i j~p2!52NcE d4q

~2p!4

~p•qa
1!

p2

3
r~qa

1!r~qa
2!S j~qa

2!

@~qa
1!21S i

2~qa
1!#@~qa

2!21S j
2~qa

2!#
U

a51/2

14NcE d4q

~2p!4

~p•q !

p2

dr~q !

dq2
8-4
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3E
0

1
da

1

~qa
1!21S i

2~qa
1!

3H r~qa
2!@S i~qa

1!2mi#

3
@~qa

1
•qa

2!1S i~qa
1!S j~qa

2!#

~qa
2!21S j

2~qa
2!

1r~qa
1!S i~qa

1!J , ~41!

with

qa
15q1~12a!p ,

qa
25q2ap . ~42!

In the case of the h-h8 system, two decay constants can
be defined for each component a50,8 of the axial current
@18#. They can be written in terms of the f ab decay constants
and the previously defined mixing angles uh ,h8 as

f h
a 5@ f a8~2mh

2 !cos uh2 f a0~2mh
2 !sin uh#Zh

1/2 , ~43!

f h8
a

5@ f a8~2mh8
2

!sin uh81 f a0~2mh8
2

!cos uh8#Zh8
1/2 .

~44!

Within our model, the decay constants f ab for a ,b50,8 are
related to the f i j defined in Eq. ~41! by

f 88~p2!5
4
3 @2 f ss~p2!1 f uu~p2!# , ~45!

f 00~p2!5
4
3 @2 f uu~p2!1 f ss~p2!# , ~46!

f 08~p2!5 f 80~p2!5
4A2

3 @ f uu~p2!2 f ss~p2!# . ~47!
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It is clear that both the nondiagonal decay constants f 08 , f 80
as well as the mixing angles uh and uh8 vanish in the SU(3)
symmetry limit.

E. Anomalous P\gg decays

To go further with the analysis of light pseudoscalar me-
son decays, let us evaluate the anomalous decays of p0, h ,
and h8 into two photons. In general, the corresponding am-
plitudes can be written as

A~P→gg!5e2gPggemnab«1*
m«2*

nk1
ak2

b , ~48!

where P5p0,h ,h8, and ki and « i stand for the momenta
and polarizations of the outgoing photons respectively.

In the nonlocal model under consideration the coefficients
gPgg are given by quark loop integrals. Besides the usual
‘‘triangle’’ diagram, given by a closed quark loop with one
meson and two photon vertices, in the present nonlocal
scheme one has a second diagram @13# in which one of the
quark-photon vertices arises from the gauge contribution to
the regulator; see Eq. ~37!. The sums of both diagrams for
p0, h and h8 decays yield

gpgg5Iu~mp
2 !Zp

1/2 ,

ghgg5
1

3A3
@@5Iu~mh

2 !22Is~mh
2 !#cos uh

2A2@5Iu~mh
2 !1Is~mh

2 !#sin uh#Zh
1/2 ,

gh8gg5
1

3A3
@@5Iu~mh8

2
!22Is~mh8

2
!#sin uh8

1A2@5Iu~mh8
2

!1Is~mh8
2

!#cos uh8#Zh8
1/2 , ~49!

where the loop integrals I f(mP
2 ) are given by
I f~mP
2 !5

8
3 NcE d4q

~2p!4

r~q2k2!r~q1k1!

@q21S f
2~q !#@~q1k1!21S f

2~q1k1!#@~q2k2!21S f
2~q2k2!#

3H S f~q !1
q2

2 F @S f~q2k2!2S f~q !#

~k2•q !
2

@S f~q1k1!2S f~q !#

~k1•q ! G J ~50!
where a is the fine structure constant.
@notice that for on-shell photons these integrals are only
functions of the scalar product (k1•k2), which in Euclidean
space is equal to 2mP

2 /2]. In terms of the parameters gPgg ,
the corresponding decay widths are simply given by
G~P→gg!5
p

4 mP
3 a2gPgg

2 , ~51!
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F. Low-energy theorems

Chiral models are expected to satisfy some basic low-
energy theorems. In this subsection we consider some impor-
tant relations such as the Goldberger-Treiman ~GT! and Gell-
Mann–Oakes–Renner ~GOR!, showing explicitly that they
are indeed verified by the present model.

We start with the GT relation. Taking the chiral limit
mp

2 →0 in f uu(2mp
2 ) and dGp /dp2up252m

p
2 appearing in

Eqs. ~39! and ~33! we get

lim
mp

2 →0

f uu~2mp
2 !5

1
4s̄u ,0Zp ,0

21 , ~52!

where here, as in the rest of this subsection, the subindex 0
indicates that the corresponding quantity is evaluated in the
chiral limit @notice that s̄u ,05Su ,0(0)]. Replacing this ex-
pression in Eq. ~39! and taking into account Eq. ~34! we get

f p ,0Gpq ,05s̄u ,0 , ~53!

which is equivalent to the GT relation at the quark level in
our model.

Let us turn to the GOR relation. Expanding Cuu
2 (p2) in

Eq. ~17! to leading order in mu and p2 we get

Cuu
2 ~p2!.

S̄u ,0

s̄u ,0
2mu

^ūu1 d̄d&0

s̄u ,0
2 1p2Zp ,0

21 . ~54!

To obtain this result we have used the gap equations ~19! and
the expression for the chiral condensate given in Eq. ~21!.
Now using Eq. ~54! together with the equation for the pion
mass,

Gp~2mp
2 !50, ~55!

and taking into account the GT relation ~53!, one gets

mu^ ūu1 d̄d&052 f p ,0
2 mp

2 , ~56!

which is the form taken by the well-known GOR relation in
the isospin limit.

Next we discuss the validity of the Feynman-Hellman
~FH! theorem for the case of the so-called pion sigma term.
This theorem implies the relation @19#

dmp
2

dmu
5^puūu1 d̄dup& , ~57!

where covariant normalization ^p8up&52Ep(2p)3d3(pW 8

2pW ) has been used for the pion field. An expression for the
left-hand side of Eq. ~57! can be easily obtained by deriving
Eq. ~55! with respect to the u-quark mass. In fact,
11401
05
dGp~2mp

2 !

dmu
5

]Gp~p2!

]mu
U

p252m
p
2

1
]Gp~p2!

]p2 p252m
p
2 S 2

dmp
2

dmu
D , ~58!

and thus

dmp
2

dmu
5

]Gp~p2!

]mu

]Gp~p2!

]p2
U

p252m
p
2

. ~59!

On the other hand, within the path integral formalism, one
has

^pauūu1 d̄dupb&5
d3SE

j @ j #

d j~0 !dpa~p !dpb~2p !
Up5 j50

p252m
p
2
3Zp ,

~60!

where

SE
j @ j #5SE1E d4x@ ū~x !u~x !1 d̄~x !d~x !# j~x !, ~61!

SE being the effective action of the model, given by Eq. ~1!.
From the explicit form of SE it is easy to see that

SE
j @ j #5SE@mu→mu1 j~x !#; ~62!

therefore, using the bosonized form of the effective action in
Eq. ~11!, with SE

quad given by Eq. ~22!, we get

^puūu1 d̄dup&5Zp

]Gp
j @ j #

] j~0 !
U j50

p252m
p
2

5
1

Zp
21

]Gp~p2!

]mu
U

p252m
p
2

5

]Gp~p2!

]mu

]Gp~p2!

]p2
U

p252m
p
2

. ~63!

Comparing Eq. ~63! with Eq. ~59! we see that the FH theo-
rem, as it should, holds in the present model. Moreover, us-
ing the GOR relation, Eq. ~56!, we obtain, up to leading
order in mu ,

^puūu1 d̄dup&052
^ūu1 d̄d&0

f p ,0
2 5

mp
2

mu
. ~64!
8-6
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To conclude, let us analyze in the chiral limit the coupling
gpgg . Expanding the integrand of Iu(mp

2 ) in powers of
k1 ,k2 and taking the limit mp

2 →0 one obtains @20#

gpgg ,05
Zp ,0

1/2

4p2su ,0
. ~65!

Now, taking into account the GT relation, one finally has

gpgg ,05
1

4p2 f p ,0
, ~66!

which is the expected result according to low-energy theo-
rems and chiral perturbation theory.

III. NUMERICAL RESULTS

In this section we discuss the numerical results obtained
within the above-described nonlocal model. Our results in-
clude the values of meson masses, decay constants, and mix-
ing angles, as well as the corresponding quark constituent
masses, quark condensates, and quark-meson couplings. The
numerical calculations have been carried out for two differ-
ent regulators often used in the literature: the Gaussian regu-
lator

r~p2!5exp~2p2/2L2! ~67!

and a Lorentzian regulator

r~p2!5~11p2/L2!21, ~68!

where L is a free parameter of the model, playing the role of
an ultraviolet cutoff momentum scale. Let us recall that these
regulators are defined in Euclidean momentum space.

A. Fits to physical observables

The nonlocal model under consideration includes five free
parameters. These are the current quark masses m̄ and ms

(m̄5mu5md), the coupling constants G and H, and the cut-
off scale L . In our numerical calculations we have chosen to
fix the value of m̄ , whereas the remaining four parameters
have been determined by requiring that the model reproduce
correctly the measured values of four physical quantities.
The observables we have used here are the pion and kaon
masses, the pion decay constant f p , and a fourth quantity,
chosen to be alternatively the h8 mass or the squared h8
→gg decay constant gh8gg

2 . In the case of the Gaussian
~Lorentzian! regulator, we find that for m̄ above a critical
value mcrit.8.3 MeV ~3.9 MeV! the quark propagators have
only complex poles in Minkowski space. This can be under-
stood as a sort of quark confinement @12,13#. In contrast, for
m&mcrit one finds that u- and d-quark Euclidean propaga-
tors do have at least two doublets of purely imaginary poles
~i.e., real poles in Minkowski space!.

In Table I we quote our numerical results for several
quantities of interest. Besides the obtained values of meson
masses and decay constants, we include in this table the cor-
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responding results for quark condensates, constituent quark
masses, and quark-meson coupling constants. We have taken
into account both Gaussian and Lorentzian regulators, con-
sidering in each case values for the light quark mass m̄ above
and below mcrit . Sets GI, GIV, LI, and LIV have been de-
termined by fitting the free parameters so as to reproduce the
empirical value of mh8 , while for sets GII, GIII, LII, and
LIII the h8 mass is obtained as a theoretical prediction and
the parameters have been determined by adjusting gh8gg

2 to
its present central experimental value. The last column of
Table I shows the empirical values of masses and decay con-
stants to be compared with our predictions.

As stated in Sec. II C, the meson masses are obtained by
solving the equations GP(2mP

2 )50 for P5p , K, h , and
h8. Now, to perform the corresponding numerical calcula-
tions, one has to deal with the functions Ci j(p2) evaluated at
Euclidean momentum p252mP

2 . These functions, defined
by Eq. ~17!, include quark loop integrals that need to be
treated with special care when the meson mass exceeds a
given value mP.2Si , where Si is the imaginary part ~in
Euclidean space! of the first pole of the quark propagator. In
practice this may happen in the case of the h8 state, and
physically it corresponds to a situation in which the meson
mass is beyond a pseudothreshold of decay into a quark-
antiquark state. A detailed discussion on this subject is given
in the Appendix. In particular, it is seen that for m̄.mcrit
~i.e., if the propagator has no purely imaginary poles! the
quark loop integrals can be regularized in such a way that
their imaginary parts vanish identically, and consequently the
h8 width corresponding to this unphysical decay is zero. In
contrast, for m̄,mcrit the width is in general nonzero, and
the presence of an imaginary part implies that the condition
Gh8(2mh8

2 )50 cannot be satisfied. In any case, it is still
possible to define the h8 mass by looking at the minimum of
uGh8(2p0

2)u. The situation is illustrated in Fig. 1, where we
plot the absolute values of the functions GP(2p0

2) for sets
GI and GIV ~upper and lower panels, respectively!. For set
GI (m̄.mcrit) the ūu pseudothreshold is reached at about 1
GeV, above the h8 mass; thus, the quark loop integrals are
well defined and Gh8(2mh8

2 )50. It can be seen that this is
also the situation for the parameter sets GII, GIII, LII, and
LIII. On the other hand, for set GIV (m̄,mcrit , lower panel
in Fig. 1! the ūu pseudothreshold is reached at ;750 MeV,
well below the h8 mass. As stated, in this case one can define
mh8 by looking at the minimum of the function
uGh8(2p0

2)u, which is represented by the dash-dotted curve.
Though different from zero, the ~unphysical! h8 width is
relatively small, and the minimum ~which, as required, lies at
p05958 MeV) is close to the horizontal axis in the chosen
GeV2 scale. Therefore we do not expect our results to be
spoiled by confinement effects not included in the model. In
any case, we believe that for m̄,mcrit the values of physical
parameters related to h8 decay may not be reliable, and they
have not been included in Table I. A similar situation occurs
for set LIV. Finally, in the case of set LI it turns out that
while m̄.mcrit ~no purely imaginary poles!, the ūu pseudo-
8-7
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TABLE I. Numerical results for quark effective masses and condensates, and pseudoscalar meson masses, and decay parameters. The
light quark mass m̄ has been taken as input, and the parameters ms , L , G, and H have been chosen so as to reproduce the empirical values
of pion and kaon masses, the pion decay constant f p , and, alternatively, the h8 mass or the measured value of gh8gg

2 ~marked with an
asterisk!.

Gaussian Lorentzian

Set GI GII GIII GIV LI LII LIII LIV Empirical

m̄ @MeV# 8.5 8.5 8.5 7.5 4.0 4.0 4.0 3.5 ~3.4–7.4!

ms @MeV# 223 223 223 199 112 110 112 100 ~108–209!

L @MeV# 709 709 709 768 1013 1013 1013 1110
GL2 10.99 11.44 10.80 10.43 14.68 16.76 14.96 14.05
2H L5 295.3 275.4 303.7 305.1 743.4 573.8 720.4 821.0

2^ūu&1/3 @MeV# 211 211 211 220 275 275 275 288

2^ s̄s&1/3 @MeV# 186 187 185 204 297 307 299 314
Su(0) @MeV# 313 313 313 295 299 299 300 281
Ss(0) @MeV# 650 662 645 607 562 615 569 518

mp @MeV# 139* 139* 139* 139* 139* 139* 139* 139* 139
mK @MeV# 495* 495* 495* 495* 495* 495* 495* 495* 495
mh @MeV# 517 505 521 522 543 513 540 545 547
mh8 @MeV# 958* 879 1007 958* 958* 778 908 958* 958

Gpq 3.28 3.28 3.28 3.09 3.13 3.13 3.13 2.94
GKq 3.47 3.52 3.45 3.21 3.05 3.24 3.08 2.80
Ghq 3.07 3.03 3.08 2.83 2.74 2.69 2.74 2.49
Gh8q 1.62 2.01 1.21 1.36 2.21 1.13

f p @MeV# 93.3* 93.3* 93.3* 93.3* 93.3* 93.3* 93.3* 93.3* 93.3
f K / f p 1.29 1.29 1.29 1.29 1.25 1.28 1.26 1.25 1.22
gpgg

2 @GeV22# 0.073 0.073 0.073 0.074 0.074 0.074 0.074 0.074 0.07560.005
ghgg

2 @GeV22# 0.095 0.106 0.091 0.094 0.072 0.108 0.075 0.075 0.06760.006
gh8gg

2 @GeV22# 0.141 0.116* 0.116* 0.278 0.116* 0.116* 0.11660.005
threshold occurs below the h8 mass. In this case, in order to
evaluate the loop integrals we have followed the regulariza-
tion procedure described in the Appendix, in which the
imaginary parts of quark loop integrals vanish, leading to a
real h8 pole.

By examining Table I it can be seen that, for the chosen
values of m̄ , the results for the quark condensate ^ūu&, the
ratio ^ s̄s&/^ūu&, and the constituent quark masses Sq(0) are
similar to the values obtained within most theoretical studies
@6,9#. The most remarkable differences between the results
corresponding to both regulators are found in the values of
the current quark masses and the quark condensates. For the
Gaussian regulator the parameters m̄ and ms are found to be
about 8 MeV and 200 MeV, respectively, while for the
Lorentzian regulator the corresponding values are approxi-
mately 4 MeV and 100 MeV. Note, however, that the ob-
tained values of the ratio ms /m̄ are very similar and some-
what above the present phenomenological range
(ms /mu)emp517–22 @18#. On the contrary, as expected from
the GT relation and its generalizations, quark condensates
are found to be higher for the Lorentzian regulator parameter
sets. In any case, the results for both regulators are in rea-
11401
sonable agreement with standard phenomenological values
@21# and the most recent lattice QCD estimates @22#.

The predicted values for the kaon decay constant are also
phenomenologically acceptable. Indeed, the prediction for
the ratio f K / f p turns out to be significantly better than that
obtained in the standard NJL model, where the kaon and pion
decay constants are found to be approximately equal to each
other @6# in contrast with experimental evidence. It is also
worth noticing that we obtain a very good prediction for the
p0→gg decay rate. In this sense the nonlocal model shows
a further degree of consistency in comparison with the stan-
dard local NJL model, where the quark momenta in the
anomalous diagrams should go beyond the cutoff limit in
order to get a good agreement with the experimental value
@7#.

Our results for h and h8 masses and h ,h8→gg anoma-
lous decays require a more detailed discussion. In the Gauss-
ian regulator case, it is seen that set GI, while fitting mh8 ,
leads to a rather large value for gh8gg

2 . On the contrary, for
set GII, which fits the value of gh8gg

2 , the h8 mass decreases
up to a value of about 880 MeV ~of course, one can also
choose intermediate sets between these two!. In addition, it is
8-8



LIGHT PSEUDOSCALAR MESONS IN A NONLOCAL . . . PHYSICAL REVIEW D 69, 114018 ~2004!
found that the fit to gh8gg
2 has a second solution—namely,

the parameter set GIII—which leads to a h8 mass of about 1
GeV. However, in this case mh8 is found to be very close to
the pseudothreshold point, and as a consequence both the
values of the h8-quark coupling Gh8q and the decay constant
gh8gg are quite sensible to small changes in the parameters.
On the other hand, for all four Gaussian regulator sets the
results for mh and ghgg do not change significantly. The
values for the h mass are found to be in relatively good
agreement with experiment, while ghgg

2 turns out to be some-
what large. In the case of the Lorentzian regulator, the above-
described situation becomes strengthened: set LI leads to an
unacceptably large value for gh8gg ~notice that, as stated,
here mh8 is above the pseudothreshold!, while set LII leads
to a too low h8 mass. Set LIII seems to reproduce reasonably
all measurable quantities, but as in the Gaussian regulator
case, the result for gh8gg is highly unstable. In general, as a
conclusion, one could say that the Gaussian regulator is pre-
ferred, leading to a reasonable global fit of all quantities
considered here.

It is worth mentioning that the chosen value of m̄ cannot
be very far from the values considered in Table I. For higher

FIG. 1. Absolute values of the inverse meson propagators as
functions of the momentum. The solid line corresponds to Gp , the
dashed line to GK , the dotted line to Gh , and the dash-dotted line
to Gh8 . The upper panel corresponds to set GI and the lower one to
set GIV. In both cases the insets show a detail of the low-
momentum region where the zeros corresponding to the ground-
state pion, kaon, and eta mesons occur.
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m̄ one would obtain too low values for the quark conden-
sates. On the other hand, if m̄@mcrit , the h8 mass turns out
to be very far above the ūu pseudothreshold, implying the
existence of a large unphysical h8 width.

B. h and h8 mixing angles and decay constants

The problem of defining and ~indirectly! fitting mixing
angles and decay constants for the h-h8 system has been
reexamined several times in the literature ~see Ref. @23#, and
references therein!. On general grounds one has to deal with
two different state mixing angles uP and four decay con-
stants f P

a , where P5h ,h8 and a50,8. In standard analyses,
however, it has been usual to parametrize the mixing be-
tween both meson states and decay constants using a single
parameter ~a mixing angle usually called u) and introducing
two decay constants f 8 and f 0 related to ghgg and gh8gg
through low-energy equations analogous to Eq. ~66!. In the
last few years, the analysis has been improved ~mainly in the
framework of next-to-leading order chiral perturbation
theory!, and several authors have considered the possible
nonorthogonality of ( f h

8 , f h8
8 ) and ( f h

0 , f h8
0 ) @24,25#, as well

as that of the states h and h8 @26#. For the sake of compari-
son, we follow here Ref. @24# and express the four decays
constants f P

a in terms of two decay constants f a and two
mixing angles ua , where a50,8: namely,

S f h
8 f h

0

f h8
8 f h8

0 D 5S f 8 cos u8 2 f 0 sin u0

f 8 sin u8 f 0 cos u0
D . ~69!

In our model, the decay constants f P
a can be calculated from

Eqs. ~43!–~47!. As shown below, it turns out that the angles
u8 and u0 are in general different. This also happens with the
mixing angles uh and uh8 , whose expressions are given in
Eq. ~31!. Notice that these are consequences of the ~rather
strong! p2 dependence of the functions Ci j(p2) and f i j(p2)
defined in Eqs. ~17! and ~41!, respectively.

Our numerical results for the the parameters f a, ua intro-
duced in Eq. ~69! and the mixing angles uh ,h8 are collected
in Table II. In the last column of the table we quote the
ranges in which the parameters f a, ua fall within most popu-
lar theoretical approaches. We have taken these values from
the analysis in Ref. @23#, in which the results from different
parametrizations have been translated to the four-parameter
decay constant scheme given by Eq. ~69!. By looking at
Table II it is seen that the results corresponding to Gaussian
regulator sets lie within the range of values quoted in the
literature, while in the case of the Lorentzian regulator the
most remarkable difference corresponds to set LI, which
leads to a large value of f 0 ~this can be related with the
unacceptably large value of gh8gg discussed above!. The
mixing angles ua can be compared to those obtained in a
recent Bethe-Salpeter approach calculation @27#, which leads
to a somewhat larger ~absolute! value of u0. As stated, for
sets GIV and LIV the values for the h8 decay constants have
not been computed in view of the unphysical finite width
acquired by the h8 meson.
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TABLE II. Numerical results for h and h8 weak decay parameters and state mixing angles, according to the definitions given by Eqs.
~31! and ~69!.

Set GI GII GIII GIV LI LII LIII LIV Theory and
phenomenology

f 8 / f p 1.33 1.34 1.32 1.32 1.36 1.31 ~1.2–1.4!

f 0 / f p 1.28 1.18 1.18 1.64 1.18 1.05 ~1.0–1.3!

u8 214.2° 219.7° 210.0° 211.7° 225.4° 210.6° 2(22° –19°)
u0 22.14° 25.25° 21.17° 1.66° 26.52° 1.60° 2(10° –0°)

uh 4.65 1.81 5.69 5.32 7.69 20.72 6.90 8.00
uh8 250.0 247.1 252.4 248.4 244.6 250.6
Finally, notice that for most parameter sets ~both Gaussian
and Lorentzian! the mixing angle uh gets a small positive
value, whereas the angle uh8 lies around 245°. That is to
say, we find our mixing scheme to be very far from the
approximation of a single mixing angle u . For this reason we
believe there is no reason to expect uh to be within the
usually quoted range u52(10° –20°).

IV. CONCLUSIONS

In this work we have studied the properties of light pseu-
doscalar mesons in a three-flavor chiral quark model with
nonlocal separable interactions, in which the U(1)A breaking
is incorporated through a nonlocal dimension-9 operator of
the type suggested by ’t Hooft. We consider the situation in
which the Minkowski quark propagator has poles at real en-
ergies as well as the case where only complex poles appear,
which has been proposed in the literature as a realization of
confinement. We concentrate on the evaluation of the masses
and decay constants of the pseudoscalar mesons for two dif-
ferent nonlocal regulators: namely, Gaussian and Lorentzian.

As general conclusions, it is found that in this model the
prediction for the ratio f K / f p turns out to be significantly
better than that obtained in the standard NJL model, where
the kaon and pion decay constants are found to be approxi-
mately equal to each other in contrast with the experimental
evidence. In addition, the model overcomes the standard lo-
cal NJL problem of treating the anomalous quark loop inte-
grals in a consistent way. With respect to the h-h8 system,
according to our analysis the Gaussian regulator seems to be
more adequate than the Lorentzian one to reproduce the ob-
served phenomenology. In general, our results are in reason-
able agreement with experimentally measured values, and
the global fits can be still improved by considering regulators
of more sophisticated shapes. Alternatively, one might con-
sider adding degrees of freedom not explicitly included in
the present calculations such as explicit vector and axial-
vector interactions, two-gluon components for the h and h8
mesons, etc. Finally, it is worth remarking that our fits lead to
an h-h8 system in which the U(3) states h8 and h0 are
mixed by two angles uh and uh8 that appear to be signifi-
cantly different from each other.
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APPENDIX: EVALUATION OF QUARK LOOP INTEGRALS

In this appendix we describe some details concerning the
evaluation of the quark loop integrals Ci j(p2) defined in Eq.
~17!. Notice that in the nonlocal chiral model analyzed in this
work all four-momenta are defined in Euclidean space. How-
ever, in order to determine the meson masses, the external
momenta p in the loop integrals have to be extended to the
spacelike region. Hence, without loss of generality, we
choose p5(0W ,ip0) and use three-momentum rotational in-
variance to write the quark loop integrals as

Ci j~2p0
2!5E dq3 dq4 q3

2

3
Fi j~q3 ,q4 ,p0!

@~q1!21S i
2~q1!#@~q2!21S j

2~q2!#
,

~A1!

where q35uq uW . The explicit form of Fi j(q3 ,q4 ,p0), which
depends on the meson under consideration, can be easily
obtained by comparing Eqs. ~A1! and ~17!. In principle, the
integration in Eq. ~A1! has to be performed over the half-
plane q3e@0,`), q4e(2` ,`). For sufficiently small values
of p0 the denominator does not vanish at any point of this
integration region. However, when p0 increases it might hap-
pen that some of the poles of the integrand pinch the inte-
gration region, making the loop integral divergent. In such
cases one has to find a way to redefine the integral in order to
obtain a finite result. In practice, we need to extend the cal-
culation of the loop integrals Ci j(2p0

2) to relatively large
values of p0 only when trying to determine the h8 mass. For
this particle, one only has to deal with integrals in which i
-10
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5j; therefore, we will restrict ourselves here to this case and
the indices i , j will be dropped from now on.

Let us start by analyzing the zeros of the denominator in
the integrand in Eq. ~A1!. This denominator can be written as
D5D1D2, where

D65~q6!21S2~q6!. ~A2!

It is clear that the zeros of D are closely related to the poles
of the quark propagator S(q)5@2q”1S(q)#21. In what fol-
lows we will assume that the regulator is such that the propa-
gator has a numerable set of poles in the complex q plane
and that there are no cuts. It is not hard to see that these poles
appear in multiplets that can be characterized by two real
numbers (Sr

n ,Si
n), with Sr

n>0, Si
n.0. The index neN has

been introduced to label the multiplets, with the convention
that n increases for increasing Si

n . It is convenient to distin-
guish between two different situations: ~a! there are some
purely imaginary poles—i.e., there are one or more n for
which Sr

n50—and ~b! no purely imaginary pole exists—i.e.,
Sr

n.0 for all n . It can be shown that purely imaginary poles
show up as doublets located at Euclidean momentum
(Aq2)n56iSi

n , while complex poles @28# appear as quartets
located at (Aq2)n5Sr

n6iSi
n and (Aq2)n52Sr

n6iSi
n .

Clearly, the number and position of the poles depend on the
specific shape of the regulator. For the Gaussian interaction,
three different situations might occur. For values of s̄ below
a certain critical value s̄c , two pairs of purely imaginary
simple poles and an infinite set of quartets of complex simple
poles appear. It is possible to check that in this case one of
the purely imaginary doublets is the multiplet which has the
smallest imaginary part (n51, according to our convention!.
At s̄5s̄c , the two pairs of purely imaginary simple poles
turn into a doublet of double poles with Sr50, while for s̄

.s̄c only an infinite set of quartets of complex simple poles
is obtained. In the case of the Lorentzian interactions, there is
also a critical value above which purely imaginary poles at
114018
low momenta cease to exist. However, for this family of
regulators the total number of poles is always finite.

As stated, for low enough external momentum p0 the in-
tegrand in Eq. ~A1! does not diverge along the integration
region. As p0 increases, the first set of poles to be met is that
with the lowest value of Si , namely (Aq2)n51. In the calcu-
lation of the meson properties mentioned in the main text, we
deal with relatively low external momenta, so that the effect
of higher poles is never observed. Thus, in order to simplify
the discussion we will only consider in what follows the first
pole multiplet, dropping the upper index n . The extension to
the case in which other sets of poles become relevant will be
briefly commented at the end of this appendix.

The denominator D vanishes when D150 and/or D2

50—i.e., when

~q1!25q3
21q4

22
p0

2

4 1iq4p05Sr
22Si

262iSrSi ~A3!

and/or

~q2!25q3
21q4

22
p0

2

4 2iq4p05Sr
22Si

262iSrSi . ~A4!

Solving these equations for q4 we get in general eight differ-
ent solutions. Four of them are given by

q4
(3,1)52

SiSr

g~q3 ,Si ,Sr!
1iS 6g~q3 ,Si ,Sr!2

p0

2 D ,

~A5!

q4
(4,2)52

SiSr

g~q3 ,Si ,Sr!
1iS 6g~q3 ,Si ,Sr!1

p0

2 D ,

~A6!

where
g~q3 ,Si ,Sr!5Aq3
21~Si

22Sr
2!1Aq3

412q3
2~Si

22Sr
2!1~Si

21Sr
2!2

2 , ~A7!
and the other four solutions are q4
(i)852Re(q4

(i))
1i Im(q4

(i)) , with i51, . . . ,4. In Eqs. ~A5! and ~A6!, q4
(3,1)

correspond to the zeros of D1 and q4
(4,2) to those of D2,

while a similar correspondence holds for q4
(i)8. For purely

imaginary poles one has Sr50; hence, only four indepen-
dent solutions exist.

If p0 is relatively small, the distribution of the poles in the
complex q4 plane is that represented in Fig. 2. Figure 2a
holds for situation ~a!, in which the poles in the first multip-
let are purely imaginary, while Fig. 2b corresponds to case
~b!, in which these poles are complex. In both figures the
dots indicate the zeros of D1 and the squares those of D2.
As we see, for small values of p0 half of the poles of D1

@namely, q4
(1) for case ~a! and q4

(1) and q4
(1)8 for case ~b!# are

placed below the real axis, whereas the other half @q4
(3) for

case ~a! and q4
(3) and q4

(3)8 for case ~b!# lie above it. Some-
thing similar happens for the poles of D2. Now, as p0 in-
creases, the poles move in the direction indicated by the
arrows. For a certain value of p0, the poles q4

(2) and q4
(3)

meet on the real p4 axis @the same obviously happens with
q4

(2)8 and q4
(3)8 in case ~b!#, thus pinching the integration
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region of the (q3 ,q4) integral in Eq. ~A1!. The location of
this so-called ‘‘pinch point’’ in the (q3 ,q4) plane, which we
denote by (q3

p ,q4
p), is given by the solution of Im q4

(2)

5Im q4
(3)50:

~q3
p ,q4

p!5SA~p0
224Si

2!~p0
214Sr

2!

2p0
,6

2SiSr

p0
D . ~A8!

As we see, for p0,2Si there is no pinch point @actually, it
occurs for a complex value of q3, outside the integration
region in Eq. ~A1!#, while for p0>2Si one or two pinch
points exist depending on whether Sr50 @case ~a!# or Sr
Þ0 @case ~b!#. In this way, for p0.2Si the integral in Eq.
~A1! turns out to be ill defined.

In order to find a proper regularization procedure, let us
analyze a simpler situation in which the problem might be
solved in Minkowski space through the usual ‘‘ie’’ prescrip-
tion. We consider the loop integral that appears in the usual
Nambu–Jona-Lasinio model with three-momentum cutoff:

I2~2p0
2!52i lim

e→01

EL3 d4qM

~2p!4

3
1

@~qM
1 !22m21ie#@~qM

2 !22m21ie#
,

~A9!

where we have added the subscript M to stress the fact that
here the momenta are defined in Minkowski space. For suf-
ficiently small values of p0, even in the limit e→01, the
integral is convergent and no regularization is needed. Thus
one can simply perform the Wick rotation p45ip0 and take
the limit e→01 even before performing the integration. One
gets, in this way,

FIG. 2. Schematic distribution in the complex q4 plane of the
poles corresponding to the lowest Si set for ~a! s̄,s̄c and ~b! s̄

.s̄c . In both cases the dots indicate the poles of D1 and the
squares those of D2. These distributions correspond to a value of
p0,2Si . The arrows indicate the movement of the poles as p0
increases.
114018
I2~p4
2!522EL3 d4qE

~2p!4

1

@~qE
1!21m2#@~qE

2!21m2#
,

~A10!

which is an integral of the type given in Eq. ~A1!. Note that
the poles of the propagators are such that this situation be-
longs to case ~a!, with Si5m . For p0.2m the straightfor-
ward transformation from Minkowski to Euclidean space
mentioned above cannot be done, since some poles go
through the integration contours. The question is whether the
result of the well-defined Miskowskian integral ~A9! can be
still recovered if one starts with the Euclidean integral ~A10!,
which is ill defined for p0.2m due to the presence of a
pinch point at (q3

p ,q4
p)5(Ap0

2/42m2,0). It is not hard to
prove that the answer is yes, once the q4 integration contours
and the pole positions are conveniently modified. The proce-
dure requires one to introduce two small parameters e and d
and take the limit d→01, e→01 at the end of the calcula-
tion. The parameter e is used to shift the poles of D1 and
D2 ~see Fig. 3!, whereas d is used to split the q3 integration
interval in three subintervals: the first region corresponds to
q3.q3

p1d , the second to q3
p2d,q3,q3

p1d , and the third
to q3,q3

p2d . For each q3 region we define a different q4
integration contour, as represented in Fig. 3 ~in the second
region, Fig. 3b, also an arbitrary constant k.1 is intro-
duced!. In fact, in the first and third regions the limit e
→01 can be taken even before performing the integrations.
These two q3 regions give the full contribution to the real
part of the result. However, more care has to be taken with
the intermediate region, which is responsible for the full con-
tribution to the imaginary part. For example—as it is well
known from the ‘‘ie’’ Minkowskian formulation—changing
the sign of e does not affect the real part of the result but
does change the sign of the imaginary part.

The prescription just described can be now applied to
regularize any loop integral of the form given in Eq. ~A1! in
which p0.2Si . Let us consider first the case ~a!, for which
the lowest set of poles has Sr50 and the pinch point is
located at (q3

p ,q4
p)5(Ap0

2/42Si
2,0). Defining C (a)(2p0

2) as
an integral of the form given by Eq. ~A1! for which only one
set of purely imaginary poles contributes, we get

FIG. 3. Integration paths in the complex q4 plane for ~a! q3
.Ap0

2/42m21d , ~b! Ap0
2/42m22d,q3,Ap0

2/42m21d , and
~c! q3,Ap0

2/42m22d . The constant k is an arbitrary real number
satisfying k.1.
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Re@C (a)~2p0
2!#5 lim

d→01
H R (a)~2p0

2 ,d!1E
0

q3
p
2d

dq3E
2`

`

dq4
q3

2F~q3 ,q4 ,p0!

@~q1!21S2~q1!#@~q2!21S2~q2!#

1E
q3

p
1d

`

dq3E
2`

`

dq4
q3

2F~q3 ,q4 ,p0!

@~q1!21S2~q1!#@~q2!21S2~q2!#
J , ~A11!

Im@C (a)~2p0
2!#52

p2

2p0

q3
pF~q3

p,0,p0!

F 11
]S2~q !

]q2 U
q252Si

2
G 2 . ~A12!

Here R (a)(2p0
2 ,d) is the so-called ‘‘residue contribution,’’ responsible for the cancellation of the divergence appearing in the

integrals in Eq. ~A11! in the limit d→01. Its explicit expression reads

R (a)~2p0
2 ,d!52pE

0

q3
p
2d dq3

Aq3
21Si

2 ReF q3
2F~q3 ,q4 ,p0!

@11]S2~q2!/]~q2!2#@~q1!21S2~q1!#
G

q45q4
(2)5i(p0/22Aq3

21Si
2)

. ~A13!

For case ~b! we have to extend the previous analysis to the situation in which the poles are complex even in the limit e
→01. In this case there is an ambiguity on how to extend the ‘‘ie’’ prescription already in Minkowski space. Here we will
follow the suggestion made in Ref. @29#, in which opposite signs of e are used for each pole and its Hermitian conjugate ~both
defined in Minkowski space!. In our Euclidean framework, this corresponds to choose different signs of e for sets p4

(i) and
p4

(i)8. It is not hard to see that with this prescription the contributions to the imaginary part of the quark loop integral coming
from both sets of poles cancel each other. In this way, defining C (b)(2p0

2) as an integral of the type given in Eq. ~A1! for
which only one set of complex poles contributes, we get

Im@C (b)~2p0
2!#50. ~A14!

For the real part one obtains an expression similar to Eq. ~A11!, just replacing R (a)(2p0
2 ,d) by R (b)(2p0

2 ,d), with

R (b)~2p0
2 ,d!54pE

0

q3
p
2d

dq3 ReF q3
2F~q3 ,q4 ,p0!

@11]S2~q2!/]~q2!2#@~q1!21S2~q1!#~ iq41p0/2!
G

q45q4
(2)

. ~A15!

In principle, the extension of the present analysis to the situation in which further sets of poles are relevant is rather
straightforward. However, some care has to be taken if one has more than one set of purely imaginary poles, since in that case
double poles might show up for p0.Si

11Si
2 .

One is faced with a similar problem in the calculation of the h8→gg decay constant gh8gg , where the loop integral
Iu(mh8

2 ) defined by Eq. ~50! is divergent for mh8.2Si . Though the situation is slightly more involved ~one finds two pinch
points instead of one!, our regularization prescriptions can be trivially extended to include this case. In the same way, the
method could be extended to more complicated situations, such as, e.g., those found in Schwinger-Dyson type of calculations
@9,30#. Finally, we note that although our prescription has some similarities with that used in Ref. @13#, the regularization
procedure is not exactly the same. In the (q3 ,q4) integral which appears in Eq. ~A11! the excluded region around the pinch
point is a slide of infinite size in the q4 direction and size 2d in the q3 direction, as opposed to the circular region of radius
d used in Ref. @13#. This leads to some minor differences in the numerical values of the regulated integrals.
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