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We study the presence of Pomeranchuk instabilities induced by interactions on a Fermi-liquid description of
a graphene layer. Using a recently developed generalization of the Pomeranchuk method, we present a phase
diagram in the space of fillings versus on-site and nearest-neighbors interactions. We find that for both inter-
actions being repulsive, an instability region exists near the Van Hove filling, in agreement with earlier
theoretical work. In contrast, near-half filling, the Fermi-liquid behavior appears to be stable, in agreement with
theoretical results and experimental findings using angle-resolved photoemission spectroscopy. The method
allows for a description of the phase diagram for arbitrary filling.
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I. INTRODUCTION

Correlated electron systems in two dimensions have at-
tracted a lot of attention in the last years, especially due to an
important number of experiments that provide undisputable
evidence of the existence of exotic phases of matter.

One such example corresponds to nematic and stripe
�smectic� phases in high Tc superconductors in the under-
doped region and fractional quantum Hall effect systems at
high magnetic fields.1 A nematic phase is characterized by
orientational but not positional order and it has been pro-
posed to explain the observed transport anisotropies. One
important point about these phases is that they arise sponta-
neously, decreasing the rotational symmetry without a low-
ering of the lattice symmetry. Another more recent case is
given by strontium ruthenate Sr3Ru2O7, which is well mod-
eled as a bilayer system and shows a large magnetoresistive
anisotropy. This observation has been argued to be consistent
with an electronic nematic fluid phase. Experimentally, two
consecutive metamagnetic transitions have been observed
and the region in between has been proposed to be a conse-
quence of a Pomeranchuk instability, due to a nematic defor-
mation of the Fermi surface, in very close analogy to what
happens in fractional quantum Hall gallium arsenide
systems.2 Yet another interesting material is the heavy fer-
mion compound URu2Si2 in which a hidden order phase
arises through a second-order transition at around 17.50 K.
The order parameter of this phase has remained elusive to
theorists up to date. Different types of order have been pro-
posed, but the situation is still under debate.3 In recent work,
Varma and Zhu4 have proposed that this phase transition
could correspond to a Pomeranchuk instability inducing a
deformation in the antisymmetric spin channel, stabilized by
a phase characterized by a helicity order parameter.

The experimental findings mentioned above triggered dif-
ferent theoretical studies on low-dimensional correlated sys-
tems to search for such exotic phases.1 Special attention has
been paid to the possibility of Pomeranchuk instabilities5

giving rise to such phases.6–16 In a previous paper,17 moti-
vated by these investigations, we developed a generalization

of Pomeranchuk’s method to search for instabilities of a
Fermi liquid. The method we presented is applicable to any
two-dimensional lattice model with an arbitrary shape of the
Fermi surface �FS� at zero temperature. The main results of
our previous paper were summarized in the form of a recipe
whose steps we give below for completeness. Our method is
particularly well suited to analyze systems with weak inter-
actions and then graphene appears as a perfect arena to test
our techniques, since electron interactions are argued to be
small due to strong screening.18

The recent isolation of graphene,19 the first purely two-
dimensional material, which is made out of carbon atoms
arranged in a hexagonal structure, led to an enormous inter-
est and a large amount of activity in studying its properties.
The low doping region, near to half filling, became the sub-
ject of attention due to the peculiar behavior described by
chiral massless charge carriers. Several Van Hove singulari-
ties are present at energies of the order of the hopping pa-
rameter E�2.7 eV and these singularities are expected to
have an important role in the properties of the system. Al-
though in first approximation graphene layers are well mod-
eled by free fermions hopping on a hexagonal lattice, there
have been a number of works in the literature where the
effects of electron-electron interactions were taken into
account.20,21 However, such analysis were centered in the
undoped �half filling� regime or very close to it and explicit
analytic results for a wide range of fillings are still lacking.

In the present paper we apply the method developed in17

to fermions in a graphene sheet in the presence of electron-
electron interactions up to nearest neighbors. A previous
work using a more direct approach showed that long range
interactions could lead to Pomeranchuk instabilities22 at the
Van Hove filling. On the other hand, at dopings very close to
half filling, it was anticipated that graphene should behave as
a Fermi liquid.23 This was later confirmed experimentally by
angle-resolved photoemission spectroscopy �ARPES� explo-
ration of the FS.24 The results presented here are consistent
with these findings, while our method allows for a more
complete and systematic study of the whole space of fillings.
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II. TWO-DIMENSIONAL POMERANCHUK
INSTABILITIES: REVIEW AND IMPROVEMENT OF THE

METHOD

In this section we will review the generalization of Po-
meranchuk method first presented in17 and discuss a shortcut
that can be used as an alternative to the change of variables
proposed there.

A. Review of the method

According to Landau’s theory of the Fermi liquid, the
free-energy E as a functional of the change �nk in the equi-
librium distribution function at finite chemical potential �
can be written to first order in the interaction as

E =� d2k���k� − ���nk +
1

2
� d2k� d2k�f�k,k���nk�nk�.

�1�

Here ��k� is the dispersion relation that controls the free
dynamics of the system; the interaction function f�k ,k�� can
be related to the low-energy limit of the two particle vertex.
Note that we are omitting spin indices and considering only
variations of the total number of particles nk=n↑k+n↓k. This
implies that the considerations that follow will be valid in the
absence of any external magnetic field and at constant total
magnetization. The identification of these two functions is
the starting step of our calculation:

Step 1: write the energy as in Eq. �1� and identify the
functions ��k� and f�k ,k��.

Instead of the cartesian variables in momentum space
�kx ,ky� we will find convenient to define a new set of curvi-
linear variables �g ,s� according to

g = g�k� � � − ��k� ,

s = s�k� . �2�

The variable g varies in the direction normal to the FS,
whose position is defined by g=0. We choose s such that it is
constant at constant distance to the FS, varying in the longi-
tudinal direction tangent to the FS, namely it satisfies the
restriction

�s�k� · �g�k� = 0. �3�

Since solving this for s may be a difficult task, we develop
bellow an alternative procedure that replaces this calculation.
Even if not mandatory, we will chose the variable s such that
we give a complete turn around each connected piece of the
FS when it runs from −� to �.

From the above change of variables we obtain the Jaco-
bian

J−1�g,s� = � ��g,s�
�k

� , �4�

which is the relevant outcome of this step of the calculation:
Step 2: with the help of the dispersion relation ��k� ob-

tained in step 1, change the variables according to Eq. �2� to
obtain the Jacobian Eq. �4�.

In a stable system, the energy Eq. �1� should be positive
for all �nk that satisfy the constraint imposed by Luttinger
theorem25

� d2k�nk = 0. �5�

Pomeranchuk’s method roughly consists on exploring the
space of solutions of constraint Eq. �5� to find a �nk that
turns the energy into negative values, thus pointing to an
instability of the system.

In terms of our new variables g and s, we can write
�nk�g,s� at zero temperature as

�nk�g,s� = H�g + �g�g,s�� − H�g� , �6�

where H is the unit step function and �g�g ,s� is an small
perturbation parameterizing the deformation of the FS. Re-
placing into the constraint Eq. �5�, changing the variables of
integration according to Eq. �2� and performing the integral
to lowest order in �g we get

� dsJ�s��g�s� = 0. �7�

Here J�s�=J�g ,s� 	g=0 and �g�s�=�g�g ,s� 	g=0. In case the FS
has a nontrivial topology, the integral includes a sum over all
different connected pieces.

We see that in order to solve the constraint �g�s� can be
written as

�g�s� 
 J−1�s��s��s� , �8�

in terms of a free slowly varying function ��s�. Even if in
Eqs. �5� and �7� a sum over different connected pieces of the
FS may be assumed, this particular solution does not con-
sider excitations in which some particles jump between dif-
ferent connected pieces.

Using the change of variables Eq. �2� and with the help of
Eqs. �6� and �8�, we can rewrite the energy E to lowest order
in �g as

E =� ds�� ds��s��
1

2
�J−1�s���s − s�� + f�s,s�����s� , �9�

where we call �s��s�=��s� and f�s ,s��= f�g ,s ;g� ,s�� 	g=g�=0.
Note that the left hand side of the stability condition E

�0 has two terms, the first of which contains the information
about the form of the FS via J−1�s�, while the second encodes
the specific form of the interaction in f�s ,s��. There is a clear
competition between the interaction function in the second
term of the integrand and the first term that only depends on
the geometry of the unperturbed FS.

We see in Eq. �9� that the energy E is a bilinear form
acting on the real functions ��s� that parameterize the defor-
mations of the FS

E = ��,�� . �10�

This is the next step of our calculation that can be summa-
rized as

Step 3: write the energy as the bilinear form Eq. �9� using
the functions J�s� and f�s ,s� identified in steps 1 and 2.
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The stability condition is then equivalent to demanding
this bilinear form to be positive definite for any possible
smooth deformation of the FS

∀� � L2�FS�:��,�� � 0, �11�

where L2�FS� stands for the space of square-integrable func-
tions defined on the Fermi surface.

In consequence, a straightforward way to diagnose insta-
bility is to diagonalize this bilinear form looking for negative
eigenvalues. To see that, we choose an arbitrary basis of
functions �n�n�N of L2�FS�, in terms of which we can write

��s� = �
n

an�n�s� , �12�

and the stability condition now reads

E = �
n,m

anam
� ��n,�m� � 0. �13�

This configures our
Step 4: choose an arbitrary basis �n�n�N of the space of

functions L2�FS�.
The above defined bilinear form can be considered as a

pseudoscalar product in L2�FS�. In general the functions of
the basis �n�n�N will not be mutually orthogonal with re-
spect to this product. Moreover in the presence of instabili-
ties, the pseudoscalar product may lead to negative pseudo-
norms �� ,���0.

We can then make use of the Gram-Schmidt orthogonal-
ization procedure to obtain a new basis of mutually orthogo-
nal functions 	n�n�N. In terms of them an arbitrary deforma-
tion of the FS parameterized by a function ��s� can be
decomposed as

��s� = �
n

bn	n�s� , �14�

which implies that the stability condition on such deforma-
tion will read

E = �
n

	bn	2�	n,	n� � 0. �15�

In summary:
Step 5: apply the Gram-Schmidt orthogonalization proce-

dure to go from the arbitrary basis �n�n�N chosen on step 3
onto a basis of mutually orthogonal functions 	n�n�N.

In Eq. �15� we note that the only possible source of a
negative sign is in the pseudonorms 
n= �	n ,	n�. In case the
i-th pseudonorm 
i is negative, a deformation parameterized
by ��s��	i�s� is unstable. In other words the pseudonorms

n�n�N can be taken as the stability parameters, a negative
value of 
i indicating a instability in the i-th channel. Then:

Step 6: compute the pseudonorms of the new basis func-
tions 	n�n�N. If for a given channel i one finds that 
i
= �	i ,	i��0, the FS is diagnosed to be unstable.

These six steps summarize the generalized Pomeranchuk
method. It can be applied to any two-dimensional model
with arbitrary dispersion relation and interaction. Note that
since L2�FS� is infinite dimensional, the present method is
not efficient to verify stability: at any step i it may always be
the case that for some j, 
i+j �0. Moreover, in the case of

nontrivial topology, excitations consisting on particles jump-
ing between different connected pieces of the FS were not
included in the solution of the constraint Eq. �7� and they
may lead to additional instabilities. The same is true excita-
tions involving spin or color flips that we are not consider-
ing.

It has to be stressed that in its present form, the method is
not suitable to detect first-order phase transitions of the kind
already predicted for some two-dimensional systems.26,27

This is due to the fact that the energy is expanded up to
second order in the variations of the occupation numbers.
Since our method determines sufficient conditions for a
phase transition to occur, additional first order instabilities
can only enlarge the unstable region.

B. An alternative to the change of variables

As advanced, to avoid the task of solving the constraint
Eq. �3� that defines the variable s, we will develop here an
alternative procedure to derive the form of the Jacobian
evaluated on the FS J�s�.

We begin by defining a parametrization of the FS

k�t� = �kx�t�,ky�t��, − � � t � � , �16�

in terms of an arbitrary parameter t. In other words, given the
function g�k� defined in Eq. �2�, we choose k�t� such that
∀t :g�k�t��=0. In terms of such parametrization we can de-
compose the Dirac � function as

��g�k�� =� dt
	k̇�t�	

	�g�k�t��	
��2��k − k�t�� , �17�

�a proof of this formula is given in the Appendix�.
The integral I of an arbitrary function F�g ,s� along the FS

can be written as

I =� dsF�g,s�	g=0, �18�

or in other words

I =� dsdgF�g,s���g� . �19�

Changing variables to k

I =� d2kF�s�k�,g�k��J−1�s�k�,g�k����g�k�� , �20�

and replacing Eq. �17� we get

I =� d2kF�s�k�,g�k��J−1�s�k�,g�k��

�� dt
	k̇�t�	

	�g�k�t��	
��2��k − k�t�� , �21�

or interchanging the order of the integration and performing
the k integrals
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I =� dtFs�k�t��,g�k�t���J−1�s�k�t��,g�k�t���
	k̇�t�	

	�g�k�t��	
.

�22�

Now using the fact the g�k�t��=0 and defining the parameter
t such that s�k�t��= t, we get

I =� dsF�s,g�	g=0J−1�s�
	k̇�s�	

	�g�k�s��	
, �23�

that in order to be compatible with Eq. �18� imply

J−1�s� =
	�g�k�s��	

	k̇�s�	
. �24�

Then with all the above, we can replace our previous step 2
by a new version

Step 2’: with the help of the dispersion relation ��k� ob-
tained in step 1, parameterize the FS and obtain the Jacobian
evaluated on the FS according to Eq. �24�.

Then, even if it may be very difficult to solve the partial
differential Eq. �3� in order to explicitly obtain the Jacobian,
its restriction to the FS is all what we need and can be ob-
tained by the much easier task of parameterizing the FS.

III. POMERANCHUK INSTABILITY IN GRAPHENE

In the present section we will apply the method reviewed
in the previous pages to the case of fermions in a graphene
layer with Coulomb interactions.

A. Free Hamiltonian: Tight-binding approach

Graphene is made out of carbon atoms arranged in a hex-
agonal lattice. It is not a Bravais lattice but can be seen as a
triangular lattice with two atoms per unit cell. The tight-
binding Hamiltonian for electrons in graphene considering
that electrons can hop only to nearest-neighbor atoms has the
form

H0 = − t �
�i,j�,

�ai
† bj + H.c.� , �25�

where ai ,bi are the creation and annihilation operators re-
lated to each of the unit-cell atoms.

The diagonalized Hamiltonian can be written in terms the
occupation numbers of rotated lattice operators defined by

nk
� =

1

2
�bk

† �
h��k�
��k�

ak
† ��bk �

h�k�
��k�

ak� , �26�

where the function h�k� satisfies 	h�k�	2=��k�2 and reads

h�k� = t�cos�kx� − 2i sin�kx − 1� + 2 cos2� kx

2
�

+ 4i cos��3ky

2
�sin� kx

2
� + 4 cos��3ky

2
�cos�kx�� .

�27�

It results in

H0 =� d2k�


��
+�k�nk

+ + �
−�k�nk

− � , �28�

here we defined the energy bands by �
��k�= ���k� with

��k� = t�3 + 4 cos�3

2
kxa�cos��3

2
kya� + 2 cos��3kya� ,

�29�

where a is the carbon-carbon distance �a�1.24 Å�.
The energy resulting from a small variation on the occu-

pation numbers on Eq. �28� at finite chemical potential �
reads

E0 =� d2k���k� − ����nk
+ − �nk

−� , �30�

where use have been made of the fact that the dispersion
relation do not have spin indices to write the resulting ex-
pression in terms of variations of nk

�=n↑k
� +n↓k

� .
To fix the ideas we consider only nonvanishing variations

of the occupation numbers in the upper band, i.e., �nk
−=0,

�nk
+�0. This can be done without loss of generality due to

the symmetry of the system under the interchange of the
positive and negative bands. We then have

E0 =� d2k���k� − ���nk
+. �31�

This has the form o the free term of Eq. �1�, giving us one of
the ingredients required by our step 1 defined above, namely
the dispersion relation ��k�.

The band structure is shown in Fig. 1�a�. The density of
states is presented in Fig. 1�b� where a Van Hove singularity
can be seen to be present for �= � t. The resulting FS’s for
different fillings are shown in Fig. 1�c�.

B. Interactions in graphene

To complete the ingredients required by our step 1, we
need the quasiparticle interaction function f�k ,k��. In what
follows, for completeness and to set up our conventions, we
briefly describe how to derive its expression to first order in
a perturbative expansion.10,28

We will consider density-density interactions, both on-site
�with strength U� and between nearest neighbors �with
strength V�, namely our interaction Hamiltonian reads

Hint =
U

2 �
i

ni�ni − 1� + V�
�i,j�

ninj , �32�

where �i , j� stands for nearest neighbors and the density op-
erators ni=ni↑+ni↓ refer to the original lattice operators ai ,bi.
This may describe correctly the physics in graphene, since
interactions are suppressed by screening effects18

One then computes the energy in the mean-field approxi-
mation. The result can be written in terms of the mean-field
values of the occupation numbers of the rotated lattice op-
erators that diagonalize H0 reading
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�H�MF =
1

2N
�

k,k�,�,�

�nk�
− nk��

− + nk�
+ nk��

+ + nk�
+ nk��

− + nk�
− nk��

+ �

� �U��
1 +

V

2
�F�0����

0 + ��
1 ���

−
1

2N
�

k,k�,�,�

�nk�
− nk��

− + nk�
+ nk��

+ − nk�
+ nk��

− − nk�
− nk��

+ �

�
V

2
���

0 F�k − k��
��k���k��
h��k�h�k��

� , �33�

where N is the number of sites and

F�k� = �
�=1

3

eik·��, with ��1 = a�1

2
,
�3

2
� ,

�2 = a�1

2
,−

�3

2
� ,

�3 = a�− 1,0� .
� �34�

As advanced in the previous section, we will concentrate
in variations of the occupation numbers that keep the total
magnetization constant. In other words, we assume �n↑k

+

=�n↓k
+ . Similarly to the free part, the interactions between

quasiparticles can then be written in terms of the variation of
the total number nk

+=n↑k
+ +n↓k

+ as

Eint =� dkdk�f�k,k���nk
+�nk�

+ . �35�

The function f�k ,k�� is then obtained from the mean-field
value of the energy

f�k,k�� �
��2��H�MF

�nk
+�nk�

+

=
1

2�2��2�U +
V

2
�F�0� − F�k − k��

��k���k��
h��k�h�k��

�� .

�36�

We have then completed step 1, getting the dispersion rela-
tion Eq. �29� and the interaction function Eq. �36�.

�3 �2 �1 0 1 2 3
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FIG. 1. �Color online� �a� Energy spectrum for the tight-binding approach. �b� Density of states per unit cell as a function of the energy.
All the quantities are given in units of t. �c� Left: FS for t���3t. Right: FS for 0��� t
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C. Parametrization of the Fermi surface

Step 2’ requires the parametrization of the FS, for which
we need to study separately fillings lying above and below
the Van Hove filling. In what follows we present the param-
eterized curves used throughout the calculations.

1. High-energy sector: ���� t

We call high-energy sector the case in which t� 	�	�3t,
i.e., the region of fillings which lie above the Van Hove
singularity. As can be seen in Fig. 1�c�, for � / t�3 the FS is
approximately circular, while for values closer to one the FS
takes a hexagonal form.

In this sector the FS can be parameterized as follows

kH�s� = �kx
H�s�,ky

H�s��, − � � s � � , �37�

where

kx
H�s� =

2

3a
sign�s�arccosG�ky

H�s��� ,

ky
H�s� =

1
�3a

��H − �H	s	� , �38�

with �H, �H and the auxiliary function G�x� defined as

�H =
4

�
arccos�� − t

2t
�, �H = 2 arccos�� − t

2t
� ,

G�x� =
1

4
��2

t2 − 2 cos��3x� − 3�sec��3x

2
� . �39�

2. Low-energy sector: ���� t

The low-energy sector corresponds to fillings satisfying
0� 	�	� t. In this case the FS consists of pockets centered at
the vertices of the Brillouin zone as can be seen in Fig. 1�c�.
By using the periodic identifications of the momentum plane,
we see that only two of them are nonequivalent. In conse-
quence one can describe the total FS as two pockets centered
in the two Dirac points k�= �0, �

4�
3a �.

For example, for the FS pocket centered in �0, 4�
3a � we can

choose a parametrization of the form

kL�s� = �kx
L�s�,ky

L�s��, − � � s � � , �40�

with

kx
L�s� =

2

3a
sign�s�arccos�G�ky

L�s��� ,

ky
L�s� =

1
�3a

��L − �L	s	� , �41�

and

�L =
2

�
�arccos�− t − �

2t
� − arccos�� − t

2t
�� ,

�L = 2 arccos�− t − �

2t
� . �42�

With the above parametrizations of the high- and low-
energy sectors, we can compute the corresponding Jacobian
evaluated on the FS according to Eq. �24�, obtaining

J−1�s� =�
3�3

4	�		�H	
�6�2 − �4 + 4��2 − 1�cos��H��

2
− 	s	�� − 2 cos��H�� − 2	s	�� − 3, t � 	�	 � 3t ,

3�3

4	�		�L	
�6�2 − �4 + 4��2 − 1�cos��L − �L	s	� − 2 cos�2��L − �L	s	�� − 3, 0 � 	�	 � t . � �43�

This completes our step 2 providing us with the values of the
Jacobian evaluated on the FS J−1�s�. The interaction function
evaluated on the FS f�s ,s�� is obtained by simply replacing
the parameterizations of the high- and low-energy sectors in
Eq. �36�. This allows us to complete step 3, by constructing
the energy function as a bilinear form.

D. Instabilities and phase diagram

To proceed with step 4, we choose a basis of the space of
functions L2�FS�. Here for simplicity we choose trigonomet-
ric functions

�n�s��n�N = cos�ms�,sin�ms��m�N. �44�

Following step 5 by means of an orthogonalization proce-
dure, we obtain the new basis of mutually orthogonal func-
tions 	n�n�N.

In terms of this new basis and according to step 6, we
compute the stability parameters 
i= �	i ,	i�. These are func-
tions on the space of parameters �� ,U ,V� that may become
negative in some regions. If this is the case, in such regions
the FS is diagnosed to be unstable.

In our calculations, this last step was performed numeri-
cally due to the complication of the integrals involved in the
pseudonorms 
n�n�N.

IV. RESULTS

The phase diagram on the space spanned by the interac-
tion strengths U, V, and the chemical potential � is shown in
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Fig. 2. There we plot the instability region determined by the
dominant unstable channels.

The method used in this work allows to explore all pos-
sible fillings and to draw a phase diagram for graphene sys-
tems valid both below and above half filling. The advantage
of our approach lies in the fact that it can be pursued sys-
tematically following the steps described in previous sec-
tions, studying separately each deformation mode of the FS.

For fillings around the Van Hove filling the Pomeranchuk
instability is favored. For on-site and nearest-neighbor Cou-
lomb repulsion �U�0 and V�0� we find a region of param-
eter space where the system presents an instability. Near to
the Van Hove filling our results are in agreement with those
found using a different approach in Ref. 22.

On the other hand, we do not see any instability around
half filling. This is in agreement with the results presented by
Sarma et al.23 in for doped graphene, where the authors
found that extrinsic graphene is a well-defined Fermi liquid
for low energies, within the Dirac fermion approximation.
Moreover, this agrees with experimental results found using
ARPES presented in,24 implying that graphene is a Fermi
liquid for low dopings.

For attractive on-site interaction, the region where the in-
stability is detected depends strongly of the nearest-
neighbors interaction strength. In this regime superconduct-
ing instabilities may exist, that would result in an
enlargement of the unstable region.

We find that even the smoothest deformations of the FS,
i.e., those described by lower modes in our orthogonal basis,
present instabilities. Indeed, they cover most of the unstable
region. In Fig. 4, instability regions corresponding to the first
modes are drawn. In Fig. 4�a� the V=0 plane is shown, the
unstable mode corresponding to the colored region is the
zeroth mode and the corresponding FS deformation is pre-
sented in Fig. 4�c�. In Figs. 4�b� and 4�d� the instability re-
gions for the first modes are plotted in the U-V and �-V
plane respectively. In both Figures the 
0 instability can be
seen, and a region appears where an instability of the 
1 and

2 channels is present. This instability appears for positive
values of the interaction strength and is closer to the Van
Hove filling. This is in agreement with earlier results, where
a Pomeranchuk instability at the Van Hove filling was found
within a different approach.22 The interacting FS presented
there has the same geometry than that of the corresponding
deformation channel 
2 shown in the left column of Fig.
4�c�. However, it has to be pointed out that our analysis
predicts the form of the deformed FS on a given channel, but
is unable to ensure its subsequent stability.

The results presented above confirm earlier predictions
about the Fermi liquid behavior of graphene for the cases
near Van Hove filling and near-half filling. They also provide
a more complete description of the phase diagram for the
entire range of fillings in between these two limiting cases.

V. SUMMARY AND OUTLOOK

We have explored Pomeranchuk instabilities in graphene
using a recently developed generalization of Pomeranchuk
method. We have obtained the phase diagram of the domi-
nant instability as a function of the on-site U and nearest-
neighbor V interaction strengths and the chemical potential �
�Fig. 2�. We analyzed several planes of the three-dimensional
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FIG. 3. �Color online� The dots represent the critical value of the
interaction strength Vc as a function of the channel number n of the
unstable channel. The line indicates the best fit with the form Vc

=an−b+c corresponding to a=1.0057, b=1.5328, and c=0.0273. In
the inset �a� the modes that are unstable in the plane marked by a
green square in Fig. 2 is shown. In the inset �b� a log-log plot of the
same data is displayed, a different fit shows that the effective power
is also negative.
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FIG. 2. �Color online� 3D phase diagram for graphene. The
phase diagram was constructed by exploring the first 20 modes, the
shaded region is unstable. The first three modes cover most of the
instability region; the remaining modes just redraw the details of the
boundary �see Fig. 3�. Note that for purely repulsive interaction
�positive U and V� there is an unstable region near the Van Hove
filling �
1. On the other hand, near half fillings �
0 the Fermi
liquid is stable for any value of the interactions.
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�3D� phase diagram obtaining a good agreement with previ-
ous theoretical results and experimental findings �Fig. 4�.

The phase diagram makes apparent some interesting fea-
tures of the system. For example no instability is detected at
low energies. This behavior is noteworthy because in this
sector a Dirac massless fermions approach can be used to
describe the graphene layer in the absence of interactions. On
the other hand, for energies close to the Van Hove energy,
instabilities appear to cover a large region in the U-V plane.

The efficiency of the method shows up in the fact that the
complete phase diagram is obtained by exploring a few num-
ber of modes. The introduction of higher modes does not
enlarge substantially the region of instability but redraws the
details of its boundaries as exemplified in Fig. 3.

The method can be applied either analytically or numeri-
cally according to the complexity of the system under inves-
tigation. In the previously studied case,17 the analytical cal-
culations were pursued up to the end, allowing us to draw the
phase diagram. In the present case, the calculations were
performed analytically up to the point of the evaluation of
the instability parameters 
i, which involved complicated in-
tegrals that were then performed numerically. The method is

suitable for direct application to numerical data encoding the
form of the Fermi surfaces such as those obtained by appli-
cation of ARPES.

The form of the method presented here is suitable for any
two-dimensional lattice model at zero temperature. However,
it does not consider instabilities arising from particles jump-
ing between different disconnected pieces of the FS or from
spin or color flipping. It can be easily extended to consider
these effects, as well as to three-dimensional systems such as
multilayer graphene, ruthenates, etc.29 The generalization to
finite temperatures involves a different definition of the pseu-
doscalar product. All these extensions will be presented in a
forthcoming work.30
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APPENDIX

Given the implicit curve defined by g�k�=0, we can
choose a parametrization in terms of a vector function

k�t� = �kx�t�,ky�t��, − � � t � � , �45�

depending on an arbitrary parameter t and defined so that
∀t :g�k�t��=0. In terms of this parametrization we want to
prove that the Dirac � function can be written as

��g�k�� =� dt
	k̇�t�	

	�g�k�t��	
��2��k − k�t�� . �46�

To that end, we write more explicitly the right-hand side

��g�k�� =� dt
	k̇�t�	

	�g�k�t��	
��kx − kx�t����ky − ky�t�� , �47�

and then rewrite the kx delta function using the well-known
one-dimensional formula

��f�x�� =
��x − x̄�

f��x̄�
where f�x̄� = 0, �48�

to get

��g�k�� =� dt
	k̇�t�	

	�g�k�t��	
��t − t�kx��

k̇x�t�
��ky − ky�t�� , �49�

where we call t�kx� to the solution of kx−kx�t�=0. Performing
the t integral

��g�k�� =
	k̇�kx�	

	�g�kx�	
��ky − ky�kx��

k̇x�kx�
, �50�

where we use the notation f�kx�= f�t�kx�� for any function f .
Writing explicitly the square roots on the vector norms

��g�k�� =
�k̇x

2�kx� + k̇y
2�kx���ky − ky�kx��

���xg�kx,ky�kx���2 + ��yg�kx,ky�kx���2k̇x�kx�
.

�51�

A further rearrangement of the formulas gives

��g�k�� =
�1 + � dky�kx�

dkx
�2

��ky − ky�kx��

�1 + � �xg�kx,ky�kx��
�yg�kx,ky�kx�� �2

�yg�kx,ky�kx��
, �52�

where we can identify the derivative in the numerator with
the quotient of derivatives in the denominator to cancel the
square roots obtaining

��g�k�� =
��ky − ky�kx��
�yg�kx,ky�kx��

. �53�

This is an identity in virtue of Eq. �48� if ky takes the place of
x.

Then we just proved formula �47� that we used during our
calculation of the Jacobian of the change of variables evalu-
ated in the FS.
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